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Introduction

Historically, dermatological diagnosis and treatment planning have relied on subjective
observations and basic imaging techniques. While these approaches have yielded significant
advancements, their limitations are increasingly evident in a worldmoving toward precision
medicine (Seck et al., 2020). Two-dimensional imaging fails to capture the skin’s complex
topography and depth, often leading to a mono-dimensional understanding of multifaceted
conditions (Xu et al., 2019; Yew et al., 2014). This gap is now being addressed by the advent
of 3D skin mapping technology. Using innovative imaging techniques, 3D skin mapping
generates high-resolution, three-dimensional models of the skin, offering a detailed
representation of surface and subsurface features (Gevaux et al., 2019). This technology
facilitates a deeper understanding of individual skin characteristics, allowing for highly
personalized treatment strategies. Beyond its transformative impact in medical
dermatology, 3D mapping is also gaining prominence in aesthetic applications, where
precision and patient satisfaction are equally critical.

The mechanics and capabilities of 3D skin mapping

At its core, 3D skin mapping utilizes advanced imaging technologies such as structured
light scanning, photogrammetry and laser-assisted imaging (Quinzi et al., 2022). These
methods create intricate, multi-layered representations of the skin, capturing parameters
such as texture, elasticity, pigmentation and vascularity, while incorporating depth and
spatial relationships into the analysis (Gevaux et al., 2019). Dynamic 3D mapping tools go
further by visualizing changes in skin morphology over time, providing valuable insights
into the progression of conditions and the efficacy of treatments (Voegeli et al., 2019; Shaiek
et al., 2023). For example, in acne scars, these tools measure scar depth and volume to assess
improvements following treatments like subcision or fractional laser therapy (Salameh et al.,
2022). Psoriasis patients benefit from detailed monitoring of lesion thickness and affected
area distribution, facilitating objective evaluations of therapeutic response. Similarly, in
melasma, 3D mapping quantifies pigmentation density and irregularities, enabling
clinicians to customize laser parameters for optimal results (Kallipolitis et al., 2025;
Gaurav et al., 2024). By quantitatively measuring parameters such as wrinkle depth or
scar volume, 3D mapping enables dermatologists to track patient progress with scientific
accuracy, moving beyond subjective descriptions to data-driven outcomes. Beyond these
conditions, hyperspectral imaging combined with AI algorithms, enhances early detection
and characterization of skin cancers like melanoma and basal cell carcinoma. By utilizing
these advanced capabilities, clinicians can deliver highly targeted and effective treatments
tailored to individual patients’ needs.
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Comparison between 2D and 3D skin
mapping technologies

Two-dimensional (2D) imaging has been a foundational tool in
dermatology, offering valuable insights into surface-level features
such as pigmentation, texture, and vascular abnormalities. While
effective for basic assessments, 2D mapping tools are inherently
limited by their inability to capture depth, volume, and the spatial
relationships of skin structures. This limitation often results in
incomplete analyses, particularly for conditions that require a
detailed understanding of skin morphology, such as scars,
wrinkles, or deep pigmentation disorders (Cerminara et al., 2023).

In contrast, 3D skin mapping provides a comprehensive
representation of the skin by integrating depth and spatial data
into multi-layered models. These detailed visualizations enable
dermatologists to quantify parameters such as wrinkle depth, scar
volume, and pigmentation density, offering a level of precision
unattainable with 2D imaging. For instance, while a 2D
photograph can document pigmentation patterns, a 3D scan can
measure the thickness and distribution of the pigment across
multiple layers, facilitating more targeted treatment planning
(Kurzyk et al., 2024). Furthermore, 3D mapping tools allow for
dynamic tracking of changes over time, making them invaluable for
monitoring treatment efficacy or the progression of chronic skin
conditions. The ability to visualize improvements in three
dimensions enhances clinical accuracy and improves patient
communication and satisfaction by providing tangible evidence
of progress (Bannister et al., 2023).

Applications in dermatology and
aesthetic medicine

The applications of 3D skin mapping span the spectrum of
dermatological practice, encompassing both medical and cosmetic
domains (Fu et al., 2021; Fu et al., 2018). In medical dermatology, it
is proving invaluable for diagnosing and managing chronic skin
conditions such as acne scars, psoriasis and melasma. By offering a
comprehensive understanding of the distribution and depth of
affected areas, 3D mapping enhances the precision of
interventions. For example, in excisions and biopsies, 3D imaging
provides high-resolution visualizations of skin lesions, allowing
clinicians to accurately define lesion margins and assess their
depth. This precision ensures biopsies target the most
diagnostically relevant areas and excisions are performed with
clear boundaries, reducing the risk of incomplete removal while
optimizing cosmetic outcomes (Selkin et al., 2001; Guitera et al.,
2012). 3D skin mapping also plays a critical role in dermatologic
surgery, providing detailed pre-operative insights into the structure,
elasticity, and vascularity of the surrounding tissue. These insights
help surgeons tailor their approaches for procedures such as tumor
removal or skin grafting, minimizing scarring and ensuring natural
results, particularly in cosmetically sensitive areas like the face. Post-
operatively, 3D imaging facilitates precise monitoring of healing,
scar formation, and recurrence, enhancing patient care and
satisfaction (Breuninger and Adam, 2014).

In aesthetic medicine, where precision and natural outcomes are
crucial, 3D skin mapping has become a cornerstone for personalized

treatment. It enables clinicians to analyze facial symmetry, contour,
and volume loss, creating bespoke plans for dermal fillers,
botulinum toxin, and other interventions (Seck et al., 2020).
Another example is the detailed evaluation of wrinkle depth
which can guide the selection of treatment modalities, such as
fractional lasers, radiofrequency devices or dermal fillers,
ensuring precise application tailored to the severity and location
of the wrinkles. Furthermore, 3D imaging can identify subtle
asymmetries and imperfections that may not be apparent to the
naked eye, empowering clinicians to refine their techniques and
deliver superior results. Another emerging application is in laser-
based treatments, where the success of procedures often hinges on
precise targeting. 3D skin mapping can optimize laser settings based
on the unique attributes of the skin, reducing the risk of
complications such as post inflammatory hyperpigmentation
(PIH), especially in patients with darker skin tones. Moreover,
the technology enhances post-treatment evaluations, enabling
clinicians to assess outcomes objectively and adjust protocols for
subsequent sessions. As technology evolves, integration with
artificial intelligence (AI) is poised to revolutionize the field
further. AI-powered 3D skin analysis can provide predictive
insights, helping clinicians forecast treatment outcomes with
greater accuracy and refine their strategies in real time.

Additionally, the development of portable and cost-effective 3D
imaging systems promises to make these advancements accessible to
a broader range of practitioners, democratizing precision medicine
in aesthetics. Furthermore, 3D skin mapping has demonstrated
remarkable utility in patient education (Frommherz et al., 2023).
By providing a visual representation of the patient’s skin condition
and the potential benefits of treatment, 3D skin mapping also fosters
better understanding and alignment of expectations. That is to say,
patients who see their skin in three dimensions often feel more
engaged and reassured, leading to higher satisfaction and
compliance with treatment plans.

Recent studies demonstrate the efficacy of these modalities in
skin cancer diagnostics. Lin et al. assessed the Spectrum-Aided
Vision Enhancer (SAVE) for detecting melanoma subtypes,
achieving high sensitivity and specificity. This study focused on
four melanoma types, acral lentiginous melanoma, melanoma in
situ, nodular melanoma, and superficial spreading melanoma, using
spectral information to enhance visualization and diagnostic
accuracy. The researchers highlighted SAVE’s ability to detect
early-stage melanomas that may otherwise evade traditional
imaging techniques (Lin et al., 2024). Similarly, Huang et al.
employed hyperspectral imaging combined with YOLOv5, a
state-of-the-art machine learning algorithm, for automated skin
cancer classification. This study demonstrated the robustness of
combining imaging technology with AI by accurately categorizing
various types of skin cancer. The integration of YOLOv5 enabled
real-time image processing, offering clinicians a highly efficient
diagnostic tool. The findings underscored the potential for
hyperspectral imaging in routine clinical workflows, particularly
for screening high-risk populations (Huang et al., 2023). The
broader implications of these findings are reflected in reviews
such as those by Lu, Parasca, and Dhawan et al., which
highlighted the potential of hyperspectral imaging in automated
tumor classification, demonstrating improved diagnostic accuracy
in skin cancer detection (Lu and Fei, 2014; Parasca et al., 2024;
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Dhawan et al., 2009). These contributions collectively underscore
the transformative potential of hyperspectral and multispectral
imaging in clinical and research settings.

These modalities complement 3D mapping by offering
additional layers of diagnostic precision, particularly in detecting
subtle changes in pigmentation and vascularity. Their ability to
analyze spectral signatures provides a more nuanced understanding
of skin conditions, making them valuable tools for both research and
clinical practice.

Practical tools and applications

Several advanced 3D skin mapping devices are available on the
market, offering cutting-edge imaging solutions for clinical and
aesthetic dermatology. The VECTRA WB360 Imaging System by
Canfield Scientific captures the entire skin surface in high resolution
in a single shot, making it ideal for monitoring pigmented lesions
and dispersed skin diseases (Marchetti et al., 2023). Similarly, the 3D
Next MP Series provides total-body mapping, creating a 3D avatar
for detecting skin cancer and other disorders, offering detailed
insights within seconds (Cerminara et al., 2023). For facial
analysis, the LifeViz® Mini by QuantifiCare is a portable and
precise tool widely used in aesthetic practices, while the VISIA®
Skin Analysis System excels in comprehensive skin assessments,
capturing high-resolution images to analyze features such as texture,
pigmentation, and vascularity (Goldie et al., 2021; Salti et al., 2023).
These devices highlight the integration of advanced imaging
technologies into dermatology, enhancing diagnostic accuracy
and enabling highly personalized treatment plans significantly.
Adding to these tools, Line-field Confocal Optical Coherence
Tomography (LC-OCT) represents a significant advancement in
non-invasive imaging technology. By combining optical coherence
tomography and confocal microscopy, LC-OCT delivers quasi-
isotropic spatial resolution at the cellular level, enabling detailed
in-vivo visualization of the skin’s structure (Jdid et al., 2024). LC-
OCT is particularly effective in diagnosing and monitoring
conditions such as basal cell carcinoma, where its ability to
differentiate malignant lesions from benign growths offers
clinicians an unparalleled level of precision (Michielon et al.,
2024). Moreover, LC-OCT has proven valuable in assessing
inflammatory skin diseases, pigmentation disorders, and even
treatment responses, expanding its utility further in both clinical
and aesthetic dermatology. Together, these advanced imaging tools
underline the transformative role of three-dimensional graphing of
the skin in enhancing diagnostic accuracy, treatment planning, and
overall patient outcomes.

Aesthetic applications: case studies and
clinical trials

A prime example of clinical utility of 3D skin mapping is wrinkle
analysis and treatment optimization. In patients seeking anti-aging
treatments, the technology provides precise measurements of wrinkle
depth, length, and distribution across the face (Matias et al., 2015). For
instance, a patient depicting pronounced nasolabial folds and
periorbital fine lines may undergo a 3D scan to quantify these

features. This data can guide the selection of energy-based device
parameters, such as fractional laser or radiofrequency microneedling
settings, ensuring that energy is concentrated on deeper wrinkles while
avoiding unnecessary treatment of unaffected areas. Over successive
sessions, the same technology allows clinicians to track reductions in
wrinkle depth and improvements in skin texture, providing objective
data to evaluate treatment efficacy. In the case of melasma, where
pigmentation patterns are irregular and diffused, 3D skin mapping
offers a detailed visualization of melanin distribution across the skin
(Kurzyk et al., 2024; Ahmedt-Aristizabal et al., 2023; Ghose et al., 2023).
This feature could enable clinicians to develop laser treatment protocols
optimized for each patient’s pigmentation density and depth. For
example, a dermatologist could use 3D imaging to adjust the
parameters of a picosecond laser for a patient with melasma on
their cheeks, ensuring safe and effective treatment with minimal risk
of PIH. In aesthetic medicine, 3D skin mapping is revolutionizing
procedures such as dermal filler treatments. Consider a patient seeking
midface volume restoration. While traditional methods rely on manual
palpation and subjective visual assessment, 3D imaging allows the
clinician to visualize the loss of volume in the cheeks and nasolabial
folds in detail. Using this data, the injector can plan precise filler
placement to restore volume symmetrically (Musolff et al., 2024). Post-
treatment scans provide immediate feedback, allowing the patient to see
the subtle yet impactful changes achieved. Another compelling example
is skin tightening procedures, such as those using ultrasound or
radiofrequency devices, which could also benefit from 3D mapping.
For instance, a patient undergoing treatment for lower face laxity might
have their skin’s elasticity and collagen density measured pre-treatment.
These baseline images guide the clinician in selecting appropriate
treatment parameters. Follow-up scans, taken months later,
objectively demonstrate improvements in skin tightness, helping to
quantify treatment outcomes and reinforce patient satisfaction (Hua
et al., 2018). In patients requiring correction from previous mal-
conducted aesthetic procedures, 3D devices capacitate clinicians to
spot clear-cut scope of the damage, thus exact solutions to these
complications.

Along with this, LC-OCT has emerged as a promising non-invasive
imaging modality, with studies demonstrating its efficacy in various
dermatological and systemic applications (Musolff et al., 2024).
Literature reports highlight its high sensitivity and specificity in the
diagnosis of skin cancers, including melanoma and basal cell carcinoma
through detailed visualization of the dermo-epidermal junction and
cellular morphology (Latriglia et al., 2023; Perez-Anker et al., 2024). In
Assi et al.’s studies, LC-OCT, combined with deep learning, enabled
precise quantification of facial dermal aging in healthy Caucasian
females (Assi et al., 2024; Ali et al., 2024). The imaging technique
captured key markers of aging, offering objective and reproducible
measurements that could enhance diagnostics and treatment
monitoring. In inflammatory skin diseases, such as psoriasis and
eczema, LC-OCT has been shown to accurately depict epidermal
thickening, vascular changes, and inflammatory infiltrates, facilitating
precise disease staging and treatment monitoring (Cappilli et al., 2024).
Additionally, research has underscored its potential in detecting early
microvascular changes associated with systemic conditions like lupus
and diabetes (Ferreira et al., 2023). In aesthetic dermatology, LC-OCT
has also been used to assess structural changes post-treatment, such as
collagen remodeling and epidermal texture improvements following
laser therapy or injectable procedures (Dryżałowska et al., 2024). By
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providing detailed, real-time insights into these changes, LC-OCT
demonstrates its capacity to guide and refine treatment protocols.
Therefore, LC-OCT is a cutting-edge imaging tool that enables
highly personalized treatment strategies in aesthetic and
dermatological care. By quantifying markers such as collagen
density, elastin integrity, and dermal thickness, LC-OCT provides
clinicians with precise, patient-specific insights into the aging
process. These detailed assessments allow for tailored interventions
that address the unique skin characteristics of each individual. For
example, patients with thinning dermal layers or decreased skin density
may be addressed with injectable biostimulators or dermal fillers,
optimizing placement to achieve natural, balanced results. The
ability to map these aging markers ensures treatments are neither
overtreating nor underperforming.

These findings underscore the versatility of LC-OCT, offering a
reliable, real-time, and non-invasive solution for diagnosis and
treatment monitoring across a broad spectrum of clinical
applications.

Patient monitoring and engagement

One of the most practical benefits of 3D skin mapping lies in its
ability to engage patients and monitor their progress over time. By
offering a detailed, three-dimensional visualization of their skin, patients
gain a clearer understanding of their conditions and the potential
benefits of proposed treatments. This transparency builds trust as
areas of concern and projected outcomes are made tangible, fostering
confidence in the treatment process. For example, a patient undergoing
anti-aging treatments such as fractional lasers or chemical peels can see
before-and-after images that objectively highlight changes in wrinkle
depth, skin texture, and pigmentation. Another key advantage is that it is
a non-invasive and painless method, ensuring patient comfort and
making it ideal for sensitive skin conditions and regular follow-ups.
This blend of precision, visual clarity, and comfort not only enhances
satisfaction, but also empowers patients to actively engage in their care
(Shaiek et al., 2023). For patients, 3D models offer an unparalleled
educational tool, offering a deeper understanding of their treatment
journey (Fuentes et al., 2020). A patient considering botulinum toxin for
forehead lines may feel uncertain about the procedure. By showing them
a 3D model of their current wrinkles and demonstrating how the
treatment will affect the underlying musculature, clinicians can
provide a clearer picture of expected results, addressing concerns and
managing expectations (Fuentes et al., 2020). By integrating 3D skin
mapping into their practice, clinicians create a more engaging and
reassuring experience for patients. This process would empower patients
to make informed decisions and actively participate in their care,
ultimately driving higher satisfaction and compliance.

Applications beyond dermatology:
multidisciplinary uses of 3D skin mapping
and the path forward

The future of 3D skin mapping lies in its continued evolution
and integration with complementary technologies. Advances in AI
are set to enhance the capabilities of 3D imaging by automating
analysis and identifying patterns that may elude human observation

(Haykal, 2024a). For instance, AI algorithms could predict the
likelihood of treatment success based on the unique attributes of
the patient’s skin, paving the way for reliably predictive
dermatology. This is a transformative development, as it moves
dermatology from a reactive approach to a proactive one, allowing
clinicians to select the most effective treatments tailored to
individual needs (Haykal, 2024b). By integrating real-time data
from imaging, AI can forecast outcomes such as wrinkle
reduction, scar improvement, or pigmentation correction with
remarkable accuracy, minimizing trial-and-error in treatment
plans (Grech et al., 2024). AI’s impact is driven by advanced
techniques like deep learning and machine learning models. Deep
learning algorithms, especially convolutional neural networks
(CNNs), excel at recognizing complex dermatological patterns in
imaging data, such as early signs of melanoma or subtle
pigmentation changes (Singh et al., 2024). Machine learning
models analyze multi-dimensional patient data including age,
skin type, and lesion characteristics to predict treatment
responses and optimize protocols. Generative adversarial
networks (GANs) simulate realistic “before-and-after” outcomes,
improving patient communication and expectation management
(Chan et al., 2020). These AI techniques not only refine diagnostic
precision, but also enable dynamic adaptation of treatments based
on real-time imaging and patient feedback. This synergy between AI
and 3D imaging enables highly personalized treatment plans, more
accurate monitoring of progress, and optimized protocols, ensuring
superior and efficient patient care (Li et al., 2022).

Additionally, the development of portable, cost-effective devices is
another promising avenue. As hardware becomes more compact and
affordable, the barriers to entry will diminish, democratizing access to
this technology (Balado et al., 2025). Such advancements could bring 3D
skin mapping into the realm of primary care or remote dermatology,
where its potential for improving diagnostic accuracy and patient
outcomes is immense (Luo et al., 2023). Integration with wearable
devices and other biometric tools could also expand the scope of 3D
skin mapping (Haykal, 2024c). By combining imaging data with real-
time metrics such as hydration levels, UV exposure, and temperature
fluctuations, through which clinicians could gain a more holistic
understanding of skin health. This multidimensional approach
would enable the creation of highly personalized skincare regimens
that address not only the current state of the skin, but also its dynamic
responses to environmental and lifestyle factors.

While currently hypothetical, integrating 3D skin mapping with
diagnostic tools like spectral imaging or biomarkers has the potential
to 1 day support the early detection of systemic conditions with skin
manifestations. For example, combining lesion imaging with
systemic biomarkers might aid in monitoring diseases like lupus
or diabetes. Although such applications are not yet realized, they
underscore the potential of 3D skin mapping to advance
personalized and multidisciplinary healthcare (Giavina-Bianchi
and Ko, 2024).

Regulatory approvals and clinical validation
of 3D skin mapping devices

Several 3D skin mapping devices have received regulatory
approvals, such as FDA clearance in the United States and CE
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marking in Europe, demonstrating their safety and efficacy for
clinical use. For instance, the VECTRA WB360 Imaging System
by Canfield Scientific is FDA-cleared for clinical applications,
including monitoring pigmented lesions and early detection of
skin cancer (VECTRA® WB360s, 2024). Similarly, the VISIA
Skin Analysis System, which is both FDA-approved and CE-
marked, is widely used in aesthetic practices for comprehensive
facial assessments, analyzing features like wrinkles,
pigmentation, and vascularity (Canfieldsci, 2024). The LC-
OCT device is CE-marked in Europe and has been validated
in clinical studies for non-invasive imaging of basal cell
carcinoma and other dermatological conditions (Musolff
et al., 2024). These regulatory certifications highlight the
reliability and clinical relevance of 3D skin mapping
technologies, enabling their adoption in both medical and
aesthetic dermatology.

Barriers to adoption

Despite its transformative potential, the integration of 3D
skin mapping into routine dermatological practice faces several
obstacles. One of the primary challenges is the high cost of
technology. Advanced imaging systems, such as the VECTRA
WB360, can cost upwards of €70,000, with additional expenses
for maintenance, software updates, and staff training (Singh
et al., 2024). These costs are often prohibitive for smaller
clinics or practitioners in resource-limited settings. Clinical
trials also encounter financial barriers, as they require multiple
devices for different sites, skilled operators, and secure storage for
the large datasets generated. Such expenses strain research
budgets, particularly in smaller-scale studies, limiting the
broader validation of 3D skin mapping in diverse populations
(Ahmed et al., 2023). Another significant barrier is the lack of
standardization in imaging protocols and data interpretation
(Kukk et al., 2024). Different devices rely on varying
algorithms and methodologies, leading to inconsistencies in
results across practices and multi-centered studies. This
variability undermines the reliability of 3D skin mapping as a
universal tool and complicates collaborative decision-making.
Additionally, data management poses logistical challenges. The
detailed models generated by these systems produce large
datasets that require secure storage and efficient retrieval
systems. In an era where data privacy is a growing concern,
ensuring the protection of patient information is paramount
(Paul et al., 2023). For example, while maintaining records of
a patient’s skin morphology enables clinicians to assess condition
progression or treatment efficacy, robust data storage solutions
are essential. Moreover, limited awareness among practitioners
often leads to underutilization, while insufficient clinical
validation for certain applications reduces confidence in its
broader use. Integration into existing workflows can be
challenging due to the time required for imaging, analysis, and
staff training (Mennella et al., 2024).

Moreover, the deployment of AI and machine learning
models in dermatology raises critical ethical considerations.
Patient privacy and data security are paramount, especially

given the sensitivity of dermatological imaging data.
Compliance with regulations like the General Data Protection
Regulation (GDPR) is essential to ensure ethical data handling
(Carmi et al., 2023). Transparency in AI decision-making
processes is another critical aspect. Patients and clinicians
should be informed about how algorithms generate
recommendations to foster trust and accountability.
Furthermore, the underrepresentation of diverse skin tones
and conditions in training datasets poses a risk of
exacerbating healthcare disparities, highlighting the need for
inclusive data collection to create equitable and effective
models. Informed consent for data use and the education of
patients and clinicians about AI’s capabilities and limitations are
critical to prevent misconceptions and over-reliance. Ensuring
diverse representation in training datasets is vital to create
models that are effective across varied skin types and
conditions (Daneshjou and Kittler, 2024). Ethical frameworks
must prioritize fairness, inclusivity, and the mitigation of biases
to achieve truly equitable care.

Conclusion

3D skin mapping is more than just an imaging tool; it signifies
a transformative shift toward precision and personalization in
dermatology. By offering detailed, objective insights into the
skin’s structure and condition, this technology enables
clinicians to assess individual variations in skin health, from
pigmentation and texture to vascular structures and volume loss.
These insights empower practitioners to deliver targeted,
customized treatments that address the unique concerns and
aesthetic goals of each patient, enhancing both clinical outcomes
and patient satisfaction. Another potential asset of adopting 3D
imaging in dermatology is its possibility to integrate with AI,
therefore laying firm grounds for clinicians and patients’
education. However, challenges remain, particularly in areas
such as the high cost of attaining and maintaining 3D imaging
devices, the need for specialized training, and the lack of
standardized protocols for data storage and interpretation.
Additionally, future research must prioritize reducing costs,
standardizing imaging protocols, and validating the technology
across diverse populations. Expanding integration with AI,
conducting longitudinal studies on chronic skin conditions,
and improving workflow optimization are also critical steps
toward seamless clinical adoption. Overcoming these barriers
requires collaborative efforts among researchers, clinicians, and
manufacturers to deem the technology more accessible and user-
friendly. Despite these challenges, the potential benefits outweigh
the obstacles by far, as 3D skin mapping stands poised to redefine
diagnostics, treatment planning, and follow-up care.
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