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Counting and analyzing of blood cells, as well as their subcellular structures, are
indispensable for understanding biological processes, studying cell functions, and
diagnosing diseases. In this paper, we combine digital holographic microscopy
with cell segmentation guided by the Sobel operator using Dice coefficients for
automatic threshold selection and aimed to automatic counting and analysis of
blood cells in flow and different kinds of cells in the static state. We demonstrate
the proposed method with automatic counting and analyzing rat red blood cells
(RBCS) flowing in a microfluidic device, extracting quickly and accurately the size,
concentration, and dry mass of the sample in a label-free manner. The proposed
technique was also demonstrated for automatic segmentation of different cell
types, such as COS7 and Siha. This method can help us in blood inspection,
providing pathological information in disease diagnosis and treatment.
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1 Introduction

Blood cell counting and analysis in both physiology and pathological states have been
playing a crucial role in biological and medical study (Adollah et al., 2008; Wen et al., 2022).
For instance, blood cell counting is helpful to check for anemia, or to explain symptoms like
weakness, fever, bruising, or feeling tired. It aids greatly in the detection and monitoring of
conditions such as cancer, infections or blood disorders. Blood cell analysis can help
characterize healthy versus diseased cells, track cell dynamics over time, and understand
how cells respond to different stimuli or conditions. There are two essential issues in high-
throughput blood cell screening: 1) How to image blood cells with high contrast in a label-
free manner? 2) How to identify, segment, and count/analyze the cells automatically and
efficiently?

For the first issue, quantitative phase microscopy (QPM) combines phase imaging with
microscopy, enables visualization of transparent cells with high contrast, and quantify the
thickness or refractive index distribution of cells (Popescu et al., 2006; Kim, 2010; Micó
et al., 2019; Gao and Yuan, 2022). Among different QPM approaches, digital holographic
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microscopy (DHM) which combines digital holography and optical
microscopy, is one of the label-free, QPM approaches (Schnars and
Jüptner, 1994; Osten et al., 2014; Yu et al., 2014). DHM features a
nanometer-ranged axial resolution (Mann et al., 2005; Kim, 2010)
and autofocusing capability. Nowadays, the reconstruction of DHM
can be finished by deep learning frameworks (Ren et al., 2019),
which enhance the performances of DHM in general. So far, DHM
has been widely applied to many fields, including industrial
inspection (Kebbel et al., 2001; Emery et al., 2005), biomedical
studies (Yamaguchi et al., 2001; Carl et al., 2004; Marquet et al.,
2005; Dubois et al., 2006; Emery et al., 2007), and so on.

For the second issue, cellular analysis through the identification
and segmentation of individual cells in images. This process is
crucial for assessing cellular parameters, aiding in drug discovery
(Robertson, 2014; Park et al., 2023). Some of the common cell
segmentation methods are threshold segmentation (Wu et al., 2015),
region growing (Xu et al., 2017), edge detection (Lin et al., 2010), and
using machine learning or deep learning model methods (Al-Kofahi
et al., 2018; Shrestha et al., 2023). Among them, threshold
segmentation, as one of the simplest and most common cell
segmentation methods, divides the pixels into foreground (cells)
and background based on a thresholding of the pixel grey values.
However, it is difficult to differentiate regions with obscure cell
outline boundaries, which can lead to over-segmentation or under-
segmentation phenomena. The rise of deep learning methodologies,
particularly convolutional neural networks (CNNs) has emerged as
a powerful tool in cell segmentation, capable of learning complex
patterns from extensive data for precise segmentation (Tran et al.,
2018; Araújo et al., 2019; Panigrahi et al., 2021). Models like mask
R-CNN, combining object detection and instance segmentation,
have excelled in various computer vision tasks, including cell
segmentation (Loh et al., 2021). While deep learning methods
provide high accuracy and robustness, they require a significant
amount of labeled data for training, which can be time-consuming
and expensive. In edge detection people often use Canny, Laplacian,
and Sobel operators. Among them, Sobel operator is based on first-
order derivatives, and Laplacian operator is based on second-order
derivatives. Canny operator is a non-differential edge detection
operator, which requires multiple steps (e.g., Gaussian filtering,
gradient computation, non-maximum suppression, and bi-
thresholding) to complete the edge detection. All of the three
methods suffer from computational complexity. In contrast, the
Sobel operator is less computationally intensive, and can efficiently
process a large amount of image data with high segmentation
efficiency (Matthews, 2002). It approximates the edges of an
image by calculating the image luminance gradient, and a
weighted average of the grey values of the pixels during the
detection process provides more continuous edge information. It
has been applied in many fields, such as edge detection, object
detection and recognition, image segmentation, image compression
and video processing (Perra et al., 2005; Jin-Yu et al., 2009; Wang,
2009; Xiu et al., 2020). However, cell segmentation for high-
throughput blood cell screening is a challenging task. The
reasons are in the following. Firstly, there may be more
background noise in the sample image in high-throughput blood
cell screening. Secondly, biological cells usually have irregular
shapes, protrusions or fibrous structures.

In this paper, we combine DHM with a Sobel operator guided
segmentation method using Dice coefficients for automatic
threshold selection while automatically counting and analyzing
blood cells in flow and their different cells in a static state. It
contributes to a better understanding of cell behavior, disease
mechanisms and the development of new therapeutic and
diagnostic tools.

2 Methods

2.1 Partially coherent illumination based
point-diffraction digital holographic
microscopy

In our work, red blood cells (RBCs) in microfluidic channels
were imaged using a partially coherent point diffraction digital
holographic microscope (PC-pDHM) (Zhuo et al., 2021). As
shown in Figure 1, a partially coherent illumination (PCI)
generated by combining a rotating diffuser and a multimode
fiber is used.

Under the PCI, the sample is imaged by a telescope system
consisting of a 10×/0.45 microscopic objective MO and a tube lens
L1 (f = 150 mm). Then, a polarization grating (G) splits the object
wave into several copies along different diffraction orders of the
grating. The +1st diffraction order is used as the object wave while
the -1st order acts as the reference wave after being spatially filtered
out (pinhole mask). Due to the polarization dependence of the
grating’s diffraction orders, the object and reference waves are
elliptically polarized along two orthogonal directions. Finally, the
object and reference light are converted to the same polarized wave
by a linear polarizer (P), and interfere with each other in the plane of
the digital sensor (CCD). The relative intensity of the object and
reference waves, i.e., the fringe contrast of the hologram, can be
adjusted by rotating the polarizer P. The digital camera
(DMK33UX174, The Imaging Source, LLC, Charlotte, NC,
United States) records the hologram sequence at up to
162 frames per second (fps), limiting the temporal resolution to
about 6 ms. PC-pDHM has the advantages of high accuracy, low
speckle noise, and instant amplitude/phase imaging. Notably, PC-
pDHM is robust against environmental disturbances due to its
common-path configuration.

On the CCD plane, the interference between the object wave and
the reference wave produces an intensity distribution of

I �r( ) � ~O
∣∣∣∣ ∣∣∣∣2 + ~R

∣∣∣∣ ∣∣∣∣2 + 2 ~O ~R
����∣∣∣∣ ∣∣∣∣ · cos φ �r( ) + �K · �r{ }, (1)

For Eq. 1, ~O and ~R are the complex amplitudes of the object wave
and the reference wave in the camera plane, respectively, φ ( �r) is the
phase distribution of the sample, and �K and �r � (x, y) denote the
carrier-frequency vector of the interference fringes and the two-
dimensional coordinates on the camera plane, respectively. The
amplitude of �K, or the carrier-frequency of the off-axis hologram, is
determined by the period of the grating G and the magnification of
the telescope system L2-L3. The camera plane can be
reconstructed as

Or �r( ) � IFT FT I �r( ) · RD[ ] · ~W ξ, η( ){ }, (2)
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where, ξ and η are the coordinates in the Fourier domain. FT ·{ } and
IFT ·{ } represent the Fourier transform and inverse Fourier
transform, respectively. A digital reference wave RD � exp(−i �K ·
�r) is used to compensate for the spectral shift caused by the angle
between the object wave and the reference wave. In the experiment,
RD (x,y) can be determined by measuring the carrier frequency
vector �K of the interference stripe. ~W(ξ, η) is the window function to
select the spectrum of the real image. Then, both the amplitude and
phase image can be obtained from Or( �r). Compared to the
amplitude image, the phase image has much higher contrast, and
notably, in a quantitative manner. Therefore, it is more
advantageous to use the phase image to perform the cell
segmentation. Once using automatic cell identification and
segmentation strategy, high throughput cell inspection can
be performed.

2.2 Automatic cell segmentation in
phase image

In the conventional cell segmentation using Sobel operator,
the threshold value for edge segmentation is usually identified by
using the grayscale histogram of the image. This technique may
result in overlooked and misidentified edges for the images with
feeble edge contrast. Herein, we propose a cell segmentation
method guided by the Sobel operator (Sobel and Feldman, 1968;

Gao et al., 2010) and Dice coefficient (Shamir et al., 2019), of
which the threshold value is identified using ground truth
images to achieve automatic optimal segmentation. The
specific details of the segmentation process are shown
in Figure 1B.

Step 1. Cell edge detection.
At first, the background of the original phase images is removed

by subtracting the mean value of the phase images.
Then, the edge contour of cells is extracted using Sobel

operators, which compute the gradient of an image along four-
direction (0°, 45°, 90°, and 135°). Specifically, the gradient along these
directions can be calculated by convolving the phase image I (x, y)
with Sobel matrix Sθ (θ = 0°, 45°, 90°, and 135°).

S0 �
−1 −1 −1
0 0 0
1 1 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ S45 � −1 0 1
−1 0 0
−1 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ S90 � 1 0 −1
0 0 0
−1 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, S135

�
−1 0 1
0 0 0
1 0 −1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (3)

For Eq. 3, the squares of the gradients in the four specified
directions are added, and the square root of their summation is the
overall gradient magnitude G. This process the cell edges exhibit
higher intensity values, making them easily distinguishable, as
shown the Gradient in Figure 1B.

FIGURE 1
(A) Schematic diagram of the experimental setup for automatic cell segmentation. PCI, partially coherent illumination; MO, microscopic objectives;
L1-L3, achromatic lens; M. Mirrors; G, polarization grating; PH, pinhole; P, polarizers; CCD, charge-coupled device; RBCs, red blood cells; (B) Schematic
diagram of the automatic segmentation process in PC-pDHM.
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Step 2. Cell segmentation.
First, convert the gradient image into a binarized image using an

initial threshold n.
Second, an expansion kernel of size 1 × 1 pixel2 is employed to

perform a dilation operation. This operation examines the surrounding
pixels of a target pixel, if any of the 8 surrounding pixels has a value of 1
(foreground pixel), the value of the current pixel is set to 1. Otherwise, it
is left unchanged, enabling the expansion or joining of foreground
regions. The dilation operation can somehow suppress disjointed or
inaccurate edge due to the presence of noise.

Third, the holes are eliminated and the edges are smoothed by
morphological closing operations (dilation and erosion). The
dilation operation is first repeated continuously until the
foreground pixels are filled in the connected region. However,
this may result in the foreground region becoming irregular or
too large. In order to eliminate these problems, the erosion operation
is then performed. Specifically, the dilation kernel defined above is
compared to the current pixel position and its surrounding pixels. If
the value of the image pixel corresponding to the dilation kernel with
all the surrounding pixels is 1, the value of the current pixel is set to
1. Otherwise, it is set to 0. The erosion process modifies the shape
and size of the foreground region, removing minor details and
smoothing edges to create a more accurate cell mask.

Fourth, automatic threshold identification using ground truth
(GT) images is applied where accurate selection of threshold value
is crucial for cell segmentation. In this method, the threshold n is
identified using GT images to obtain the best segmentation. The
Dice coefficient, which is the most commonly used objective
metric in deep learning-based segmentation (Milletari
et al., 2016):

Dice � 2 Mask ∩ GT| |
Mask| | + GT| | (4)

Actually, Eq. 4 assesses segmentation quality by comparing the overlap
between the segmented (Mask) and GT images, and the value ranges from
0 to 1. The closer the value is to 1, the higher the overlap similarity between
Mask and GT, i.e., the more accurate the segmentation result. In the
implementation, the threshold n is varied so that an optimal threshold is
found that maximizes the value of the Dice coefficient. For the GT images in
this cellular segmentation task, manual labelling was performed with
ImageJ. Firstly, the cell boundaries were precisely outlined on the phase
image. And secondly, the cell regions were filled with a paintbrush to obtain
the labelled image for cell regions.

2.3 Automatic cell segmentation in
phase image

Dry mass, which is the mass of a cell or an organism after all the
water content has been evaporated, is often used to evaluate the
morphology or the density of biological samples. The dry mass of the
target as a whole can be obtained by integrating the refractive indices
of the target body volume regions (Sung et al., 2012):

m � 1
α
∫∫∫

vc

n x, y, z( ) − n0( )dV � 1
α
∫∫
S

OPDdxdy

� 1
2πα

σ2λ∑
S

Δφi.j (5)

Here, n(x, y, z) and n0 denote the refractive indices of the cell
and the background, respectively, vc and S denotes the cell region in
3D and 2D, and α � 0.19 μm³/pg is a constant indicating the rate of
change of refractive index per unit of change in density or
concentration. In addition, σ denotes the pixel size in the image,
OPD � Δφλ ∕ 2π denotes the optical path difference, Δφi,j denotes
the discrete spatial distribution of the phase difference, and λ

denotes the wavelength of light. Eq. 5 allows us to relate the
phase value Δφ of a cell to its dry mass m. In the proposed
technique, the dry mass of the cells can be calculated from the
cell phase images acquired by PC-pDHM.

3 Results and discussions

3.1 Cell area measurement and
concentration analysis based on automatic
segmentation

In the first experiment, we demonstrate that the proposed
technique can be applied to the analysis of rat blood. Fresh blood
was extract from a rat and was diluted at a volume ratio of 1:100.
Then, the diluted blood was pumped through a microfluidic channel
equipped in PC-pDHM and continuous recording of off-axis
holograms were taken at a ratio of 30 fps. Using Eq. 2,
quantitative phase images of the blood cells can be reconstructed,
as shown in Figure 2A. The contours of individual cells are extracted
based on the automatic segmentation methodology previously
introduced, as shown in Figure 2B. The area of each individual
cell can be calculated by counting the number of pixels within each
cell area and multiplying a factor of 0.078 μm2/pixel2. The statistics
of cell areas among 43,711 cells is represented in Figure 2C. In the
statistics, the area below 13.50 μm2 is from speckle noise and the area
above 28.0 μm2 is from the cells clusters in the phase images (see the
area marked with red circles in Figure 2B). The range in between
(13.50–28.0 μm2) corresponds to a valid area region (containing
13,943 cells for the statistic) and this region is magnified and shown
with Figure 2E where the useful cells are labeled. Often, the valid area
range for individual cells can be determined by analyzing the phase
image containing sparse cells, as shown in Figures 2B, E. At low
density of cells, the cell contour can be easily isolated and segmented
since there is a large difference between the noise points and the
actual cells. The Gaussian fit on the histogram reveals that the mean
area of individual cells is 21.80 ± 0.14 μm2 (mean ± SD).

Considering the observation volume of the microfluidic channel
falling in the field of view (FOV) of 149.76 × 84.24 × 100 μm³, we can
calculate the volume concentration of blood cells in the diluted
blood sample. Using the cell area distribution included in Figure 2D
as a constraint for cell counting, we obtained the number of cells N =
61 cells in the observation volume of 149.76 × 84.24 × 100 μm³ for
the exemplary frame (Figure 2E), which means that the cell
concentration can be deduced to be 4.84 × 106 μL⁻1. In this case,
we performed an automated count on 1,134 manually counted cells
and assessed the accuracy of the algorithm to be approximately 97%
when compared to an automated count of 1,099 cells. Once
repeating this process for 1,400 images, the histogram of cell
concentration can be obtained and shown in Figure 2F. The
Gaussian fit of the histogram tells that RBCs concentration in the
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diluted solution is (4.32 ± 0.89) ×104 μL⁻1 (mean ± SD). Taking the
dilution factor 1:100 into consideration, the blood cell concentration
in rat blood is (4.32 ± 0.89) ×106 μL⁻1 (mean ± SD). This information
is essential for deeper understanding of cellular behavior and
characteristics during cell proliferation or under effect of drugs.

3.2 Cell dry mass analysis based on
automatic cell segmentation

The dry mass of a cell is the amount of solid material, such as
proteins, nucleic acids and other organic molecules, existing in the

FIGURE 2
Analysis of diluted rat blood using the proposed technique. (A) Phase image of RBCs; (B) Edge contours of RBCs; (C) Histogram of area among
43,711 contours; (D) Distribution statistics of RBCs area, for the area within the dashed box in (C); (E) Results of RBCs counting; (F) Statistics of RBCs
concentration in the diluted solution. Scale bars in (A–B) are 20 µm, (E) are 20 µm, respectively.

FIGURE 3
Analysis of the dry mass of RBCs. (A) Procedure for calculating the dry mass of RBCs; (B) Histograms of the cell dry mass. The curve in (B) is a
gaussian fit.
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cell. Measuring the dry mass of a cell can provide information about
the cell’s metabolism, growth and health states. It is useful for
assessing rates of cell proliferation, comparing the biochemistry
of different cell types, and studying the effects of drugs on cells.
Several approaches exist for determining cell dry mass. One
possibility involves the direct measurement of the dry weight of
cells by collecting them, washing and centrifuging them, and
subsequently drying them (Bratbak and Dundas, 1984). Another
approach is to quantitatively measure the cell dry mass by phase
change determination (Popescu, 2011). This method has the
advantage of being non-destructive and does not require
additional treatment of the sample. Therefore, it is widely used in
fields such as cell biomass measurement and cell growth monitoring.

In our experiment, we acquired phase images by using the PC-
pDHM for label-free measurement of RBCs’ dry mass. As shown in
Figure 3A, the phase values were first integrated point-by-point over the
cell region, yielding the integrated phase value ∑

s

Δφi,j of the entire

single cell. Then, the dry mass m was obtained using the linear relation

described by Eq. 5. In the calculation, the following parameters, λ =
532 nm, σ = 0.078 μm/rad, were used. The histogram of the dry mass
distribution among 17,452 cells are shown in Figure 3B. The Gaussian
fit on the histogram tells that the average dry mass of individual cells is
26.42 ± 4.34 pg (mean ± SD). We can deduce the number of cells in a
cell-cluster by dividing the dry mass of the cluster by the average dry
mass of individual cells. The proposed technique provides a non-
invasive means of quantifying cell properties, enabling researchers to
obtain essential information about cell behavior, metabolism, and
overall functionality.

3.3 Segmentation of different cell types and
comparison with multiple segmentation

Cell segmentation is crucial in high-throughput, automatic analysis
of cell morphology. In this experiment, we demonstrate the proposed
approach can be used for segmentation of different kinds of cells. We

FIGURE 4
Automatic segmentation of cells (A–G) Comparison of the proposed method with other methods on segmentation of Siha cells. (A) Phase image of
the cells; (B) GT image of the cell segmentation; (C–G) The segmentation results of different segmentation methods obtained by the TP, FN, FP, and TN
methods in comparison with the GT images; (H)Quantitative phase image of COS7 cells and (I) cell segmentation result; (J)Holographic image of human
blood cells and corresponding segmentation results; (K) Differential interference contrast (DIC) image of Mouse Embryos and corresponding
segmentation results. Scale bars in (A–G) are 10 µm, (H–I) are 10 µm, respectively.
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imaged Siha cells using the DHM setup shown in Figure 1 and
segmented them using the proposed method in comparison with the
following four well-established methods: 1) Cellpose (Stringer et al.,
2021): A deep learning based cell segmentation method; 2) Trainable
Weka Segmentation (TWS) (Arganda-Carreras et al., 2017): Amachine
learning based cell segmentation method; 3) Empirical Gradient
Threshold (EGT) (Chalfoun et al., 2015): A feature-extracting
strategies; 4) Ostu (Ostu, 1979): A thresholding based method.
Cellpose based segmentation was performed using its startup web
version. TWS and EGT were implemented using plugins integrated
in Fiji, while Ostu was implemented using python. The phase diagram
of Siha cells is shown in Figure 4A, and the GT image (Figure 4B) was
obtained by manual segmentation. The segmentation results obtained
by different methods are shown in Figures 4C–G. We visualize the
deviation of the segmentation results against the GT images, including
TP (correctly identified positive samples), FN (positive samples missed
cases), FP (negative samples misreported cases), and TN (correctly
identified negative samples). The segmentation results were evaluated
using F1 scores and Hausdorff Distance (HD) as secondary criteria, of
which F1 scores indicate consistency of the segmentation results with
the actual labels and HD values indicate segmentation accuracy. The
F1 scores for Figures 4C–G were 0.95, 0.87, 0.91, 0.89, and 0.87, and
their HD values were 6.40, 33.11 16.28, 12.04, and 18.79, respectively. In
comparison, themethod proposed in this paper has better performance.

First, there is no need to obtain a large amount of labeled data
since only one piece of labelled data for the same kind of samples
taken by the same device is sufficient to guide the thresholding
optimization in the segmentation operation. Second, the method is
relatively simple and computationally efficient, and by contrast, the
learning network model in a neuron network often requires a lot of
computational resources and time. Just as an example, the complete
segmentation of the proposed method takes only about 0.05 s for an
image with 96 × 96 pixels, while the U-Net needs 17 h to be trained
with 3,600 pairs of data. Considering the phase image can be acquired
in real-time using off-axis DHM configuration, real-time dynamic
imaging and segmentation is possible once using parallel processing
techniques. Third, the proposed approach can segment different kinds
of cell profiles. In particular, our method shows excellent ability to
extract cell contours of COS7 cells (Figures 4H, I). We further
demonstrate in Figures 4J, K that the proposed approach works
also in the segmentation of both human erythrocytes and mouse
embryo cells (Ljosa et al., 2012). By contrast, the network model can
only predict the structures that are identical or similar to those in the
training set. However, our proposed method has some shortcomings
and the segmentation results of the model may be somewhat poor for
images containing complex textures, significant shape changes, or no
clear delineation between target and background.

4 Conclusion

In this paper, we propose a scheme for cell segmentation using the
Sobel operator with Dice coefficients as a guide, which can segment cells
in digital holographic imaging and enables the determination of cell
size, concentration, and dry mass. Notably, many of the present cell
segmentation algorithms are restricted to specific modalities, making
our method’s versatility in segmenting cells across various imaging
modes noteworthy. In our experiments, after testing with rat RBCs,

COS7 cells and Siha cells, eventually we found that the method can
rapidly segment individual cell outlines in phase images. The proposed
method is valuable in clinical screening that requires rapid processing of
large amount of sample. Additionally, the proposed method can be
adapted to wide range of clinical imaging devices, enabling the analysis
of diverse cell types and morphologies. It is also worth mentioning that
the proposed pipeline cannot be considered fully automatic as it
requires manual segmentation of an image to optimize the threshold
for segmentation in order to maximize the Dice coefficient. Further
standardization and validation are needed to fully establish its efficacy,
particularly in real patient samples.
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