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Upconversion nanoparticles (UCNPs) have experienced significant
advancements, finding applications in diverse fields over the past decade. The
growing demand for UCNP-based nanoplatforms with multifunctionality to
address complex scenarios has led to the emergence of the microemulsion
confined self-assembly method, which allows for the integration of different
UCNPs or UCNPs with additional functional materials within a single entity,
resulting in a nanoplatform that possesses a wide range of properties suitable
for specific applications. This comprehensive review aimed to summarize recent
developments in the design of UCNP assemblies using the microemulsion
confined self-assembly method, which focused on exploring their applications
in critical areas such as color encoding, bioimaging, and programmable
therapeutics. Furthermore, the review acknowledged the existing limitations
associated with the microemulsion confined self-assembly method and
provided an in-depth discussion of potential solutions to overcome these
challenges, aiming to foster further progress and innovation in the design and
application of UCNP assemblies.
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1 Introduction

The utilization of near-infrared (NIR) light-excitable upconversion nanoparticles
(UCNPs) has garnered significant attention in recent times due to their distinctive
capability as on-demand energy transducers to convert low-energy NIR light to high-
energy ultraviolet (UV)/visible light (Chen et al., 2015a; Idris et al., 2015; Li et al., 2015;
Zhou et al., 2015; Zhu et al., 2017b; Zheng et al., 2019; Chen and Wang, 2020a; Chen and
Wang, 2020b; Cheng et al., 2020; Dong et al., 2020; Nonat and Charbonnière, 2020), thereby
enabling a range of applications such as molecular detection (Zheng et al., 2015; Chen et al.,
2016; Shikha et al., 2017; Gu and Zhang, 2018; Gao et al., 2019), drug delivery (Yan et al.,
2012; Li et al., 2013; Liu et al., 2013; Yang et al., 2013; Bansal and Zhang, 2014; Zhao et al.,
2014; Yang et al., 2015; Wang et al., 2016), optogenetics (Wu et al., 2016; Chen et al., 2018;
Liang Zou, 2020), and photodynamic therapy (PDT) (Wang et al., 2011; Idris et al., 2012;
Cui et al., 2013; Liang et al., 2016; Bansal et al., 2018; Qiu et al., 2018; Liu et al., 2019).
However, the limited extinction coefficients, quantum efficiency, and fixed energy levels of
UCNPs hindered their broader applications in specific multiplexed scenarios. To
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circumvent these limitations, researchers have focused on designing
and synthesizing UCNPs with increasingly complex structures,
involving multi-step and time-consuming procedures (Chen
et al., 2015a; Wang et al., 2015a; Chen et al., 2015b; Wang et al.,
2016; Ju et al., 2018; Leng et al., 2018; Fan et al., 2019). To resolve
these problems, UCNP hybrid assemblies containing various
UCNPs or UCNPs and other functional counterparts were
developed to achieve desired properties tailored to specific
applications, such as cell imaging (Li et al., 2013; Li and Lu,
2015; Xue et al., 2019), drug delivery (Cai et al., 2017; Zhang
et al., 2019; Zhang et al., 2020a; Zhang et al., 2020b; Zhang et al.,
2021a; Zhang and Zhang, 2021), molecular detection (Wang and Li,
2006; Liu et al., 2018), and programmed therapy (Zhang et al., 2019;
Zhang et al., 2020a). The UCNP assembly not only preserves the
inherent upconverting characteristics of UCNPs but also possesses
additional variable functional properties, including environmental
responsiveness, magnetic targeting, and catalytic activity, which
assist in enhancing performance and overcoming the limitations
of traditional UCNPs. Moreover, the composition and assembly
approach of individual components could be finely tuned to obtain
desired properties and adapt to specific environmental conditions
as needed.

Several synthesis methods have been developed for UCNP
assemblies, including interface-based approaches (Ye et al., 2010;
Ren et al., 2012; Liu et al., 2016), microemulsion confined self-
assembly (Bai et al., 2007; Wang et al., 2013a; Wang et al., 2013b),
and polymer/DNA-meditated methods (Li et al., 2013; Chen et al.,
2019; Zhang et al., 2020b). Among these methods, due to its
superior versatility and efficiency, microemulsion confined self-
assembly has demonstrated exceptional potential for fabricating
highly useful UCNP-based nanoplatforms, particularly in
emerging fields such as bioimaging, controllable molecular
delivery, and programmable therapeutics. A comprehensive
overview of recent developments and achievements in UCNP
assemblies reported in the past years would facilitate the
effective utilization of UCNP-based materials. Accordingly,
Section 2 provides a concise introduction to the microemulsion
confined self-assembly of UCNP-based multifunctional materials.
Additionally, Section 3 discusses related applications, as well as the
challenges and perspectives of UCNP assemblies are summarized
in Section 4.

2 Advancements in microemulsion-
based fabrication of UCNP-based
multifunctional materials

Microemulsion is a process in which the continuous phase,
comprising either an organic or aqueous medium, undergoes
fragmentation, leading to the dispersion of oil or water droplets
within an aqueous or oil solution containing surfactants (Bai et al.,
2007; Lu and Yin, 2012; Wang et al., 2013a; Lee et al., 2015; Boles
et al., 2016; Xiao et al., 2017; Liu et al., 2022; Zhang et al., 2022; Zhou
et al., 2023). In a typical oil-in-water (O/W) microemulsion system,
for instance, emulsification is achieved by subjecting the oil phase to
mechanical stirring or sonication in the presence of surfactants.
Subsequently, the low-temperature boiling oil phase is eliminated
through evaporation, causing the materials within the oil droplets to

aggregate and form larger assemblies exhibiting a 3D spherical
morphology (Figure 1A).

2.1 Assemblies of UCNPs in various types

Taking advantage of the microemulsion confined self-assembly
method, Zhang’s group assembled various UCNPs into UCNP
clusters, demonstrating the broad applicability of this approach.
Initially, a set of spherical UCNPs (diameter is about 17 and 34 nm)
and rod-shaped UCNPs (length about 34 nm) were selected to form
spherical UCNP clusters (Figures 1B–G) (Zhang et al., 2020a). The
size, composition, and surface charge of these 3D colloidal spheres
can be precisely controlled by manipulating experiment parameters.
This approach paves the way for the preparation of a 3D UCNP
assembly derived from a single UCNP.

2.2 Assemblies of UCNPs and other
inorganic nanoparticles

After a thorough exploration of the principles behind the
microemulsion confined self-assembly method, Zhang’s group
recognized the potential for other functional inorganic materials,
possessing similar surface properties as OA-capped UCNPs, to form
their own assemblies or hybrid assemblies. Therefore, Fe3O4

nanoparticles were selected and combined with UCNPs to
construct multifunctional superparticles (MFSPs), exhibiting both
upconversion and magnetic targeting capabilities, which
significantly highlighted the versatility of the microemulsion
confined self-assembly method (Figure 1H) (Liu et al., 2023). The
synthesized MFSPs, comprising two distinct types of functional
nanoparticles, demonstrated remarkable performance in terms of
green-colored upconversion luminescence upon excitation with a
980 nm laser. Additionally, under the influence of a magnetic field,
the MFSPs exhibited controlled and directed movement. The
simultaneous manifestation of both functionalities in all MFSPs
provided strong evidence for the successful combination of UCNPs
and Fe3O4 nanoparticles within a single MFSP. Expanding on this
concept, Zhang and his collaborators aimed to enhance the
versatility of the microemulsion approach by incorporating Au
nanoparticles into the UCNPs/Fe3O4 MFSPs system (Figure 1I)
(Liang et al., 2023), which further demonstrated that tailored
nanoplatforms with enhanced functionalities can be achieved
according to the specific requirements of practical applications.

2.3 Assemblies of UCNPs with
organic materials

The microemulsion method offers a versatile approach not only
for constructing UCNP-inorganic nanoparticle assemblies but also
for combining UCNPs with other materials such as organic small
molecules and polymers to create UCNP-based inorganic/organic
hybrid nanosystems. Dai’s group reported a facile and
straightforward synthesis of ZnPc/NaGdF4:Yb, Er clusters,
utilizing an amphiphilic copolymer, PMAO-PEG (poly (maleic
anhydride-alt-1-octadecen-poly (ethylene glycol)) as an additive
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in the organic phase to form a microemulsion (Wang et al., 2013b).
After complete evaporation of the organic solvent, the UCNPs,
ZnPc, and PMAO-PEG aggregated together, forming a 3D hybrid
cluster. The hydrophilic PEG molecules extended to the outside of
the cluster, ensuring its stability, dispersivity and biocompatibility
for in vitro and in vivo applications. In 2017, Wang et al. introduced
pH-dependent multifunctional nanocapsules based on pH-
simultaneous PLGA and UCNPs (NaYF4:Yb,Er@NaGdF4) for
drug delivery of an antitumor drug (DOX) (Figure 1I) (Zhao
et al., 2017).

3 Advancements in applications of
UCNP-based multifunctional materials

In recent years, UCNP assemblies with diverse functionalities
have found application in various practical scenarios, such as dual-
modality cell imaging, controllable drug delivery, and
programmable therapeutics, etc. Summarizing the achievements
in these applications over the past few years can provide valuable
insights into the self-assembly of UCNPs and facilitate
the exploration of more useful and desired applications of

FIGURE 1
(A), Schematics showing the microemulsion approach for the fabrication of the UCNP cluster. TEM image of UCNPs with different sizes and shapes
(B–D) and their corresponding cluster (E–G). (B, C), spherical, (D), rod-like. Reproduced from (Zhang et al., 2020a), copyright right 2020, American
Chemical Society. TEM images of UCNPs-based hybrid nanomaterials with other functional materials. (H), Fe3O4, reproduced form (Liu et al., 2023),
copyright right 2023, John Wiley and Sons. (I), Fe3O4/Au, reproduced form (Liang et al., 2023), copyright right 2023, Springer Nature. (J), PLGA.
Reproduced from (Zhao et al., 2017), copyright 2017, Springer Nature.
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UCNP-based nanoplatforms through microemulsion-based
fabrication methods.

3.1 Color encoding

Traditional methods for tuning the color emissions of UCNPs
typically involve complex and time-consuming fabrication
processes, which require multiple synthesis steps and precise
control over the composition and thickness of each layer.
However, by utilizing the microemulsion system, UCNPs with
different emission characteristics can be easily incorporated into
a single hybrid cluster, allowing for color encoding without the need
for complex structural modifications. For instance, by mixing
UCNPs with blue and green emission in different intensity ratios
and exciting them with 980 nm excitation, diverse UCNP cluster
solutions with varying blue-to-green fluorescence ratios at 450 nm
and 550 nm were successfully created (Figure 2A) (Zhang
et al., 2020a).

Besides, recent studies have focused on the development of
UCNPs with orthogonal emissive emissions (OUCNPs) to meet the
complex requirements of various applications, due to their superior
temporal separation and precise molecular photoactivations.
However, the synthesis of OUCNPs requires multi-core-shell
structures, where different lanthanide activator/emitter cations
are doped in isolated shells, and an inert shell is desired to
prevent energy transfer between the shells. The behavior of these
multi-core-shell OUCNPs is often limited in quantum yield and

luminescence stability. Zhang’s group addressed this challenge by
modularly assembling two types of UCNPs, namely, spherical
UCNPs A (NaYF4:60%Yb,20%Gd,2%Er@NaLuF4:25%Y) and
dumbbell-like UCNPs B (NaYF4:30Yb,0.5%Tm@NaYF4:10%Yb@
NaNdF4:10%Yb), which emits red light upon excitation at
980 nm and UV/blue light when exposed to 808 nm irradiation,
respectively (Zhang et al., 2019; Zhang et al., 2020a). This approach
focused on synthesizing individual UCNPs with a simple structure
containing a single activator and then assembling them while
maintaining their individual luminescence properties. Just by
changing the laser power ratio of 980 nm–808 nm, different
colors from blue to orange could be achieved easily.

3.2 Bioimaging

UCNPs have emerged as promising candidates for bioimaging
applications, due to their remarkable optical properties, including
large anti-Stokes shift, long lifetime emission, and narrow band
emission (Wang et al., 2010; Zhou et al., 2012; Park et al., 2015;
Wolfbeis, 2015; Wang et al., 2019). Moreover, the microemulsion
method allows for the combination of UCNPs with other materials
possessing different properties, resulting in hybrid systems with
enhanced functionalities for bioimaging. One promising candidate
among these functional counterparts is persistent luminescence
(PL), which exhibits the ability to emit light for several minutes
or even hours after the excitation source has been removed (Zhou
et al., 2023). Li’s group utilized the microemulsion confined method

FIGURE 2
(A), Scheme shows color encoding by mixing different blue-to-green fluorescence intensity ratios. (B), OUCNPs utilized for programmable
therapeutics including endosomal escape, siRNA release, and PDT. Reproduced with permission from (Zhang et al., 2019), copyright 2019, Springer
Nature. (C), Schematic illustration of the multifunctional UCNPs/Fe3O4 superparticles for magnetic targeting PDT and real-time NIR-Ⅱ imaging.
Reproduced from (Liu et al., 2023), copyright right 2020, John Wiley and Sons. (D), Schematic illustration of the microemulsion-based fabrication
process of UCNPs/Au/Fe3O4 hybrid nanoplatforms for magnetically targeted and photothermal enhanced catalytic therapy under the guidance of NIR-II
imaging for efficient tumor therapy. Reproduced from (Liang et al., 2023), copyright right 2023, Springer Nature.
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to construct UCNP/PL hybrid cluster which involved the
combination of UCNPs (NaYbF4:Tm@NaYF4) with PL
nanoparticles (Zn1.1Ga1.8Ge0.1O4:0.5%Cr) in a hybrid nanocluster
(Xue et al., 2019). In this hybrid system, the UV light generated by a
980 nm laser served as a secondary excitation source for the PL
nanoparticles, resulting in afterglow emission at 700 nm. This NIR-
to-NIR bioimaging hybrid cluster exhibited remarkable reactivation
capabilities even covered by a 10 mm layer of pork, showcasing its
high tissue penetration ability in the NIR range for
bioimaging in vivo.

3.3 Programmable therapeutics

Traditional UCNPs with fixed emissions pose limitations in
performing multiple tasks, while utilizing UCNPs with orthogonal
emissive emissions (OUCNPs) makes it possible to independently
control the photoactivation of different functions by simply adjusting
the external excitation light. This capability allows for precise temporal
control and targeting of multiple specific biological processes (Boyer
et al., 2010; Wang et al., 2014; Wang et al., 2015b; Huang et al., 2018;
Zheng et al., 2018; Zhang et al., 2021b; Zhang and Zhang, 2021). So far,
the synthesis of OUCNPs is complicated and tedious because different
lanthanides need to be incorporated into the different shells (Boyer et al.,
2010; Lai et al., 2014;Wang et al., 2015b; Li et al., 2016; Dong et al., 2017;
Mei et al., 2019; Lei et al., 2020). To address these bottleneck problems,
Zhang et al. utilized the microemulsionmethod to assemble two distinct
UCNPs with different emissions into OUCNP clusters (Zhang et al.,
2020a). These UCNPs can be individually activated by irradiation with
the 980 and 808 nm light, resulting in red and UV/blue emission,
respectively, which were applied for cell imaging and drug delivery in a
controllable manner. Furthermore, the same group achieved enhanced
PDT using OUCNP clusters through programmed photoactivation of
multiple therapeutic processes, including endosomal escape through
photochemical internalization for enhancing cellular uptake, gene
knockdown of superoxide dismutase-1 to increase sensitivity to
reactive oxygen species, and PDT to ensure a higher therapeutic
efficacy (Figure 2B) (Zhang et al., 2019).

In addition to the controlled photoactivation of OUCNP clusters
through external excitation light, hybrid nanoplatforms combining
UCNPs with other materials could be programmed to suit various
practical applications. Zhang’s research group utilized the
microemulsion based method to assemble UCNPs and Fe3O4

nanoparticles into multifunctional UCNP/Fe3O4 superparticles
with highly integrated functionalities including magnetic
targeting, PDT and real-time NIR-Ⅱ imaging, which allows for
the guidance of PDT using 980 nm and 808 nm excitations
(Figure 2C) (Liu et al., 2023). In order to further enhance the
efficacy of tumor theragnostic, Zhang’s group incorporated Au
nanoparticles into the superparticles, which act as catalysts for
the conversion of glucose to gluconic acid and H2O2.

Importantly, the generated H2O2 serves as a reactant source for
the production of ·OH due to the nanoenzyme-like peroxidase
activity of Fe3O4 nanoparticles. Furthermore, under 808 nm
irradiation, the Au nanoparticles exhibit enhanced catalytic
properties due to their photothermal conversion capability (Liang
et al., 2023). This multifunctional nanoplatform demonstrates a
synergistic effect of different nanoparticles for cancer treatment. By

utilizing the microemulsion confined modular assembly technology,
the construction of such multifunctional intelligent systems brings
us closer to the realization of effective cancer diagnosis and therapy
integration.

4 Summary and outlook

Over the past few years, the synthesis of UCNPs have made
tremendous progress and high-quality UCNPs greatly expand their
application potential in various fields, including imaging, detection,
delivery, PDT, PTT, and programmable control of therapeutic
processes. Although advancements have been made, UCNPs still
suffer form certain challenges, such as low quantum efficiency and
extinction coefficients, and fixed emissions, which limit their boarder
practical applications. To address these limitations and draw
inspiration from the strengths of other materials, researchers have
focused on constructing UCNP nanoplatforms that incorporate
different types of UCNPs or other functional counterparts. By
leveraging the advantages of diverse materials, UCNP-based hybrid
nanoplatforms can exhibit improved performance and overcome the
inherent limitations of UCNPs alone. However, synthesizing UCNP-
based hybrid nanoplatforms with different functionalities is a
challenging and time-consuming process. A possible solution to
this issue is the modular assembly of UCNPs with other materials
through a microemulsion confined method. This approach allows for
the synthesis of individual materials with simple structures, which can
then be bonded together to create a complex and versatile
nanoplatform that meets the requirements of various applications.
By simplifying the synthesis process, this method offers a promising
and efficient way to create hybrid nanoplatforms with diverse
properties. Moreover, the exploration of alternative approaches for
efficient and convenient synthesizing UCNP-based multifunctional
materials is expected to become a key focus in future research and
developments.

This review provides an overview of the recent advancements and
applications of the microemulsion confined method in fabricating
functional materials based onUCNPs. Despite the significant progress
made in the past decade, several limitations need to be addressed
before these materials can be effectively translated into practical
applications. One significant factor to consider is the size of UCNP
clusters, as it has a substantial impact on their interaction with
biological systems (Hoshyar et al., 2016; Dolai et al., 2021), such as
cellular uptake (Arnida et al., 2010; Dasgupta et al., 2014), tumor
penetration (Perrault et al., 2009; Zhang et al., 2009; Huang et al.,
2012), and tissue biodistribution (De Jong et al., 2008; Sonavane et al.,
2008; Hirn et al., 2011; Duadi et al., 2013). Therefore, it is crucial to
study the interactions between nanoparticles and cells and tissues to
determine the optimal size for UCNP clusters. Previous lectures have
indicated that nanoparticles should have a diameter larger than 10 nm
to prevent kidney filtration (de Barros et al., 2012; Zuckerman et al.,
2012). However, if the diameter exceeds 200 nm, the nanoparticles
can activate the complement system, leading to their removal from the
bloodstream and accumulation in the liver and spleen (Faraji and
Wipf, 2009; Kulkarni and Feng, 2013). Furthermore, the colloidal
properties of nanoparticles necessitate their size to be less than
200 nm, as larger nanoparticles tend to settle out due to the
gravitational forces (Karagoz et al., 2014). Additionally,
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nanoparticles with a size of 100–200 nm are more efficiently
internalized by cancer cells (Zhu et al., 2017a). Therefore, most of
the UCNP clusters described in this review have been designed to be
around 100–200 nm to fulfill these size-related requirements for
applications in vitro and in vivo. Achieving precise control over
the microemulsion confined self-assembly while obtaining desired
properties in the final nanostructures remains a major challenge.
Another challenge arises from the inherent dependence on high
mechanical forces such as sonication agitation, or homogenization
during the process of the microemulsion-based assembly method.
Therefore, a wide range of cluster sizes is often obtained, making it
difficult to guarantee excellent reproducibility of the products across
different batches. This poses a significant hurdle in the practical
utilization of microemulsion for large-scale production of
monodisperse structures at the sub-micrometer scale. In summary,
the microemulsion-based method for the fabrication of UCNP-based
assemblies with different functional materials has experienced rapid
development in recent years. However, there are still numerous areas
and directions that require further explorations to address the
challenges mentioned above and unlock the full potential of
microemulsion-based fabrication techniques.
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