& frontiers | Frontiers in Photonics

’ @ Check for updates

OPEN ACCESS

EDITED BY
Wenfeng Xia,
King's College London, United Kingdom

REVIEWED BY
Yijing Xie,

King's College London, United Kingdom
Sinem Uysal,

Ankara Science University, Turkiye

*CORRESPONDENCE
Mark Witteveen,
ma.witteveen@nki.nl

RECEIVED 23 May 2025
AccepTED 01 September 2025
PUBLISHED 25 September 2025

CITATION
Witteveen M, Natali T, Ruers TIM and
Dashtbozorg B (2025) Physics inspired neural
network for optical property retrieval from
diffuse reflectance.

Front. Photonics 6:1634102.

doi: 10.3389/fphot.2025.1634102

COPYRIGHT

© 2025 Witteveen, Natali, Ruers and
Dashtbozorg. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Photonics

TvpE Original Research
PUBLISHED 25 September 2025
pol 10.3389/fphot.2025.1634102

Physics inspired neural network
for optical property retrieval from
diffuse reflectance

Mark Witteveen'?*, Tiziano Natali*?, Theo J. M. Ruers'? and
Behdad Dashtbozorg*

‘Image-guided Surgery, Surgical Department, Netherlands Cancer Institute - Antoni van Leeuwenhoek,
Amsterdam, Netherlands, 2Department of Nanobiophysics, University of Twente, Enschede, Netherlands

Introduction: Optical property retrieval in diffuse reflectance imaging, like diffuse
reflectance spectroscopy (DRS) and hyperspectral imaging (HSI), often involves
fitting measured spectra to analytical solutions using approximations such as
Diffusion Theory (DT). This method, while accurate, is not always generalizable
due to the assumptions inherent in DT and results in non-unique solutions for
optical properties and physiological parameters. In addition, it is computationally
intensive. Physics-inspired deep learning offers generalizable data descriptions
guided by physical principles but requires extensive labelled data, which is hard to
obtain, especially in medical contexts.

Methods: We propose a deep learning approach to retrieve physiological
parameters from DRS and HSI spectra using DT-simulated training data. The
DT-simulated data is synthesised using a range for the optical properties: Blood
Volume Fraction (BVF), Saturation, water-fat ratio (WFR), average blood vessel
radius (R), scattering amplitude (SA), and scattering slope (SL). The range for these
parameters we have extracted from literature.

Results: Our feed-forward neural network achieved median relative errors of 4%
and 2% for DRS and HSI, respectively.

Discussion: Results suggest that the proposed method is robust and that retrieval
of optical properties is possible with similar results to DT but also reducing
operation time.

KEYWORDS

diffuse reflectance spectroscopy, hyperspectral imaging, optical property retrieval,
diffusion theory, deep learning, physiological parameters, simulated training data,
biomedical optics

1 Introduction

Diffuse reflectance can be captured by various techniques such as Diffuse Reflectance
Spectroscopy (DRS), where the acquisition is a point measurement using a fibre; and
Hyperspectral Imaging (HSI), where the acquisition is a wide field measurement using a
camera. DRS and HSI both utilize absorption and scattering differences of diffusely
scattered light in tissue for categorization and discrimination of various tissue types, for
example, in medical applications (Baltussen et al., 2017; Nogueira et al., 2021; Curra et al.,
2019; De Boer et al., 2018; Baltussen et al., 2019; Pertzborn et al., 2024). Tissue classification/
discrimination algorithms might be categorized into optical property-based and machine-
learning-based approaches (Lu and Fei, 2014). Optical property-based techniques aim to
retrieve tissue optical properties for tissue type discrimination (Witteveen et al., 2022a;
Claridge and Hidovic-Rowe, 2014; Post et al., 2017). Retrieval is often performed through
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analytical descriptions of light propagation, such as the model
presented by Farrell et al. (1992) for DRS or more complex or
specific Monte Carlo Methods (Wang et al., 2005). They can
accommodate complex tissue geometries and heterogeneous
optical properties, providing detailed insights into light-tissue
their
necessitates the use of inverse Monte Carlo methods or hybrid

interactions. However, computational intensity often
approaches to retrieve optical properties efficiently.

A common method for optical property retrieval is achieved by
using a description of the reflectance of tissue and applying an
inverse fit to estimate absorption and scattering from captured
spectra. Reduced scattering (u/ (1)) is commonly approximated
as a combination of Mie scattering and Rayleigh scattering using

the following equation:

] A v
#;(A)=a~</\rej> 8

where a is referred to as the scattering amplitude (SA), b as the

scattering power/slope (SS) and A,.s is the reference wavelength,
equal to 500 nm as used by Jacques (2013).

The absorption can then be described as a combination of
known chromophores at certain concentrations. For a general
tissue, the following approximation of the absorption is used:

qu (A) = BVF. ln 10 - CHB . [SatHB - EHB (A) + (1 - SatHB) - EHB (/\)]
+CH,0 * €m,0 () + Clipid * €iipia (A)

)

where the concentrations are denoted using ¢ and the extinction
coefficient as e.

The physiological parameters used are: blood volume fraction
(BVE), blood saturation (SAT), average radius of blood vessels (R),
and water-fat ratio (WFR). Values for these physiological
parameters are taken from Jacques (2013). Jacques (2013) With
the parameters presented in (1) and (2), the absorption and reduced
scattering for different tissue types can then be calculated. A model is
used to calculate the diffuse reflection; taking the geometry into
account for DRS; or as a wide-field approximation for HSI. A
minimization technique (e.g., non-linear least squares) can be
used to minimize the error between the measured and calculated
spectra. The advantage of this approach is that all the acquired data
is compared using a known and well-understood combination of
parameters such as blood volume fraction, saturation, fat
concentration, and reduced scattering parameters (de Boer et al.,
2015; Adank et al, 2018; Witteveen et al., 2022a). However,
minimization of the spectra is an iterative fitting process and
thus often slow; it is also constrained by the model used and
thus limited to the assumptions underlying the model. When
noise, variation and unknowns are introduced in the spectra, the
model might produce non-unique solutions (optical properties) for
the same spectra. Therefore, alternative approaches could be
implemented for both hyperspectral imaging and diffuse
reflectance spectroscopy that are not constrained to the same degree.

In recent years, machine learning (ML) and deep learning (DL)
techniques have been increasingly applied in biophotonics and
spectroscopic applications for tissue discrimination (Pertzborn
et al, 2024; Cui et al., 2022; Scarbrough et al., 2024; Fernandes

et al, 2021). Unlike analytical approaches, deep learning (DL)
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methods rely on an algorithm’s ability to generalize from a
dataset to predict unseen data. For instance, Livecchi et al. (2024)
developed a DL approach to rapidly process hyperspectral image
data and accurately quantify tissue components. Similarly, Brouwer
de Koning and Ruers (2021) utilized DL semantic segmentation for
tumor detection in hyperspectral images. A comprehensive review
by ? discusses the integration of DL with hyperspectral imaging for
disease diagnosis. These methods that utilize DL do not require rigid
assumptions for retrieving optical properties that are intrinsic in
conventional methods. However, due to scarcity of labels in
measured data, deep-learning methods can be affected by over-
fitting on smaller datasets, a phenomenon where the network
focuses its learning on irrelevant spectral features that are only
specific to the training set, resulting in failure to generalize correctly
on unseen data (Power et al., 2022). While the generalizability of DL
techniques may suffice for intra-study or intra-device comparisons,
it may not extend well to inter-study or inter-device scenarios.

To overcome the limitations of conventional techniques in
identifying a unique solution and to address over-fitting
challenges in deep learning methods, a hybrid approach that
combines physical modelling of light transport with deep
learning could be employed. This approach would leverage the
self-learning ability of DL techniques with the verifiable and
easily interpretable values of physiological parameters of tissue,
resulting in a more verifiable and explainable use of DL. Such a
combination would additionally help with the discrimination and
classification of clinical data. Finally, this approach would exploit the
ability of DL to learn patterns in data while being easier to verify,
check, and convey to clinical practice.

A major challenge in training deep learning (DL) models for
optical property retrieval lies in the lack of clinically measured
spectra with ground-truth physiological parameters. To address this,
we propose training and evaluating DL models using simulated
spectra, which enable controlled generation of data across a wide
physiological parameter space. Simulated datasets have been
successfully used in prior work—for example, in retrieving
absorption and  scattering  coefficients from phantoms
(Scarbrough et al., 2024) and thin tissue layers (Barberio et al,
2021). These studies demonstrate that synthetic data can serve as an
effective training substitute when real labelled data is scarce; given
that the parameter range is similar. Our approach introduces two
key innovations. First, we use a simple feedforward neural network
that applies single-normal variate (SNV) normalization to the
optical parameters, improving consistency across samples.
Second, we design a unified network architecture capable of
processing data from both hyperspectral imaging (HSI) and
point-based diffuse reflectance spectroscopy (DRS). This contrasts
with prior work such as Livecchi et al. (2024), who trained separate
artificial neural networks (ANNSs) for different tissue models, which
while accurate is increasingly complicated. By using a shared model
for both imaging and probe-based spectra, we aim to reduce
complexity and promote cross-modality generalization.

Since the approach is taken to train on synthetic data, a central
focus of our method is robustness. We explicitly test the model not
only on data sampled from within the original training range, but
also on spectra generated from physiological parameters outside that
range. This out-of-range evaluation is critical for assessing the
model’s ability to generalize under unseen conditions. Our
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A simplified structure of the principle pipeline for the retrieval of optical properties using deep learning. Parameters are defined for synthetic
generation of the spectra, which are used as the ground truth for the retrieved optical properties for the network. The network consists of a feed forward
neural network (FF-NN), where the input is the spectra generated by diffusion theory and the output are the retrieved optical properties. Note that
normalization is used due to the magnitude differences in the optical properties.

approach aligns with principles proposed by Hokr and Bixler (2021),
who emphasized the importance of covering the full biologically
relevant optical parameter space, and it extends these ideas by
directly testing beyond typical bounds.

This
developments in the field. For instance, Livecchi et al. (2024)

robustness-focused approach complements recent
developed a DL model to rapidly process hyperspectral images
and quantify tissue components, while Scarbrough et al. (2024)
introduced a wavelength-independent regressor that achieved low
errors (1.5%-1.8%) on simulated data even under substantial
spectral perturbations. Similarly, Hokr and Bixler (2021) trained
their model to span several decades of optical properties by using
statistical moments rather than spectral inputs. Our method builds
upon these works by emphasizing simplicity, cross-modality design,
and direct out-of-range validation.

In summary, this work makes the following key contributions:

e A single feed-forward neural network architecture is
applied across both point-based DRS and wide-field HSI
modalities.

e Training data are synthetically generated using diffusion
theory  models, robust learning  without

requiring difficult-to-obtain ground truth from clinical

measurements.

enabling
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e Implementation of SNV normalization for stable training and
better convergence.

e The model is evaluated on data both within and beyond the
training  parameter  space,  demonstrating  strong
generalizability and resilience.

e The approach achieves comparable or improved accuracy over
traditional diffusion theory fitting, while reducing processing
time by several orders of magnitude.

e The proposed method offers a simple yet robust framework for
clinical integration, with potential for real-time optical

property retrieval.

2 Methods

The method proposed consists of two phases: data synthesis,
using diffusion theory; and retrieval, using a deep learning network.
The introduced pipeline is shown in Figure 1.

2.1 Synthetic data generation

For the generation of synthetic data using diffusion theory, the model
of ? is used for the DRS spectra, and the model of Flock et al. (1989) is
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TABLE 1 Mean (u) and standard deviation (o) values for optical and
scattering properties used in DRS and HSI simulations.

Parameter Symbol u (mean) o (Std. dev.)
Blood volume fraction VHb 0.050-0.066 0.01
Hemoglobin saturation s 0.55-0.70 0.1
Water concentration w 1.0 0

Total oxygen concentration t 0.55-0.70 0.1

Fat concentration (e.g., lipid) f 0.003 0.002
Scattering amplitude a 18-19 5
Scattering power b 14-15 0.2

used for the HSI spectra. The wavelength range chosen is between
450 and 1,450 nm in 25 nm steps, covering the visual to SWIR
range. These models are valid when absorption is much smaller than
reduced scattering (y, < p1!); and when the tissue is described by an
infinitely thick homogeneous medium, while this might not hold for
every tissue type, for demonstrating the stability and robustness of the
method these approximations are sufficient.

Alternative models commonly used in DRS and HSI applications
include the semi-empirical approach by Yudovsky and Pilon (2009),
the two-point source diffusion approximation described by Jacques
(1999), and models compared in recent evaluations such as Bahl et al.
(2023). These models are known to more closely replicate reflectance
from layered or semi-infinite tissues and improve agreement with
both Monte Carlo simulations and phantom measurements. While
the current models serve to illustrate the technique, future work will
incorporate these alternatives to increase physiological relevance and
model robustness.

The equations for the diffuse reflection in DRS are given by:

RN =e +e¥ 3'“""(”)) (3)

Meff(;\)-SDD ) (1 _4.A.

with:

S =B ) (i, )+ );
a() = wA) _ 1+7y (4)
) +p, (A 1-r4

where the parameters y, and ! represent the absorption and
reduced scattering coefficients of the tissue, respectively from
Equations 1, 2. Equation 3 describes the propagation in tissue, as
a function of the effective attenuation g, and the source detector
distance (SDD), which is fixed at 2.5 mm for this study, which falls
within the range of distances used for DRS in human tissue
(Veluponnar et al., 2023; Fernandes et al, 2021; Adank et al,
2018). This was the only distance simulated, but different
distance could be simulated using the same method and could be
investigated in the future. Additionally, o' characterizes the
transport albedo, representing the ratio of the reduced scattering
coefficient y! to the total extinction as the combination of absorption
and reduced scattering coefficients y!-p,. The variable A, in
Equation 4, is related to the internal reflection, incorporating an
empirically defined reflectance factor r; to capture the directional
mismatches between refractive indices defined as;
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rq = —1.440n72 + —0.710n 7}

rel rel

+0.668 + 0.06361, (5)

where #,. = n/n,. For the reflection captured in HSI the
reflection is seen as a wide-field illumination, the reflection is
modelled as:

R(x,y,1) =

o
C+2-A- (-l +[1+(2-8)] V30— ©

where A is the internal reflection coefficient due to the tissue-air
refractive index mismatch and « (1) is the transport albedo as shown
in Equation 4, with the r4 equal to the calculation as shown in
Equation 5. The use of diffusion theory, as mentioned above, is only
valid for a homogeneous infinitely thick medium. Some tissue types
do not meet the assumptions required for diffusion theory to be
valid; with layered tissue and thin tissue both not fulfilling the
homogeneous infinitely thick assumptions of diffusion theory.

The ranges of the optical properties, therefore also the six optical
properties that are under investigation are shown in the
table Table 1.

To better approximate the expected measurements noise is
added to the measurements. An empirically measured and
modelled wavelength-dependent noise is added to the spectra
generated by Equations 3, 6, this generates more realistic data
than with  the
approximated by:

wavelength-independent  noise, noise

noise (1) = 1.0497e — 15 - A — y(A)|5 +9.5469 — 04 - rand [0, 1]
(7)

where ¢ (1) is the mean of the wavelength range and rand [0, 1] is a
brandom number from a uniform distribution between 0 and 1, as
calculated using Equation 11. This method is used to increase the
noise around the center of the wavelength range, as was used before
in Witteveen et al. (2022a) and Witteveen et al. (2022b).

Several studies support this type of signal dependent and
wavelength  dependent noise modelling as a realistic
approximation: Meola et al. (2011) provide a practical framework
for hyperspectral noise estimation that accounts for amplitude
dependence and spectral variability Meola et al. (2011) and
Mahmood and Sears. (2021) extend this to estimate correlated
signal-dependent noise statistics in HSI data Mahmood and Sears
(2021). These findings are similar to our rationale that empirical
wavelength-dependent noise models can closely emulate real
sensor behaviour.

While these models improve simulation fidelity, future work
should investigate how varying the coefficients in Equation 7, for
example, changing an additional scaling factor, affects model
performance and robustness in both network and diffusion
theory outputs.

A uniform distribution function was used to vary the optical
parameters for the diffusion model, presented in (6), where the
optical parameters were within values expected in clinically
measured tissue. The selection of the variables was performed
using a uniform distribution created using a mean (4) and
standard deviation (o) from literature. The values used for y and
o for the different inputs and the resulting distribution of input
variables are addressed in section Extrapolation performance of
network. A uniform distribution was chosen, instead of the clinically
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TABLE 2 Overview of parameters and constants used for training the neural
network model.

Network type fitnet
Hidden layers 1
Neurons per hidden layer 50
Activation Function Tanh

Output size 7 (optical parameters)

Training function trainscg (scaled conjugate gradient)

Max Epochs 13,500
Early Stopping Rule 6 epochs
Mean Epochs to stop 2000-2,300

Data split ratios Train: 70%, validation: 15%, test: 15%

GPU usage Training: yes, inference: no

expected normal distribution, in order to ensure better
generalizability of the DL model.

The values used are shown in table Table 1.

2.2 Deep learning architecture

The architecture chosen for the DL network (Figure 1) was based
on a multi-output feed-forward network, as commonly used for
simple regression tasks Shi et al. (2009).

The network consists of 2 fully connected layers. The inputs for the
network are the 1D spectra as obtained from the synthetic diffusion
theory spectra, as described in section subsection 2.1. The output of the
network consists of a list of optical properties, which can then be
compared to the optical properties used to simulate the spectra. The
network was implemented in Matlab 2022a (MathWorks Inc., Natick,
Massachusetts, United States) using the ‘fitnet’ function. A maximum of
13,500 epochs was chosen, with an early stopping of 6 continuous
epochs of increasing validation performance, which is necessary for
preventing over-fitting of the model on the training dataset. A more
detailed overview of the DL setup and the hyper-parameters used are
show in Table 2. Furthermore, pseudocode for the fitting and evaluation
of the data is presented in pseudocode Algorithm 1.

Input :Paired dataset of input spectra and output parameters

Output : Trained neural network model

Initialize neural network with one hidden layer of fixed size;

Split dataset into training, validation, and test subsets;

while stopping criterion not met do
Forward propagate input data through the network;
Compute loss between predicted and ground truth outputs;
Backpropagate error and update weights using optimization algorithm;

Evaluate final model on test data;
Save trained model for inference;

Algorithm 1. Supervised neural network training pipeline.

This architecture was chosen based on the nature of the data:
each input spectrum is a fixed-length 1D vector without spatial
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structure or temporal dependencies, making it well-suited for a
standard feed-forward neural network. The feed-forward network is
a simple network, thus easier to reproduce and more suitable for this
exploratory work. More complex architectures such as CNNs,
RNNGs,
necessary, as they are designed to exploit spatial information,

or Transformer-based models were not considered

sequence modelling, or attention mechanisms, respectively. 2D-
CNN or 3D-CNN could be used in the case of HSI where we
have complicated spatial-spectral information, but for this
application where each spectra is considered independently, feed
forward networks are preferred. In this case, the problem can be
effectively approached as a straightforward regression task, for
which feed-forward networks have proven sufficient and efficient.

2.3 Diffusion theory fitting

To fit the diffusion theory, as described above, a non-linear least
squares approach was used. The equation that is to be minimized is
given by;

min|if (X[ = min(f1(x)* + f2(x)" + - + fu(x)?) ®)
with  f(x) = Ryt (A) = Rgr (A),

where R ;; is calculated using Equation 3 or Equation 6, for DRS and
HSI respectively.

The non-linear least squares approach, as shown in Equation 8,
is implemented in Matlab using a trust-region reflect algorithm, with
a maximum of 1,500 iterations and being function evaluation
limited to maximize accuracy of the resulting fit (Coleman and
Li, 1996). Note that for every fitting procedure, a random initial
starting value for every parameter is chosen to avoid biasing
the result.

2.4 Extrapolation performance of network

To evaluate the network’s ability to estimate optical properties
accurately outside its training range, two datasets are created. The
first dataset includes optical properties that fall within the training
range, serving as a baseline. The second dataset contains values
outside the training range and is divided into six subsets. In each
subset, one of the six optical properties is varied beyond the original
range, while the remaining parameters stay within the training
range. This design allows for a detailed assessment of the
network’s generalizability and helps to identify the effect of
unexpected input data on each of the six variables individually.

To increase the performance of the network and faster
convergence, the optical properties given to the network were
standardized using an adaptation of the SNV, which is given by
the equation:

sNv = X7ty ©)
4.0y

where y, is the mean of the parameter and ox is the standard
deviation of the parameter. Four times the standard deviation is
chosen to include up to 99.99% of the variation between —1 and 1, as
this gives the highest probability that values outside of the training
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Value of the optical parameters for: (a,b) the ground truth (yellow), the diffusion theory estimated values (pink); and the network estimated values
(purple), where the results are compared between the two approaches of inverse calculating. The relative error for DRS (c) and HSI (d) for the network
(purple) and diffusion theory (pink). Outliers are shown with yellow crosses. Note that the error is relative, therefore more outliers are found in higher
values than in lower values. With: blood volume fraction (BVF), blood saturation (SAT), average radius of blood vessels (R), water-fat ratio (WFR),

scattering amplitude (SA), and scattering slope (SS).

range also fall within -1 and 1. Both the values of ux and ox in
Equation 9 are known for the synthetic data, as they were used to
determine the optical properties.

To measure the error between the estimated and actual values
for the optical properties, the relative error (RE) is calculated for all
the optical properties. The RE is calculated as:

2
VX_Xest (10)

RE =
X

Frontiers in Photonics

where X is the parameter used for the simulation and X, is the
estimated value by the network or DT. This error metric is similar to
the one used by Claridge and Hidovic-Rowe (2014) in their study of
multispectral image inversion, where a comparable ratio of absolute
difference to ground truth, denoted as RE in Equation 10, was
employed to assess fitting accuracy (Claridge and Hidovic-
Rowe, 2014).

As mentioned in subsection 2.1, a uniform distribution was
chosen, instead of the clinically expected normal distribution, in
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TABLE 3 The processing time the diffusion theory and the neural network
approaches. The “Total time” metric is the total time for processing the
entire test set, while the “Per spectra time” is exclusively the processing of a
single spectrum. MRE: the median of the relative error for the whole set;
both the test set within the training range (WTR) and outside the training
range (OTR). Here the IQR is also shown as (25th - median - 75th).

Metrics Diffusion theory Neural network
Total time (s) 2,486 0.097
Per spectra time (s) 1.298 0.016
MREpgs-wtR (0.003-0.015-0.059) (0.003-0.011-0.034)
MREpgs-orr (0.009-0.033-0.116) (0.011-0.042-0.129)
MREsi-wTr (0.005,0.021,0.059) (0.002,0.008,0.019)
MREgsi-orr (0.013-0.039-0.104) (0.007-0.022-0.081)

order to ensure better generalizability of the DL model. If presented
with a normal distribution, the network is more likely to overfit to
the mean of the normal distribution, reducing the robustness of the
network for values further away from the mean. The equation used
for the uniform distribution is given by:

p(x) =p, + (0x-2)- ((rand - 0.5) - 2) (11)

In this equation, the probability function of a uniform
distribution is defined within the interval [p —%,u + 5].

To further verify the performance of the network a statistical test is
done between the estimated values and the relative errors between
diffusion theory and the network. A Wilcoxon rank sum test was
performed with a Bonferroni correction and a significance level of 0.01.

3 Results

The results of the estimated optical properties are shown in
Figures 2a,b. Here it can be seen that the estimated properties match
the expected values for both diffusion theory fitting and for the
network, with the absolute difference being between the highest for
the scattering amplitude (SA) with a median difference to the
ground truth of (DRS:-0.0065 cm™'/HSL:0.0102 cm™') and (DRS:-
0.0757 cm ™1 /HSL:-0.1109 cm™!) for the network and diffusion theory
respectively on a mean value of 19 cm™!. However, due to the large
variation in the size of the different optical properties, a relative
measure is used between the ground truth and the calculated values.
To measure the error between the estimated and actual values for the
optical properties, the relative error (RE) is calculated for all the
optical properties as shown in Figures 2¢,d.

Furthermore, the median relative error for the two models are
shown in Table 3; as well as the speed of the calculation for the
proposed network and DT. The DT approach is implemented using
Matlab 2022a (MathWorks Natick, Massachusetts,
United States), using multiple CPU cores to speed up the

Inc.,

calculation. The network was implemented using Matlab running
the CPU using the built-in method for evaluation. The difference in
speed, from 2,486 s for diffusion theory to 0.097 s using the network,
is shown in Table 3.

In terms of accuracy, the neural network achieves comparable or
improved performance across all modalities. For DRS data within
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the training range (WTR), the network achieves a median relative
error (MRE) of 0.011 compared to 0.015 for diffusion theory, and for
data outside the training range (OTR), 0.042 compared to 0.033.
Notably, for HSI data, the neural network performs significantly
better, with an MRE of 0.008 (WTR) and 0.022 (OTR), compared to
0.021 and 0.039 for diffusion theory, respectively. These results
demonstrate that the network generalizes well and retains
robustness even beyond its trained domain.

In addition to the relative error, the absolute error between both
the neural network and diffusion theory compared to the ground
truth are similar between the network and diffusion fitting, as seen in
Figure 2, further supporting the validity of both approaches in
estimating the optical properties with high precision. For the
DRS-based estimates, diffusion theory exhibited larger deviations
in scattering amplitude (SA) with a median of —-0.0757 and an
interquartile range (IQR) of 2.1210, whereas the neural network
maintained a median of 0.0065 and an IQR of 1.3604, demonstrating
improved stability. Similarly, diffusion theory showed a noticeable
accuracy in the reduced scattering slope (SS) (median 0.0036)
compared to the neural network (0.00024). For HSI-based
estimates, the neural network maintained similar performance
across all parameters, the largest variation observed again in SA
(IQR 0.7125), while the absolute error in BvF, Sat, and WFR was
significantly smaller. In contrast, diffusion theory displayed higher
variability for SA (IQR 2.2746) and SS (IQR 0.1592) compared to
that of the networks, with the network having lower variability of SA
(IQR 0.7125) and SS (IQR 0.0402), confirming the robustness of the
neural network for scattering-related properties across both
modalities.

Extrapolation was performed for the parameters outside of the
range of values given to the network for training to assess the
robustness of the network and the ability to retrieve optical
properties outside of the expected range. In the scatter plots in
Figure 3, it can be seen that most parameters continue to be
estimated well by the network outside of the bounds of the
training data. The predicted values align strongly with the
ground truth across both DRS and HSI modalities, particularly
within the shaded region indicating the training range. However,
some parameters—specifically the blood volume fraction (BVF), the
radius of blood vessels (R), and the scattering amplitude (SA)—
begin to exhibit noticeable non-linear deviations from the identity
line when predictions are made well beyond the training data range.
Despite this, the overall predictive performance remains strong
across the full range of tested values.

The significance testing showed no significant differences for
HSI and DRS, except for the radius (R) parameter in DRS compared
between the network and diffusion theory, and ground truth and
diffusion theory.

4 Discussion

From the results shown in Figures 2¢,d the network estimates the
optical properties as accurately as diffusion theory, in some cases
outperforming the diffusion theory approach, but in general
outperforms DT as seen from Table 3. From Table 3 it can be
seen that the network has a median relative error of: 1.1% and 0.8%
inside the training range and 4.2% and 2.2% outside of the training
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Figures showing the trends when plotting the ground truth (x-axis) against the estimated value (y-axis) for the trained network (magenta) and the
diffusion model (purple). The left column shows results for DRS, and the right column shows results for HSI. The shaded yellow region represents the
training range of optical properties, where regions outside the training range are used to evaluate network robustness for unexpected values. Parameters:
blood volume fraction (BVF), blood saturation (SAT), average radius of blood vessels (R), water-fat ratio (WFR), scattering amplitude (SA), and
scattering slope (SS).
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TABLE 4 P-values for the different parameters between ground truth and the two methods in DRS, with all showing no significant difference except the
average radius between diffusion theory and the network; and diffusion theory and the ground truth (shown in bold).

Method
Diffusion theory - network 0.485 0.849 0.879 5e-05 0.683 0.295
Diffusion theory - ground truth 0.529 ‘ 0.836 0.940 5e-05 0.854 0.206
Network - ground truth 0.917 ‘ 0.989 0.938 0.755 0.975 0.862

TABLE 5 P-values for the different parameters between ground truth and the two methods in HSI, with none showing any significant difference.

Method
Diffusion Theory - Network 0.739 0.848 0.978 0.797 0.757 0.588
Diffusion Theory - Ground Truth 0.783 ‘ 0.875 ‘ 0.968 0.847 0.766 ‘ 0.737
Network - Ground Truth 0.918 ‘ 0.970 ‘ 0.989 0.964 0.881 ‘ 0.859

for the estimation of all the optical parameters for DRS and HSI
respectively. The highest relative error in both being the average
radius blood vessels (R). Both the network and diffusion theory are
able to retrieve the optical properties from the synthetic spectra with
only a small difference, as can be seen in Figures 2a,b. In Figures 2¢,d
it can also be seen that the median and distribution of groups do not
differ greatly between the diffusion theory approximation and the
network approximation, showing the ability of the network to
approximate the values accurately.

To accurately evaluate the performance of the model the relative
error is calculated. In Figures 2c,d it can be observed that the
network has consistently lower relative errors for the optical
properties compared to the diffusion theory approach. A
consistent trend is observed for all the optical properties. The
lower relative error might be due to there being non-unique
combinations of parameters that can produce equal spectra when
diffusion theory is used, especially for HSI where the error in general
are higher for both the network and diffusion theory. When fitting
these parameters from spectra, non-unique solutions for the
parameters are possible. However, while fitting with diffusion
theory requires explicit descriptions of the relationship between
variables, as it is governed by the explicit equations and assumptions
for light-transport in tissue; the neural network does not contain
these explicit relationships between variables, possibly reducing the
competition between these variables. As explained in the method
section, to test the generalizability of the network outside the
training range a second test set was used that contained values
outside of the training range.

In Table 4, 5, significance testing revealed a noteworthy
difference only for the average radius parameter—between
diffusion theory and both the network and ground truth.
However, the relative error (RE) analysis confirms high fidelity:
the median RE is 0.13 for diffusion theory and 0.06 for the neural
network, indicating no significant differences for most optical
parameters between either method and the ground truth. These
results mirror findings from Manojlovi¢ et al. (2023), who trained
machine learning models on simulated hyperspectral data and
achieved mean absolute errors (MAE) as low as 0.011 on real
skin spectra, with inference times below 100 us per spectrum.
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Manojlovi¢ et al. (2023) this demonstrates that models trained
exclusively on simulated data can transfer effectively to real
measurements.

Moreover, our use of the RE metric is consistent with Claridge
and Hidovic-Rowe (2014), who evaluated multispectral inversion
accuracy in colon tissue using a similar error ratio, and reported
normalized RMSD of 0.02 for ex-vivo parameter estimation based on
model inversion (Claridge and Hidovic-Rowe, 2014). In summary,
our neural network matches the accuracy benchmarks of both
Manojlovi¢ et al. (2023) and Claridge and Hidovic-Rowe (2014),
while delivering a substantial speed advantage over diffusion-
theory-based fitting—achieving comparable accuracy with near
real-time performance.

In Figure 3 figure scatter plots are shown for the performance of
diffusion theory and the network on values outside of the training
range. Here it can be seen that most parameters continue to be
estimated well by the network outside of the bounds of the training
data. For blood volume fraction (BVF), within the bounds of the
training data, the network accurately predicts values that closely
align with the ground truth. This is evidenced by the dense clustering
of data points along the diagonal line representing perfect
prediction. However, as the ground truth values extend beyond
the training range, the network’s predictions start to diverge from
the diagonal. This is most visible in the parameters describing the
reduced scattering, where the spread of predicted values becomes
broader and less consistent, indicating a decrease in prediction
accuracy and robustness. The diffusion theory model, shown in
purple, maintains a more stable and linear relationship even beyond
the training range, as it is based on the fixed assumptions and
relations of optical parameters. The radius of blood vessels (R) shows
a similar trend to the BVF. Within the training range, the network’s
predictions are tightly clustered along the diagonal, reflecting high
accuracy. But outside this range, particularly in the HSI dataset, the
predictions become increasingly scattered. This increased variability
suggests that the neural network has reduced ability to generalize
well beyond its training data for this parameter. This is most likely
due to the limitations of the diffusion theory with the used wide-field
approximation, as it results in more spectra that have non-unique
solutions, making it harder for the network to maintain accuracy.
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The scattering amplitude (SA) parameter also displays non-linearity
outside the training bounds. Within the range, the predictions are
precise and closely match the ground truth. However, as the values
move beyond this range, the network’s performance reduces.

To address these limitations, one potential approach is to
expand the training dataset to include a more comprehensive
range of data, simulating all possible ranges of optical properties.
This would help ensure that the testing data rarely falls outside the
training range, thereby improving the network’s generalization
capabilities. Additionally, while diffusion theory provides a
method  for
generating training data, its accuracy can be surpassed by more
Monte Carlo
simulations. These methods, though computationally intensive,
could provide more accurate and reliable training data, thereby

convenient and computationally efficient

sophisticated simulation methods such as

enhancing the network’s performance across a wider range of
conditions. Therefore while the neural network demonstrates
strong predictive capabilities within the bounds of its training
data, its performance outside these bounds is less reliable for
certain parameters, particularly in the HSI dataset. By expanding
the training data and potentially integrating more sophisticated
simulation techniques, the network’s robustness and accuracy can
be significantly enhanced, leading to better predictions across a
broader range of optical properties. Finally, as seen in Table 3,
there is a significant speed-up for the processing of the data
between network-based optical property retrieval and diffusion
theory-based; with a speed increase from 2,486 s to 0.097 s for
30,000 spectra; with the largest time spent in the case of the
network being the loading of the network itself; thus the scaling of
the processing speed of the network is not linear. Furthermore,
when performing the inference for the network on the GPU,
which is not available for the fitting procedure, the speed up is
even more signficant with an additional 2x speed up between CPU
and GPU inference for the network. This speed increase might be
important for real-time or time-sensitive applications where
optical property retrieval is important. For the current model
size and the expected size of the data input during inference, the
primary time constraint lies in loading and unloading the model.
During fitting, however, the time is primarily determined by the
fitting speed of individual spectra. Consequently, in cases where
the size of the input data is relatively small compared to the size of
the model, there is a significant speed improvement. This
improvement does not scale linearly with the size of the input
data. In HSI, a small increase in the image resolution can greatly
increase the number of spectra, thus greatly increasing the amount
of time needed when fitting with conventional methods. For
future research two main recommendations are given; firstly
the method of data generation should better reflect the
expected measured spectra; secondly, the trained network
should be tested on measured data after training, to confirm
the correct functioning of the network on measured data. For
the first point, a different synthesis technique could be used, such
as Monte Carlo modelling, where the tissue to be investigated
could be better approximated. Furthermore, in future work the
feed-forward network presented in this paper could be replaced
with more complex network architectures that exploit additional
information, such as spatial information in HSI or multiple source
detector distances in DRS.
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In conclusion, using a simple neural network in combination
with synthetic training data allows both for DRS and HSI the correct
retrieval of optical parameters faster and as accurate; given that the
network is trained on the appropriate range of parameters in
synthetic data.

In conclusion, using a simple neural network with synthetic
training data enables fast and accurate retrieval of optical parameters
for both DRS and HSI. By employing SNV normalization on the
parameters, using a single unified architecture for both modalities,
and explicitly testing performance outside the training range, this
work demonstrates a robust and easily implementable approach.
These contributions provide a foundation for translating deep
learning-based optical property retrieval into practical clinical
and experimental applications.
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