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In this work, a four-port directional filter (DF) with a broad passband and low
reflection is proposed at the W-band, which comprises three unit filters at 92, 95,
and 97 GHz, cascaded in series. Each unit consists of two microstrip lines in the
top circuit layer for signal input and output, two pairs of apertures in the middle
ground layer for directional coupling, and one square loop in the bottom layer as
a selective resonator. By sweeping the working frequencies of the three units and
optimizing the phase delays between them, the proposed filter achieves a 3-dB
bandwidth as broad as 16%, an insertion loss of 2.5 dB at 95 GHz, and an out-of-
band rejection of −28 and −23 dB at 80 and 110 GHz, respectively. The
corresponding reflection attenuation is larger than 9.6 dB from 60 to 105 GHz.
To verify our design, a prototype is fabricated and characterized, and its
experimental data are consistent with the simulation. This work significantly
expands the bandwidth of DFs and may find many applications in frequency
division multiplexing and high-gain wireless systems.
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1 Introduction

Filters are the most important components in microwave and optical systems to get the
desired signals and suppress unwanted noises (Asci et al., 2020; Wu et al., 2020; Wu et al.,
2021). Typically, the noises are strongly reflected back to the input port (Baqir et al., 2019).
Directional filters (DFs) are a kind of four-port filter with little reflection in the input port.
In ideal conditions, wideband signals fed into port 1 do not travel to port 4 or reflect back to
port 1, the desired bands travel to port 3, and the rest of the spectra travel to port 2. This
unique property is beneficial to eliminate the undesired oscillation induced by the filter out-
of-band reflection in high-gain and high-power systems (Zhang et al., 2018). In addition,
they can act either as channel combiners or channel dividers in frequency division
multiplexing (Coale, 1958; Wang et al., 2022). The initial DFs were developed in bulky
and heavy waveguides at microwave frequencies, which typically show a bandwidth of less
than 2% due to the high Q-factor of metal waveguide (Cameron and Yu, 1958). To get a low
profile and small weight, planar standing-wave and traveling-wave DFs were proposed on
printed circuit boards (PCBs) in the range of several GHz (Cohn and Coale, 1956; Zinka
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et al., 2003; Kim, 2011; Lobato-Morales et al., 2011; Lobato-Morales
et al., 2013). For the former, two standing-wave resonators with
carefully designed phase configurations between them can guide the
desired signals to a certain port, which can provide a bandwidth of
less than 5% (Cohn and Coale, 1956; Zinka et al., 2003; Kim, 2011;
Lobato-Morales et al., 2011; Lobato-Morales et al., 2013). The latter,
with loop resonators and two quarter-wavelength directional
couplers, also achieves several percent bandwidths, which is
similar to their standing-wave counterparts (Coale, 1956; Walker,
1978; Uvasl, 1997; Uvsal, 2003; Cheng et al., 2007; Sarkar et al.,
2007). As the frequency increases to the millimeter wave (mmW)
range, the aforementioned planar DF structures suffer from weak
coupling between the feed lines and resonators and, thus, the large
insertion loss in their passband. To overcome this obstacle, large
coupling capacitors between the vertically overlapped electrodes in
multilayer circuits have been investigated for mmWDFs (Cohn and
Coale, 1956; Tanaka et al., 1988; Uvsal, 2003; Sarkar et al., 2007).
Unfortunately, the bandwidth of multilayer DFs is still limited to
several percent. In our previous work, a novel traveling-wave DF
with dual-slot directional couplers achieved a 3-dB bandwidth of
8%, which, to our knowledge, is state of the art (Zhang et al., 2017).
In summary, it should be noted that the resonant units of the
reported DFs are designed at the same frequencies for consistent
phase configurations (Cameron and Yu, 2011; Lobato-Morales et al.,
2011; Lobato-Morales et al., 2013; Kim, 2011; Zinka et al., 2003;
Cohn and Coale, 1956; Coale, 1956; Uvasl, 1997; Cheng et al., 2007;
Walker, 1978; Uvsal, 2003; Sarkar et al., 2007; Tanaka et al., 1988;
Zhang et al., 2017).

To obtain advanced functionalities at mmW frequencies, many
wireless systems desire broadband. For instance, broadband can
provide a high data transmission rate to communication and high
detection contrast to imaging (Nakasha et al., 2009; Tian et al.,
2022). As a relative term, broadband may be considered as >15% in
many applications, such as multiple-input and multiple-output
(MIMO) communication and distributed array imaging systems
(Soszka, 2022; Martin et al., 2015). In addition to the bandwidth,
gain and output power are of great importance in the above systems
in the mmW realm. Typically, mmWs address higher atmospheric
and circuit attenuations than low microwaves (Martin et al., 2015).
In this case, mmW front-end modules require high gain and high
power to compensate for the attenuations, which may easily induce
stability problems, such as self-oscillation, with the strong out-of-
band reflection of the traditional two-port filters (Zhang et al., 2018).
On the other hand, PCB circuit elements and microwave monolithic
integrated circuit (MMIC) chips become sub-wavelength and easily
produce near-field radiation and mutual coupling at mmW
frequencies, further damaging the system’s stability. In this
regard, broadband DFs with little reflection are urgently desired
for the aforementioned advanced wireless systems at mmW
frequencies.

In this paper, we propose a broadband DF with little reflection in
multilayer LCP circuits at the W-band, achieving a 3-dB bandwidth
of 16%. A new design method is induced for the broadband DFs by
using resonant units at various frequencies. Differing from the
classic DFs with the identical resonant units, the proposed DF
consists of three filter units at 92, 95, and 97 GHz, which are
cascaded in a carefully optimized order. It achieves a low
insertion loss of 2.5 dB at 95 GHz and a large return loss

of >9.6 dB at the E- and W-band. This paper is organized as
follows. In Section 2, we introduce the brief design principles of
the multilayer DFs with directional couplers, the detailed design
methods of the broadband DFs with various filter units, and their
optimization. In Section 3, the proposed DFs are fabricated and
characterized, and their measured data are analyzed and compared
with the other reported DFs. In the end, the conclusion and
acknowledgment are given.

2 Design and analysis

Multilayer DFs with one-loop resonator and two quarter-
wavelength directional couplers are promising candidates for
mmW applications, as shown in Figure 1A, which was first
reported in our previous work (Zhang et al., 2017). Two parallel

FIGURE 1
Directional filter unit in multilayer LCP circuits. (A) 3D
configuration of one filter unit with two dual-slot directional couplers,
(B) its equivalent circuit model, and (C) the simulated S-parameters of
one unit designed at 94 GHz.
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microstrip lines with four ports are designed in the top circuit layer,
which couple to the loop resonator in the bottom circuit layer
through the dual-slot quarter-wavelength coupler in the middle
circuit layer. Port 1 and port 4 are the input and isolated ports,
respectively, and port 2 and port 3 are for the undesired spectra and
filtering signal, respectively. The equivalent circuit model of this
filter is given in Figure 1B. C′ represents the coupling capacitance
between the top and the bottommicrostrip lines, andC11 and C21 are
the capacitors between the microstrip line and the ground plane due
to the coupling slots. L11, L21, L22, and L23 depict the various phase
delays on the microstrip lines. By optimizing the phase
configuration of the directional coupler and loop resonator, in-
phase signals are added in port 3, and out-of-phase signals are added
in port 4.

The substrate used in this work is liquid crystal polymer (LCP),
which has a low dielectric constant of 3.2, a low loss tangent of
0.004 at the W-band, and a low water-absorption rate of 0.04%
(Zhang et al., 2017; Zhou et al., 2022). The metal cladding is 15-μm
copper. The Ansys high-frequency structure simulator (HFSS), i.e., a
commercial electromagnetic simulator with a finite element method,
is employed for 3D full-wave simulation. In the following, we discuss
the design principles of the DF unit and investigate broadband DFs
by cascading DF units in series.

2.1 Filter unit design

The main contribution of this work is not the design of the filter
unit so that we just discuss the brief working mechanism. The slot

coupling between the top and bottom lines excites weak odd and
even modes with opposite propagating directions and similar
magnitude. Two slots with π/4 phase delay form a directional
coupler, where the odd modes are out-of-phase and canceled,
and the even modes are in phase and added, as shown in the
inset of Figure 1A. The DF unit is composed of two directional
couplers and one loop resonator. By distributing L11, L21, L22, and
L23 as π/4, π/4, π/2, and π, respectively, the desired spectra are
directionally filtered into port 3, as illustrated in Figure 1C. The
design and optimization details can be found in our previous work
(Zhang et al., 2017).

Here, the filter units at 92, 95, and 97 GHz are designed for the
cascaded DFs in the following sections, the dimensions of which are
shown in Table 1 and the simulated passbands of which are shown in
Figure 2. It can be seen that the bandwidth of a filter unit ranges
from 92.6 GHz to 97.6 GHz, i.e., a fractional bandwidth of only

TABLE 1 Dimensions of the designed DF units at different frequencies.

Parameters 97 GHz (mm) 95 GHz (mm) 92 GHz (mm)

Ws 0.126 0.13 0.133

Ls 0.5 0.5 0.5

Ps 0.359 0.37 0.379

Wr 0.689 0.71 0.728

Lr 1.27 1.311 1.343

FIGURE 2
Simulated passband curves of the filter units at 92, 95,
and 97 GHz.

FIGURE 3
Cascaded DF with two filter units at 95 GHz. (A) Configuration of
the two-stage DF and (B) the simulated S-parameters of a two-stage
DF with the identical units at 95 GHz.
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5.5%, the insertion loss (|S31|) is around 4.6 dB in the passband, and
the reflection attenuation (|S11|) is larger than 10 dB at the W-band.
As can be seen in Figure 1C, the through loss (|S21|) is less than 10 dB
in one filter unit so that cascading filter units can enlarge the through
loss and reduce the insertion loss.

2.2 DFs with the identical units cascaded
in series

As discussed above, one DF unit cannot sufficiently filter the
desired signals, having large insertion loss (|S31|) and small through
loss (|S21|) at the resonant frequency. In this section, we will discuss
how to suppress the insertion loss and broaden the bandwidth by
cascading filter units.

First, a two-stage DF with the identical units is investigated as
the simplest example, as shown in Figure 3A. Port 1 and port 3 of the
second unit connect to port 2 and port 4 of the first unit, respectively.
Due to the symmetry of the device, the S-parameters of the first unit
satisfy the following relations (Pozar, 2012):

S121 � S112 � S134 � S143 , (2.1a)
S141 � S114� S123 � S132. (2.1b)

S21 and S41 of the first unit feed the second unit as the input. The
transmission can be described by the following formula (Zhang
et al., 2017):

Sin
′ ≈ S121e

−jθ, (2.2a)
Sin
″ ≈ S141e

−jθ, (2.2b)
where S121 and S

1
41 are the through and isolated signals of the first DF

unit, respectively, θ is the phase delay between filter units, and Sin′

and Sin″ are the input signals to port 1 and port 3 of the second unit,
respectively. Thus, the S-parameters of the two-stage DF can be
obtained by cascading the microwave networks. As S111, S

1
21, and S141

are much smaller than S131 at the resonant frequency, it is fair to
neglect their high-order terms for simplification. The simplified
formula can be expressed as follows:

ST11 ≈ S111 + S211e
−jθS112 + S231e

−jθS114,

� S111 + S121 S121S
1
11 + S141S

1
31( )e−j2θ

+S141 S121S
1
31 + S141S

1
11( )e−j2θ,

≈ S111 + 2S121S
1
41S

1
31e

−j2θ, (2.3a)
ST21 ≈ S221 � S121S

1
21 + S141S

1
41( )e−jθ, (2.3b)

ST31 ≈ S131 + S231e
−jθS134 + S211e

−jθS132,

� S131 + S121 S121S
1
31 + S141S

1
11( )e−j2θ

+S141 S121S
1
11 + S141S

1
31( )e−j2θ,

≈ S131 + S121S
1
21S

1
31e

−j2θ + S141S
1
41S

1
31e

−j2θ, (2.3c)
S241 � 2S121S

1
41e

−jθ . (2.3d)

ST31 is maximum at θ = nπ (n is an integer) and is minimum at θ =
(2n + 1) π/2. Limited by the dimensions of the quarter-wavelength
directional couplers, θ = 2π and Pr = 1.9 mm is chosen to reduce the
insertion loss. The simulated S-parameters of the two-stage DF with
the identical units are illustrated in Figure 3B, where the insertion

loss |S31| is suppressed to 2.8 dB at 95 GHz and the through loss |S21|
increases to 17 dB. The 3-dB bandwidth is improved to 8% due to
the in-phase coupling between two units. As depicted in Eqs 2.3a,
2.3b, 2.3c, ans 2.3d, S121 is the main contribution factor to broaden
the bandwidth of ST31.

Next, a three-stage DF with identical units is investigated based
on the above analysis of the two-stage DF, as illustrated in Figure 4A.
In addition, the high-order terms of ST11, S

T
21, and S

T
41 are neglected in

the equation derivation. According to the Eqs 2.3a, 2.3b, 2.3c, and
2.3d, the simplified passband response of the three-stage DF is
as follows:

ST′31 ≈ ST31 + S331e
−jθ′ST34 + S311e

−jθ′ST32,

� S131 + ST21 ST21S
1
31 + ST41S

1
11( )e−j2θ′

+ ST41 ST21S
1
11 + ST41S

1
31( )e−j2θ′,

≈ ST31 + ST21S
T
21S

1
31e

−j2θ′ + ST41S
T
41S

1
31e

−j2θ′,

≈ S131 + S121S
1
21S

1
31e

−j2θ + S121S
1
21S

1
21S

1
21S

1
31e

−j2 θ+θ′( ), (2.4)
where θ′ is the phase delay between the second and third units. ST’
31 is maximum at θ = nπ and θ’ =mπ (m and n are integers), and the
corresponding Pr and Pʹr are chosen as 1.9 mm. Figure 4B illustrates
the simulated S-parameters of the three-stage DF. It can be seen that
the insertion loss |S31| is reduced to 2.6 dB, and the through loss |S21|
is increased to 26 dB at 95 GHz. The 3-dB bandwidth is broadened
up to 10.2%. The main contribution factors are S1 21, θ, and θ’.

Adding more filter units can further increase the bandwidth
slightly. However, due to the increasing through loss |S21|, this
approach is limited. Figure 5A illustrates the simulated S-parameters

FIGURE 4
Cascaded DF with three filter units at 95 GHz. (A) Configuration
of the three-stage DF and (B) the simulated S-parameters of a three-
stage DF with the identical units at 95 GHz.
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of a four-stage DF with the identical units at 95 GHz, whose
bandwidth is slightly increased to 11.3%. The bandwidth and
insertion loss performances of the cascaded DFs with respect to
the filter unit numbers are shown in Figure 5B and Table 2. The DFs
can achieve lower insertion loss and wider bandwidth at a cost of
unit numbers and device profile. However, the improved efficiency
reduces significantly as the unit number increases.

2.3 DFs with different units cascaded
in series

In the reported DF designs, all resonant units are designed at the
same frequency to get consistent phase configuration (Cameron and
Yu, 2011; Lobato-Morales et al., 2011; Lobato-Morales et al., 2013;

Kim, 2011; Zinka et al., 2003; Cohn and Coale, 1956; Coale, 1956;
Uvasl, 1997; Cheng et al., 2007; Walker, 1978; Uvsal, 2003; Sarkar
et al., 2007; Tanaka et al., 1988; Zhang et al., 2017). In contrast,
classic Chebyshev-type filters may use resonant units designed at
adjacent frequencies to broaden the filter bandwidth (Pozar, 2012).
In this section, this approach will be investigated in the cascaded DFs
to broaden the passband for the first time.

First, a two-stage DF with different units is investigated, whose
configuration is illustrated in Figure 3A. Empirically, the insertion
loss of filters and propagation loss of microstrip lines increase as the
frequency increases. To compensate the dispersive loss and achieve
broadband, the filter units are cascaded in an order from high to low
frequency. The second filter unit is designed at f2 = 95 GHz, and the
frequency of the first unit f1 sweeps from 99 to 95 GHz. Pr remains
1.9 mm initially, as in the last section. Figure 6A illustrates the
simulated S-parameters with various f1, where the bandwidth
enlarges as f1 increases. However, a transmission dip occurs
between f1 and f2 as these two resonant frequencies diverge,
which may damage the bandwidth. Therefore, f1 is chosen as
97 GHz to suppress the dip. Next, the phase delay θ and pitch Pr
are swept for optimization according to Equations 2.3a, 2.3b, 2.3c,
and 2.3d, as shown in Figure 6B. As Pr gets smaller, the bandwidth
gets larger, and the transmission dip gets stronger. In this case, Pr is
chosen as 1.85 mm. The simulated S-parameters of the optimized
two-stage DF with different units are illustrated in Figure 6C. The 3-
dB bandwidth of the passband is increased to 10%, which is similar
to the three-stage DF with the identical units. The insertion loss
(|S31|) is 2.6 dB at 96 GHz, and the corresponding through loss
(|S21|) is around 17 dB.

Then, we investigate a three-stage DF with different units based on
the above two-stage DF with 97-GHz and 95-GHz units. To broaden
the bandwidth and suppress the transmission dip, the third filter unit is
designed at f3 = 92 GHz, whose dimensions can be found in Table 1.
Initially, Pr remains 1.85 mm, and Pʹr is set as 1.9 mm. According to Eq.
2.4, both θ and θ′ affect the passband, so we need to optimize both Pr
and Pʹr. Figure 7A illustrates the simulated S-parameters with various
Pʹr. As Pʹr increases, the passband red shifts and enlarges slightly.
However, a transmission dip will be induced at large Pʹr, which may
damage the bandwidth. In this case, Pʹr is chosen as 1.7 mm to
compensate the bandwidth and transmission dip. Next, parameter
variation of Pr is studied again, which is shown in Figure 7B.
Smaller Pr leads to the blue shift of the passband and a stronger
transmission dip between f2 and f3. To avoid strong transmission dips,
both Pr and Pʹr are optimized as 1.7 mm. Finally, the simulated
S-parameters of the optimized three-stage DF are illustrated in

FIGURE 5
Cascaded DFs with the identical units at 95 GHz. (A) Simulated
S-parameters of a cascaded DF with four identical units and (B) the
bandwidth and insertion loss with respect to the unit numbers.

TABLE 2 Insertion loss, bandwidth, and out-of-band rejection of the designed DFs.

Unit # Unit configuration IL (dB) BW (GHz) FBW (%) Rejection (dB)

One Single 4.6 5.4 5.7 −30(L)/-14(H)

Two Identical 2.8 7.6 8 −30(L)/-23(H)

Two Different 2.8 9.6 10 −25(L)/-23(H)

Three Identical 2.6 9.7 10.2 −30(L)/-17(H)

Three Different 2.6 14.26 15 −28(L)/-13(H)

Four Identical 2.3 10.6 11.3 −28(L)/-17(H)
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Figure 7C. The insertion loss (|S31|) is 2.6 dB at 95 GHz, and the out-of-
band attenuation is −20 dB at 85 and −13 dB at 110 GHz, respectively.
The 3-dB bandwidth of S31 is 14.26 GHz, and the corresponding
fractional bandwidth is 15% centered at 95 GHz, which is
significantly improved using different filter units.

2.4 Filter order and insertion loss analysis

As comparison, a three-stage DF with 95-, 97-, and 92-GHz
units cascaded in series is investigated, whose S-parameters are
illustrated in Figure 8. The unit pitch Pr and Pʹr are kept at 1.7 mm.
With respect to Figure 7C, the high-frequency performance of S31 is
sacrificed significantly. The bandwidth of the passband is
significantly reduced to 11%, which is similar to the three-stage
DF with the identical units, and the insertion loss is slightly reduced
to 2.4 dB. Therefore, it should be concluded that the first unit is more
dominant for the cascaded DF design and is more important for
high frequencies. The second filter unit has an input signal around 3-
dB smaller than the first unit; see S21 at 97 GHz in Figure 1C. The
bandwidth and insertion loss parameters of the proposed DFs with
various units are listed in Table 2. On using different filter units, the
bandwidth of the three-stage DF is much larger than that of the four-
stage DF with the identical units. In contrast, the different filter units
show little loss discrepancy to the identical filter units.

As can be seen in Table 2, the insertion loss can be minimized by
cascading filter units, which shows decreasing efficiency at large unit
numbers. The propagation loss of microstrip lines on a 100-μm LCP
substrate is 0.156 dB/mm, and the averaged radiation loss is
approximately 0.065 dB/mm in the loop resonator (Zhang et al.,
2017). In this case, the absolute insertion loss induced by each

FIGURE 6
Simulated S-parameters of a two-stage DF with different units at 97 and 95 GHz. (A) Sweeping the frequency of the first unit f1, (B) sweeping the
pitch Pr between the first and second units, and (C) simulated S-parameters of the optimized two-stage DF.

FIGURE 7
Simulated S-parameters of a three-stage DFwith different units at 97, 95, and 92 GHz. (A) Sweeping pitch P′r between the second and third units, (B)
sweeping pitch Pr between the first and second units, and (C) simulated S-parameters of the optimized three-stage DF.

FIGURE 8
Simulated S-parameters of a three-stage DF with different DFs
cascaded in the order of 95–97–92 GHz. The bandwidth is just 11%.
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directional coupler is just around 0.8 dB. The main contributing
factor for the insertion loss of the cascaded DF is the wave
propagation loss on the microstrip lines, which is induced by the
loss tangent of the LCP substrate and leaky radiation.

3 Experiment

To verify the optimized design, a prototype was fabricated in
AKM Electronics Industrial (PanYu) Ltd. Low-temperature LCP
films with a melting temperature of 290°C were utilized for
multilayer lamination. Figure 9A illustrates the fabricated device.
Long meandered microstrip lines and ground–signal–ground
(G–S–G) probe pads are carefully designed for launching G–S–G
probes and providing enough space for mmW absorbers. The design
details of the probe pads can be found in our previous paper (Zhang
et al., 2016). Table 3 compares the fabricated dimensions and the
designed dimensions, revealing good fabrication tolerances. The
discrepancies are typically less than 10 μm.

The measurement system setup is illustrated in Figure 9B.
G–S–G probes integrated with Keysight programmable network
analyzer N5247 are launched on the probe pads for signal input and
output, and RF absorbers are attached onto the other ports for
loading. A 10-mm-long absorber can provide a large reflection
attenuation of 15 dB, which is sufficient for the DF test (Zhang
et al., 2017). Before the test, the probes were calibrated with the

short-open-load-through (SOLT) method using a CS-5 calibration
substrate from GGB Industries Inc. The measurement spectrum is
from 70 to 110 GHz due to the W-band waveguide. The insertion

FIGURE 9
(A) Fabricated three-stage DF with 97-, 95-, and 92-GHz filter
units, G–S–G probe pads, and meandered microstrip lines and (B) its
measurement setup with the absorbers on the meandered microstrip
lines as good load.

TABLE 3 Dimensions of the fabricated three-stage DF with various filter
units.

Para 97 GHz (mm) 95 GHz (mm) 92 GHz (mm)

Design Fab Design Fab Design Fab

Ws 0.126 0.13 0.13 0.133 0.133 0.135

Ls 0.5 0.508 0.5 0.508 0.5 0.508

Ps 0.359 0.355 0.37 0.368 0.379 0.377

Wr 0.689 0.693 0.71 0.712 0.728 0.731

Lr 1.27 1.273 1.31 1.312 1.343 1.35

Design (μm) Fab. (μm)

W1 240 235

W2 160 153

Pr 1700 1701

Pr’ 1700 1703

Tcopper 12 10–13

FIGURE 10
Measured and simulated S-parameters of the fabricated three-
stage DF at the W-band. (A) S11 and S21 and (B) S31 and S41.
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losses of the probe pads and meandered MSLs were eliminated from
the characterized S-parameters by using cascaded scattering
matrices for a good match between the measured and simulated
data. The derivation details can be found in the work of Zhang
et al. (2017).

The characterized S-parameters of the fabricated three-stage
DFs are illustrated in Figure 10. The reflection loss (|S11|) is larger
than 11 dB from 70 to 110 GHz, revealing a perfect little-reflection
performance in an ultra-wideband. The through loss (|S21|) shows
three resonances at 95, 97, and 99 GHz, which are slightly higher
than the design due to the fabrication tolerances and non-perfect
absorber loads. The insertion loss (|S31|) is 2.86 dB at 98 GHz, which
is slightly higher than the simulated data, and the out-of-band
rejection is 28 and 23 dB at 80 and 115 GHz, respectively. The
isolation loss (|S41|) is also larger than 10 dB at the W-band. It
should be noted that the 3-dB passband is as large as 15.7 GHz,
which corresponds to a fractional bandwidth of 16%. Table 4
compares the proposed device with the other reported DFs. The
proposed device has the highest working frequency and the widest
bandwidth. In addition, it addresses reasonable insertion loss and
return loss. The device size is 1.3 mm × 6 mm, i.e., 0.4 λ × 1.9 λ

at 95 GHz.

4 Conclusion

A broadband DF with three filter units at 97, 95, and 92 GHz
cascaded in series in multilayer LCP substrates is designed,
fabricated, and characterized. Each DF unit consists of two
microstrip lines in the top circuit layer for signal input and
output, two directional couplers in the second ground layer, and
one square loop resonator in the third layer. A new design method
with resonant units at various frequencies is discussed for DFs. By
optimizing the working frequencies of the three units and sweeping
the pitches between them, the proposed DF achieves a 3-dB
bandwidth of 16% at 98 GHz, an insertion loss of as low as
2.6 dB, and an out-of-band rejection of 28 and 23 dB at 80 and
115 GHz, showing reasonable agreement with the simulated data.

The bandwidth is state of the art according to our knowledge. Such a
device may find promising applications in broadband frequency
division multiplexers and high-gain systems at mmW frequencies.
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