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Zeta regularization of infinite products
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We describe the procedure of zeta regularization of an infinite product, in particular
following the technique we introduced in previous works (13).
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The problem of regularizing infinite products is a long standing
one in mathematical and theoretical physics, as well as in math-
ematics, of course. Several either formal or rigorous techniques
have been introduced. One that obtained an undiscussed favor is
the zeta regularization. The idea is simple to write down in a for-
mal way (so as it as been used for a long times by physicists), and
has got a rigorous mathematical formulation. This produced a
huge number of interesting (and uninteresting) applications, with
many useful (and non-useful) results. In this notes, we briefly
recall the main features of the zeta regularization procedure, in
particular following the approach introduced in our works.

Given a sequence S = {an}∞n = 1 of non-vanishing complex
numbers, arranged by increasing module, the formal product

∞∏
n = 1

an,

appears in the series of formal equalities

log
∞∏

n = 1

an =
∞∑

n = 1

log an = − d

ds

∞∑
n = 1

a−s
n

∣∣∣∣∣
s = 0

.

This suggests to call zeta regularized product of the an, the number

e
− d

ds

∑∞
n = 1 a−s

n

∣∣∣
s = 0 .

In particular, if S is either the sequence of the eigenvalues of a
matrix A, or the discrete spectrum of a differential operator A, we
call zeta regularized determinant of A the number detζA defined
by

log detζA = − d

ds

∞∑
n = 1

a−s
n

∣∣∣∣∣
s = 0

.

This formal approach is based on the possibility of definining the
function of the (complex) variable s:

ζ(s, S) =
∞∑

n = 1

a−s
n ,

called the zeta function associated to the sequence S, and on the
analytic properties of it. In particular, ζ(s, S) should be defined at
s = 0 with its first derivative. As a matter of fact, it is not strictly
necessary that ζ(s, S) is defined at s = 0: it is sufficient that there
exists a Lauren–Mac Laurin series for it.

Zeta functions have been deeply investigated in mathematics,
mainly in analysis and number theory, and this study provided
several different types of sequences for which the zeta regulariza-
tion process works, and therefore possible applications to physics.
In general, the series definition of the zeta function is analytic in
a region of the complex plane that does not contain the origin,
so analytic continuation is necessary. The problem is thus the one
of finding out a suitable representation of the zeta function, that
permits to describe its analytic continuation. The natural example
is the Riemann zeta function

ζR(s) =
∞∑

n = 1

n−s,

where the sequence is S = {n}∞n = 1. As well known, we have the
Hermite formula

ζR(s) = 1

2
+ 1

s − 1
+ 2

∫ ∞

0

(1 + t2)− s
2 sin(s arctan t)

e2πt − 1
dt,

that extends analytically in the whole complex plane up to the
simple pole at s = 1 (with residue 1). The determination of the
value of ζ′R(0) is a bit harder, but follows as well differentiating the
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formula of Hermite (and recalling some properties of the Euler
Gamma function).

A main class of sequences that admit a zeta regularization is
given by the spectrum of a class of linear operators: more pre-
cisely, given a non negative self adjoint differential operator H on
a compact manifold, one can prove that the zeta function asso-
ciated to the spectrum of H has an analytic extension at s = 0,
and (hopefully) compute the derivative. Following Hawking (4),
this provides a first important application in quantum physics,
to deal with gaussian path integrals. The partition function for
a finite temperature quantum field theory on a ultrastatic space-
time with compact spazial section is constructed as follows. Let
M be a compact Riemannian manifold of dimension n, and con-
sider the product N = S1

r × M, where S1
r is the circle of radius

r = β
2π

, and β = 1
T is the inverse of the temperature. Let L be

some non-negative self adjoint operator (typically the Laplacian)
acting on some functions space (we shall deal with scalar fields)
defined on M and H = −∂2

u + L. The canonical partition func-
tion at temperature T of this model may be formally written
as

Z = det−
1
2 (�2H),

where � is some renormalization constant. The zeta function of
H is defined by (where Sp+H denotes the positive part of the
spectrum of H)

ζ(s; H) =
∑

λ∈Sp+H

λ−s,

when Re(s) > s0 (for some suitable s0), the regularized functional
determinant of H is defined by

detζH = e− d
ds ζ(s;H)

∣∣
s = 0 ,

and the partition function is then

log Z = 1

2
ζ′(0; H) − 1

2
ζ(0; H) log �2.

If the underlying manifold is not compact, there could be a con-
tinuous spectrum. In such a case, the idea of relative zeta function
can be used (8). This works as follows. Let (H, H0) be a pair of
non negative self adjoint linear operators such that the difference
of the resolvents (or the difference of the heat operators) is of trace
class (some further properties are necessary, see for example 16 or
1 for details). Then, the relative zeta function is defined using the
Mellin transform

ζ(s; H, H0) = 1

�(s)

∫ ∞

0
ts − 1Tr

(
e−tH − e−tH0

)
dt,

and the partition function reads

log Z = 1

2
ζ′(0; H, H0) − 1

2
ζ(0; H, H0) log �2.

While several rigorous approaches have been introduced and
developed in order to investigate the analytic properties of the zeta

function, comparatively few attempts to deal with the zeta deter-
minant can be found in the literature. We briefly recall here our
technique (see 12–14), whose main characterization is the fact of
using a “new” spectral function, called Gamma function, instead
of the usual heat kernel.

Let S = {an}∞n = 1 be a sequence of non vanishing complex
numbers with unique accumulation point at infinity, ordered by
increasing modules. Assume the exponent of convergence of S

is finite (e(S) = limsupn→∞
log n

log |λn| < ∞). We define the Gamma

function associated to S by the convergent Weierstrass canonical
product

1

�(−λ, S)
=

∞∏
n = 1

(
1 + −λ

an

)
e

∑p
j = 1

(−1)j

j
(−λ)j

a
j
n .

where p is the genus of S, i.e. the least integer p such that the series∑∞
n = 1 a

−p−1
n converges (absolutely).

We have the following formulas, relating the Gamma function
to the other relevant spectral functions:

f (t, S) − 1 = − t

2πi

∫
�θ,c

e−λt log �(−λ, S)dλ, (1)

ζ(s, S) = s

�(s)

∫ ∞

0
ts − 1 1

2πi

∫
�θ,c

e−λt

−λ
log �(−λ, S)dλdt,

(2)

where �θ,c =
{

z ∈ C| | arg(z − c)| = θ
2

}
, oriented counter

clockwise, and

f (t, S) =
∞∑

n = 1

e−tan + 1,

is the heat function, i.e. the trace of the heat operator.
In the classical approach the heat function is used to study the

analytic properties of the zeta function using the Mellin transform

ζ(s, S) = 1

�(s)

∫ ∞

0
ts − 1(f (t, S) − 1)dt.

In fact, by this formula, explicit knowledge of the asymptotic
expansion of the heat function for small t gives the position of
the poles of the zeta function and the values of the residues.

In our approach, the main spectral function is the logarith-
mic Gamma function. It is clear, by the formula in Equation (1),
that the asymptotic expansion of the heat function for small t fol-
lows from the one of the logarithmic Gamma function for large
λ. Therefore, all information contained in the heat function are
contained in the Gamma function (13).

However the main improvement obtained using the Gamma
function is due to the fact that the coefficients in the asymp-
totic expansion of the logarithm of the Gamma function for large
λ give the derivative of the zeta function [using the formula in
Equation (2)], while this information is not available from the
coefficients of the expansion of the heat function. In other word,
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the expansion of the Gamma function is a global invariant, as the
derivative of the zeta function, while the expansion of the heat
function, as well known, is local, namely can be determined using
local quantities constructed using the geometry of the manifold.
This is the content of the next theorem (see 13 or the first section
of 15 for details and proofs).

Theorem 0.1. If S is a regular sequence of spectral type of order
αN ≤ 0, then the associated zeta function is regular at s = 0, and
near s = 0

ζ(s, S) = −a0, 1 − a0, 0s + O(s2),

where the a0, 1 and a0, 0 are the coefficients of the logarithmic
term and of the constant term in the asymptotic expansion of the
logarithmic Gamma function for large λ, namely

log �(−λ, S) =
N∑

j = 0

aαj,0(−λ)αj +
N∑

j = 0

aαj,1(−λ)αj log(−λ)

+ O((−λ)αN ).

In the example of the Riemann zeta function considered above,
the Gamma function is

log �(−λ, S) = − log
∞∏

n = 1

(
1 + −λ

n

)
e− −λ

n

= γ(−λ) + ln �(−λ + 1)

that has the following expansion for large λ

log �(−λ, S) = (−λ) ln(−λ) + (γ − 1)(−λ) + 1

2
ln(−λ) + 1

2

ln 2π +
∞∑

j = 1

B2j

2j(2j − 1)
(−λ)1 − 2j.

Application of Theorem 0.1 gives

ζR(0) = −1

2
, ζ′R(0) = −1

2
log 2π.

We conclude with a remark on references. It is impossible to
mention all the relevant references in this field. We decided to
cite explicitly only our works (that contains the details on the
approach that we briefly outlined here), and some particular
references that are the undiscussed references usually associ-
ated to some particular subject. However, we want to add here
some further references that are either interesting works on some
particular problem or that contain themselves a good list of
references on some aspect of the field. For rigorous treatment of

regularized products we suggest (5–7, 17). For a good account of
applications to physics see (2). For heat kernel methods and func-
tional determinant see (3, 10). Of course these suggestions are far
from being exhaustive.
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