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Diffusion tensor imaging (DTI) is the method of choice for non-invasive investigations of
the structure of human brain white matter (WM). The results are conventionally reported
as maps of the fractional anisotropy (FA), which is a parameter related to microstructural
features such as axon density, diameter, and myelination. The interpretation of FA in terms
of microstructure becomes ambiguous when there is a distribution of axon orientations
within the image voxel. In this paper, we propose a procedure for resolving this ambiguity
by determining a new parameter, the microscopic fractional anisotropy (μFA), which
corresponds to the FA without the confounding influence of orientation dispersion. In
addition, we suggest a method for measuring the orientational order parameter (OP) for
the anisotropic objects. The experimental protocol is capitalizing on a recently developed
diffusion nuclear magnetic resonance (NMR) pulse sequence based on magic-angle
spinning of the q-vector. Proof-of-principle experiments are carried out on microimaging
and clinical MRI equipment using lyotropic liquid crystals and plant tissues as model
materials with high μFA and low FA on account of orientation dispersion. We expect
the presented method to be especially fruitful in combination with DTI and high angular
resolution acquisition protocols for neuroimaging studies of gray and white matter.
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INTRODUCTION
Molecular self-diffusion measured with nuclear magnetic reso-
nance (NMR) [1, 2] can be used to non-invasively probe the
microstructure of porous materials [3–5] and tissues [6]. The
apparent self-diffusion coefficient, as measured in a pulsed gra-
dient spin echo (PGSE) experiment, reflects the average dif-
fusivity, which is a sum of contributions from different water
compartments in a complex system. The diffusion is influ-
enced by several properties of the medium, e.g., pore size and
shape [7, 8], pore size distribution, pore interconnectivity [9,
10], permeability of cell membranes [11], and anisotropy [12].
The anisotropy of the tissue morphology renders the water
self-diffusion anisotropic, a feature that is the basis for non-
invasive mapping of muscle and nerve fiber orientations by
diffusion tensor imaging (DTI) [13, 14]. DTI is commonly
used to study the white matter (WM) of the brain, where the
nerve fibers have a dominant direction on macroscopic length
scales. Because of the limited spatial resolution in DTI, a major-
ity of the voxels in WM contain fiber bundles with different
orientations, thus making the interpretation of the DTI data
ambiguous [15]. Due to the significance of accurate quan-
tification of the level of anisotropy in the brain, techniques
for detecting fiber orientation dispersion are being developed
[16, 17].

The degree of the macroscopic diffusion anisotropy is often
quantified by the dimensionless fractional anisotropy (FA) [12].
The FA parameter is sensitive to alterations in several tis-
sue properties, e.g., axonal diameter, axonal packing density,
and degree of myelination. Changes in these properties may
be associated with normal brain development, learning, and
healthy ageing, but also with disorders such as Alzheimer’s dis-
ease, autism, schizophrenia, mild cognitive impairment, mul-
tiple sclerosis, amyotrophic lateral sclerosis, epilepsy, Tourette’s
syndrome, Parkinson’s disease, and Huntington’s disease [16,
18, 19]. Because fiber orientation dispersion and several other
tissue properties are inherently entangled in the echo atten-
uation of the PGSE experiment, changes in FA are not spe-
cific to any particular tissue characteristics [16]. This fact is
known to confound the use of FA as a diagnostic parameter
in regions of dispersing or crossing WM fibers [17], and also
detracts from the usability of FA in macroscopically isotropic
tissues such as the gray matter (GM) of the nervous system
[20].

Despite several experimental approaches attempting to assess
the microscopic diffusion anisotropy in the nervous system [21],
disentangling underlying tissue properties from the effects of
orientation dispersion remains challenging and has inspired the
development of analytical models extending beyond the standard
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DTI approach [22, 23]. For materials consisting of randomly ori-
ented anisotropic microcrystallites, e.g., lyotropic liquid crystals,
the presence of microscopic anisotropy can be inferred from the
characteristic functional form of the PGSE signal attenuation [24,
25]. This approach becomes ambiguous for more complex mate-
rials where several mechanisms could give the same signal atten-
uation. More recently, the microscopic anisotropy is detected in
double-PGSE experiments by diffusion encoding in two separate
time periods [26], giving characteristic signal modulations for
data obtained with collinear and orthogonal displacement encod-
ing [27–29] or when systematically varying the angle between the
directions of displacement encoding [26, 30, 31]. A double-PGSE
scheme to quantify microscopic anisotropy in terms of compart-
ment eccentricity, independent of the macroscopic anisotropy,
has recently been suggested [32]. A two-dimensional correlation
approach [33] gives the currently most complete separation of the
underlying diffusion components, albeit at the expense of being
far too time consuming for clinical use.

We have recently shown that microscopic anisotropy can be
efficiently detected with an acquisition protocol including single-
shot isotropic diffusion weighting (DW) using magic-angle spin-
ning of the q-vector (q-MAS) [34]. Comparisons between the
q-MAS and other single-shot DW approaches [35, 36] can be
found in [37]. Here we implement a numerically optimized ver-
sion of the q-MAS pulse sequence [37] on a high-performance
microimaging system, limited to specimens with maximum
10 mm diameter, and on a standard whole-body clinical scanner.
The efficiency of the q-MAS sequence is demonstrated using two
materials with pronounced water diffusion anisotropy: lyotropic
liquid crystals [24, 25, 27, 34, 38–40] and pureed asparagus
[41–44]. For contrast, a yeast cells suspension is used, exhibiting
two isotropic diffusion components [34, 45–47].

We introduce a new parameter, the microscopic frac-
tional anisotropy (μFA), for quantification of the microscopic
anisotropy, and suggest a method to estimate the value of μFA
by analysis of a set of diffusion MRI data acquired with both
isotropic and conventional DW. The new μFA and the standard
FA parameters have the same dependence on the size, shape, and
density of the underlying anisotropic compartments, but differ
in their sensitivity to the distribution of compartment orienta-
tions in the image voxel. The information from FA and μFA can
be combined to quantify the orientation dispersion. In the liter-
ature, there are previous definitions of an orientation dispersion
index based on a specific model of the orientation distribution
function [23, 48, 49]. We quantify orientation dispersion with the
order parameter (OP), a well-established measure of the orienta-
tional order in the field of liquid crystals [50]. A wide range of
experimental techniques have been used to estimate OP for liquid
crystalline systems, e.g., NMR spectroscopy, fluorescence polar-
ization, and X-ray scattering. We derive an expression that relates
OP to FA and μFA. The analysis presented here allows disentan-
gling the two contributions to FA, i.e., the microscopic anisotropy
and the orientational order of the micro-domains.

Figure 1 illustrates idealized scenarios of microstructural orga-
nization and the corresponding μFA, OP, and FA parameters. For
a purely isotropic system, FA and μFA are both zero regardless
of compartment size polydispersity. For anisotropic systems on

FIGURE 1 | Idealized tissue geometries with corresponding structure

parameters. Consecutive rows show values of the microscopic fractional
anisotropy, μFA; orientational order parameter, OP; fractional anisotropy,
FA; and diffusion tensors. Decreasing values of OP from left to right in
columns 1–3 leads to a reduction of FA while μFA remains constant. For
isotropic structures (column 4), both FA and μFA vanish.

the other hand, μFA reflects anisotropy of the underlying micro-
scopic structures but not their organization on the voxel level.
For identical micro-domains with identical μFA values, a reduced
FA is expected for increased orientation dispersion reflected by
a reduced OP. Both FA and μFA are reduced in the presence of
isotropic structures. Because of its insensitivity to orientation dis-
persion, μFA could potentially be used as a relevant biomarker
in clinical applications. It can provide additional information
about the microstructure in tissue where conventional anisotropy
measures are confounded by the voxel-scale tissue organization,
thus improving the diagnostic specificity. Further, μFA and OP
may generate novel diagnostic information in tissue that appears
isotropic on a macroscopic scale but has sub-voxel anisotropic
components, such as that found in cortical GM [20].

THEORY
DIFFUSION DISPERSION
In complex systems like tissue, the MRI signal attenuation often
reflects multiple diffusion processes, including restricted, hin-
dered, and free diffusion. Restricted diffusion may give rise to
both isotropic and anisotropic contributions. Although restricted
diffusion is fundamentally a non-Gaussian process, at a low DW
and at the experimental times typical for diffusion NMR/MRI,
it can be characterized by the apparent diffusion coefficient, Dg,
along the applied gradient direction g. For a multi-component
system, the echo attenuation intensity is given by the sum over all
the different contributions,

Sg =
∑

i

S0ie
−bDgi , (1)

where S0i is the relaxation weighted intensity of component i.
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Equation (1) can be expressed as the Laplace transform of the
probability distribution of apparent diffusivities, P(D) [25, 51,
52]. For a macroscopically anisotropic system, the distribution
P(D) depends on the diffusion encoding direction, as indicated
by the subscript g in Equation (1). The arithmetic average of
the signal intensity over all directions, also known as the powder
average, mimics a uniform orientation dispersion of anisotropic
micro-domains and thus, yields P(D) independent of the orien-
tation dispersion. Provided that P(D) is normalized to unity, the
distribution is well described by the mean value,

D =
∫ ∞

0
DP (D) dD (2)

and by the central moments

μm =
∫ ∞

0

(
D − D

)m
P (D) dD. (3)

While the mean diffusivity, D, gives the initial slope of the echo
attenuation, the second central moment, μ2, represents the initial
deviation from mono-exponential attenuation, corresponding to
the second term in the cumulant expansion [53] of the normal-
ized signal intensity, E = S(b)/S0, according to

ln E(b) = −Db + μ2

2
b2 − .... (4)

The second central moment, μ2, is often expressed in terms of the

kurtosis coefficient K as μ2 = D
2
K/3 [42]. For Gaussian diffu-

sion in each component, as assumed in Equation (1), the value of
μ2 corresponds to the variance of apparent diffusion coefficients.
For brevity, we refer to μ2 as the variance. In the case of a two-
component isotropic system, e.g., intra and extracellular diffusion
in a yeast cell suspensions [34], the value of μ2 increases with the
difference between the two diffusivities and is maximized when
the two contributions are represented with equal probabilities.

MICROSCOPIC FRACTIONAL ANISOTROPY (µFA)
The anisotropy of a medium is reflected by the diffusion tensor,
D = R�R−1, where � is the diagonal representation of D in the
principal axis system given by the eigenvalues λ1, λ2, and λ3 and
R is the Euler rotation matrix. In DTI, the diffusion tensor can
be constructed based on measurements of signal intensity along
several non-collinear gradient directions, ĝ, using the expression

Sg = S0 exp
[
−b ĝ · D · ĝT

]
. (5)

The anisotropy on a voxel level is quantified in terms of FA
and expressed as an invariant of the three independent diffusion
tensor eigenvalue [12],

FA =
√

3

2

√√√√(
λ1 − D

)2 + (
λ2 − D

)2 + (
λ3 − D

)2

λ2
1 + λ2

2 + λ2
3

, (6)

where the mean diffusivity is given by

D = λ1 + λ2 + λ3

3
. (7)

The diffusion tensor eigenvalues can be combined in several ways to
represent different invariant measures characterizing the diffusion
tensor shape. To quantify the degree to which the diffusion tensor
reflects the planar geometry, we use the planar measure Cp [54],

Cp = λ2 − λ3

λ1
, (8)

assuming a descending order of the eigenvalues, λ1 ≥ λ2 ≥ λ3.
For randomly oriented anisotropic domains represented by a

single set of diffusion tensor eigenvalues, corresponding to the
powder average, the variance of the observed P(D) is given by [55]

μ2 = 4

45

[
(λ1 − λ3)

2 + (λ2 − λ1) (λ2 − λ3)
]
. (9)

For axially symmetric diffusion tensors, FA is given by

FA =
∣∣D|| − D⊥

∣∣√
D2|| + 2D2⊥

, (10)

where D|| is the axial diffusivity and D⊥ is the radial diffusiv-
ity. For macroscopically isotropic systems, with axially symmet-
ric anisotropic micro-domains, the signal attenuation and the
corresponding P(D) can be expressed in a compact form (see
Equations 34 and 35 in [34]).

The mean diffusivity and the variance are given by the axial
and radial diffusivities as

D = D||+2D⊥
3

μ2 = 4
45

(
D|| − D⊥

)2
.

(11)

For a diffusion tensor with oblate shape, where D|| < D⊥, the

upper limit of the variance is given by μ2 max = D
2
/5, while for

a prolate shape, where D|| > D⊥, μ2 max = 4D
2
/5. For randomly

oriented axially symmetric micro-domains, the FA in Equation
(10) can be expressed in terms of D and μ2 using the relations in
Equation (11) as

FA =
√

3

2

(
1 + 2

5
· 1

μ̃2

)−1/2
, (12)

where the ratio μ̃2 = μ2/D
2

represents the scaled variance.
Isotropic DW can be achieved with q-MAS if the water

molecules stay within an anisotropic micro-domain throughout
the duration of the diffusion encoding [34]. In a system consist-
ing of a single type of micro-domain, the variance μ2, observed
in the powder-averaged DW experiment, is a consequence of
domain anisotropy and independent of orientation dispersion.
In such a case, the isotropic DW yields μiso

2 = 0. Since the dif-
ference �μ2 = μ2–μiso

2 is expected to vanish when all diffusion
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contributions are isotropic, and it is maximized for systems where
the deviation from mono-exponential echo decay is purely due to
microscopic anisotropy, the difference �μ2 can be used to quan-
tify microscopic anisotropy. In case of macroscopically isotropic
systems, or equivalently, for an isotropically averaged intensity,
the mean diffusivity is expected to be identical for both isotropic
and powder-averaged DW data. This can be implemented as an
advantageous constraint in data analysis.

Substituting the μ̃2 in Equation (12) with its “bias-corrected”
counterpart, here named the difference in scaled variance,

�μ̃2 = μ2 − μiso
2

D
2

. (13)

suggests a definition for the microscopic fractional anisotropy,
μFA, according to

μFA =
√

3

2

(
1 + 2

5
· 1

�μ̃2

)−1/2
. (14)

Equation (14) is the key equation to quantify microscopic
anisotropy, since �μ̃2 is the measurable difference in curva-
ture between powder-averaged and isotropic signal-vs.-b data,
while μFA is the desired microstructural parameter. The relation
between �μ̃2 and μFA is shown in Figure 2A.

The values of μFA are equal to the FA when diffusion is
locally purely anisotropic and determined by coherently ori-
ented axially symmetric diffusion tensors. For two-dimensional
diffusion between parallel planes, μFA = FA = √

1/2 and for
one-dimensional diffusion within narrow tubes, μFA = FA = 1.

ORDER PARAMETER (OP)
The OP is well-established for characterization of the orienta-
tional order in liquid crystals [50]. Here we use the OP to quan-
tify the orientation dispersion of anisotropic micro-domains.
Consider a typical macroscopic voxel consisting of an ensemble
of anisotropic micro-domains characterized by axially symmetric
diffusion tensors with axial and radial diffusivities, D|| and D⊥,
respectively, and varying orientation of the domain’s symmetry
axis d. Further, assume that the distribution of sub-voxel domain
orientations is also axially symmetric around the voxel symmetry
axis u, where u · d = cos θ.

The diffusivity along the voxel symmetry axis is given by the
contributions from all the micro-domains with different polar
angles θ. Each micro-domain contributes

D (θ) = D|| cos2 θ + D⊥ sin2 θ. (15)

Note the similarity with the expression describing the chemical
shift anisotropy (see Equation 23 in [56]). The above expression
can be rewritten as

D (θ) = D + 2

3

(
D|| − D⊥

)
P2 (cos θ) , (16)

where P2(x) = (3x2–1)/2 is the second Legendre polynomial. The
axial and radial diffusivities observed on a voxel level are given by

FIGURE 2 | Random and systematic errors in estimating the

microscopic fractional anisotropy. (A) Relation between microscopic
fractional anisotropy (μFA) and the difference in variance,

�μ̃2 =
(
μ2 − μiso

2

) /
D

2
, calculated with Equation (14).

(B) Powder-averaged signal attenuation, S(b)/S0, for an axially symmetric
anisotropic system corresponding to different μFA values (solid lines with
circles), calculated based on Equation 35 in [34] using the relations in

(Continued)
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FIGURE 2 | Continued

Equations (11) and (14). The dashed line corresponds to the isotropic DW
with μiso

2 = 0. (C) Relation between true μFA values and their estimation
from fitting Equation (25) to data generated in the same way as the data
shown in panel (B). Shown are the mean values (solid lines) and standard
deviations (error bars) resulting from 1000 fitting iterations with synthetic
noise corresponding to different SNRs [66]. (D) Relative systematic
(δr , dashed line) and random errors (εr , solid lines) calculated from data
shown in panel (C). In panel (B), the red, green, and blue colors correspond
to different μFA values, while in panels (C,D), the colors correspond to
different SNR levels.

the ensemble averages

〈
D||

〉 = D + 2

3

(
D|| − D⊥

) 〈P2 (cos θ)〉,

〈D⊥〉 = D + 2

3

(
D|| − D⊥

)
P2

(
cos

π

2

)
〈P2 (cos θ)〉

= D − 1

3

(
D|| − D⊥

) 〈P2 (cos θ)〉. (17)

The OP (see [50]) is defined by

OP = 〈P2 (cos θ)〉. (18)

As we see from Equation (17), the OP can be determined by the
relation between the micro-domain diffusivities and the ensemble
average diffusivities,

OP =
〈
D||

〉 − 〈D⊥〉
D|| − D⊥

. (19)

For randomly oriented domains, the OP = 0, while for completely
aligned domains, the OP = 1. The OP defined here is similar
to the one calculated from motionally averaged chemical shift
anisotropy or dipolar powder patterns in [50].

The definition of OP in Equation (19) is suitable for purely
anisotropic systems with axial symmetry, for which μiso

2 = 0, and
it can be determined from DW experiments performed in several
non-collinear directions using multiple b-values. The ensemble
average diffusivities,

〈
D||

〉
and 〈D⊥〉 , are the diffusion tensor’s

eigenvalues, while the difference of the micro-domain diffusivi-
ties, D|| − D⊥, is related to the variance μ2 in Equation (11) and
can be determined by analyzing the powder-averaged signal atten-
uation (4). If the FA is converted into the corresponding scaled
variance according to Equation (12),

μ̃FA
2 = 4

5

(
3

FA2
− 2

)−1

, (20)

the OP in Equation (19) can be rewritten as OP =
√

μ̃FA
2 /μ̃2.

However, the FA is not only reduced due to orientation dispersion
but also due to isotropic contributions, characterized by μiso

2 > 0.
To account for the isotropic contributions in the calculation of
the OP, the difference in variance should be used, suggesting the

definition

OP =
√

μ̃FA
2

�μ̃2
=

√
3μFA−2 − 2

3FA−2 − 2
. (21)

Equation (21) provides the link between the FA and μFA and
allows quantifying the orientation dispersion of anisotropic struc-
tures. Since the ratio FA

/
μFA < 1, the OP is always in the range

0–1. The macroscopic parameter, FA, can be interpreted in terms
of two underlying mechanism, i.e., the anisotropy of micro-
domains, given by μFA, and the domain organization, given by
the OP. Inverting Equation (21) gives

FA = OP

[
μFA−2 + 2

3

(
OP2 − 1

)]−1/2

. (22)

The above equation quantifies the relation between the anisotropy
of microscopic structures and their macroscopic organization.
For large FA, both the OP and the μFA need to be large, while
a reduction of either OP or μFA gives reduced FA (see Figure 1).

ESTIMATING MICROSCOPIC FRACTIONAL ANISOTROPY
In the case of high signal-to-noise and a well-sampled echo
attenuation signal, the variance μ2 could be estimated by regress-
ing Equation (4) onto the isotropic and powder-averaged DW
data. However, it can be shown that the convergence of the
cumulant expansion is very slow in the case of randomly ori-
ented anisotropic domains, for which the echo intensity can be
expressed in a simple analytical form (see Equation 35 in [34]).
The problem of analyzing the echo intensity data can instead be
considered from the perspective of finding a suitable approxi-
mation to the P(D) or its first two moments, see Equations (2)
and (3). A convenient functional form to approximate P(D) for
complex systems with both isotropic and anisotropic components
should have a simple analytical Laplace transform and it should
be able to capture a wide range of diffusion distributions with
only a few parameters. The gamma distribution function,

P (D) = Dα−1 e−D/ β

� (α) βα
(23)

proves to be an efficient and physically plausible model for
describing complex polydisperse systems such as polymer solu-
tions [57]. The mean and the dispersion value of the gamma
distribution are given by the so-called shape parameter α and the
scale parameter β, where D = α · β and μ2 = α · β2, respectively.
The Laplace transform of the gamma distribution takes a simple
analytical form,

E (b) = (1 + bβ)−α , (24)

which can expressed as

S (b) = S0

(
1 + b

μ2

D

)− D2

μ2
(25)

for data-fitting purposes.
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Figure 2 summarizes the key aspects of the microscopic
anisotropy analysis, which are discussed in more detail through-
out the Results and Discussion section. The functional form of
Equation (14) is shown in Figure 2A. The expected signal atten-
uation for an axially symmetric anisotropic system with varying
μFA values is depicted in Figure 2B, illustrating that only rather
large μFA values give rise to a detectable deviation from mono-
exponential decay. The systematic and random errors of μFA
estimation resulting from fitting Equation (25) to the synthetic
data in Figure 2B are presented in Figures 2C,D.

MATERIALS AND METHODS
LIQUID CRYSTAL/YEAST PHANTOM
A liquid crystalline sample was prepared by mixing the non-
ionic surfactant triethylene glycol monodecyl ether C10E3 (Nikko
Chemical Co., Tokyo, Japan) with water containing 95 wt% D2O
(Sigma Aldrich, Steinheim, Germany) and 5 wt% H2O (MilliQ
purified) in an NMR tube with 5 mm outer diameter, giving 40
wt% surfactant concentration and 0.5 ml sample volume. A water
bath was used to heat the sample to 50◦C where it separates
into two phases: nearly pure water and a concentrated surfactant
solution with reverse micelles [58], both phases having low vis-
cosity. After removing the tube from the water bath and exposing
it to room temperature air, it was held horizontally and rotated
manually about its long axis until, after approximately 2 min, the
sample turned viscous. The temperature decrease leads to a phase
transition into the lamellar liquid crystalline phase [58], while the
rotation aligns the lamellae with respect to the inner surface of the
tube [59]. The preferential orientation of the lamellae extends less
than a millimeter from the glass surface, thus leaving the interior
of the sample randomly oriented (see Figure 3). The sample was
equilibrated at room temperature (21◦C) for 24 h with the tube
in the vertical direction.

Fresh baker’s yeast was purchased at a local supermarket. A cell
suspension was prepared by shaking equal volumes of the yeast
with tap water in a glass tube. The suspension was allowed to

FIGURE 3 | Illustration of the liquid crystal/yeast MRI phantom. A
5 mm NMR tube, containing 40 wt% of the surfactant C10E3 in water, is
inserted into a 10 mm NMR tube with yeast cells in water. The black
horizontal line in the left schematic indicates the slice of the 2D MR image.
The top view of the phantom is depicted on the right. The anisotropic
liquid crystal domains are mostly randomly oriented, while a narrow layer of
aligned domains is formed near the tube walls.

sediment overnight at room temperature. The clear supernatant
was discarded and 1 ml of the loosely packed cell sediment was
transferred to a 10 mm NMR tube using a syringe with a 1 mm
diameter needle.

The 5 mm NMR tube with the liquid crystal was inserted into
the 10 mm NMR tube with the yeast sediment, creating an MRI
phantom with an inner cylindrical compartment with water dif-
fusion anisotropy and an outer cylindrical shell having a broad
distribution of isotropic water diffusivities (see Figure 3). Before
the MRI measurements, the sample was equilibrated for 2 h at
25◦C within the magnet of the microimaging equipment.

PUREED ASPARAGUS PHANTOM
Fresh asparagus (Asparagus officinalis), obtained from a local
supermarket, was prepared in a plastic container that consisted of
two cylindrical compartments with a diameter of approximately
8 cm. The first compartment contained water and intact aspara-
gus stems cut to an appropriate length. The second compartment
was filled with water and asparagus which was processed in a
kitchen blender, resulting in a grainy puree with particle sizes well
below one imaging voxel. The pureed asparagus was compressed
to the bottom of the container in order to decrease the free water
component in the puree. Measurements were performed at room
temperature on the whole-body MR scanner.

MICROIMAGING
The liquid crystal/yeast phantom was measured on an 11.7 T
Bruker AVII-500 spectrometer equipped with a Bruker MIC-5
microimaging probe having a maximum gradient strength of
3 Tm−1 and a 10 mm saddle coil radio frequency (RF) insert.
Images were acquired with a TopSpin 2.1 implementation of the
pulse sequence shown in Figure 4 using a single-shot RARE [60]
signal read-out with 9 × 9 mm field-of-view, 64 × 32 acquisition
matrix (read × phase), 10 mm slice thickness, and 65 ms duration
of the echo train. The spin-echo DW block with total duration
of 45 ms included two identical gradient waveforms bracketing
the 180◦ RF pulse. Isotropic DW was achieved with the opti-
mized q-MAS gradient modulation scheme [37]. Directional DW
employed a gradient waveform giving the same time-dependence
of the magnitude of the q-vector as the q-MAS modulation.
The q-MAS gradient waveform was executed with duration τ =
20 ms and amplitude G = 0.405 Tm−1, yielding a b-value of
5200 s/mm2 according to the equation b = NCγ2G2τ3, where γ =
2.675.108 radT−1s−1 is the 1H gyromagnetic ratio, C = 0.0278 is
a constant specific for the optimized q-MAS modulation [37], and
N = 2 is the number of repetitions of the q-MAS modulation.
Images were acquired for 16 b-values and 15 non-collinear gradi-
ent directions, as well as 15 repetitions of the isotropic DW, giving
a total data set of 480 images. The b-values were incremented by
linear steps in the gradient amplitude, while the gradient direc-
tions were chosen according to the electrostatic repulsion scheme
[61, 62]. Each image was recorded as the sum of four transients
with phase cycling of the RF pulses and the receiver [63]. A 1 s
recycle delay gave a total experiment time of 30 min.

Image processing was performed with in-house Matlab code.
Before Fourier transformation, the acquired data was zero-filled
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FIGURE 4 | Schematic of the diffusion MRI pulse sequence with

isotropic or directional diffusion weighting. The 90 and 180◦ RF pulses
produce a spin echo, which is acquired with a single-shot RARE sequence
at the high field spectrometer or EPI sequence at the clinical scanner.
Identical DW blocks are inserted on each side of the 180◦ pulse. Isotropic
DW is achieved with a numerically optimized q-MAS gradient modulation
scheme [37] as shown with the green (Gx ), blue (Gy ), and red (Gz ) lines.
The black line indicates the directional gradient waveform that yields the
same magnitude of dephasing [34] as the q-MAS modulation.

to 128 × 128 points [64] and multiplied with a 2D Gaussian
function giving 0.2 mm × 0.2 mm image smoothing.

WHOLE-BODY SCANNER
Experiments on the pureed asparagus phantom were performed
on a whole-body Philips Achieva 3 T scanner equipped with an
eight-channel head coil. The gradient system delivered a maxi-
mum gradient strength of 80 mTm−1 at the maximal slew rate
of 100 mTm−1s−1. DW images were recorded with an echo pla-
nar read-out [65] using an echo time of 160 ms, half-scan factor
of 0.8, SENSE factor of 2, and a slice thickness of 10 mm. The
field of view was 288 × 288 mm with an acquisition matrix of
96 × 96, resulting in a spatial resolution of 3 × 3 × 10 mm3.
Isotropic and directional DW were achieved during τ = 62.9 ms,
before and after the 180◦ RF pulse, using the same waveform
as in the microimagning experiment. Images were acquired for
16 b-values, between 50 and 2800 s/mm2. The directional DW
was performed in 15 non-collinear gradient directions spread out
according to the repulsion scheme [61, 62]. The isotropic encod-
ing was repeated 15 times for each b-value in order to generate an
equal amount of acquisitions with the isotropic and directional
DW. The repetition time was 2 s, resulting in acquisition times of
8:06 min for both the directional and isotropic data.

One high resolution T2-weighted volume was acquired to visu-
alize the different components of the phantom, and reconstructed
at a spatial resolution of 0.45 × 0.45 × 8.00 mm3.

The standard scanner reconstruction software was used to con-
vert the raw data into two series of 240 images each, which were
exported to Matlab for further analysis.

DATA ANALYSIS
Maps of the eigenvalues and eigenvectors of the diffusion tensor,
as well as the D and FA values were obtained by non-linear least
squares fitting of directional DW data using Equation (5) with S0,
λ1, λ2, λ3 and three Euler angles as adjustable parameters.

The images with directional DW (16 b-values and 15 direc-
tions) were converted to a powder-averaged series of images (16
b-values) by arithmetic averaging over the gradient directions.

The multiple acquisitions of images with isotropic DW (16 b-
values and 15 repetitions) were averaged to a single series (16
b-values). Equation (25) was regressed onto the isotropic and
powder-averaged DW data, using S0, D, μ2, and μiso

2 as fit
parameters. S0 and D were constrained to be identical for both
datasets, while μ2 and μiso

2 correspond to the powder-averaged
and isotropic data, respectively. The values of μ2 and μiso

2 were

constrained to be in the physically reasonable range from 0 to D
2
.

The standard deviations of the fit parameters were estimated by a
Monte Carlo error analysis [66]. Finally, the μFA and OP indexes
were calculated with Equations (14) and (21).

RESULTS AND DISCUSSION
Phantoms, constructed to exhibit varied degree of microscopic
and macroscopic anisotropy, were probed by directional and
isotropic DW as well as with DTI. Results are presented and
discussed in three sections; the microimaging experiments are fol-
lowed by the experiments on a whole-body scanner and finally the
significance of the novel microstructural measures is discussed.
The microimaging section discusses the liquid crystal/yeast phan-
tom and its micro-/macro-structural features, which are com-
pared to the results of the μFA and DTI analysis. The difference
between diffusion variance in directional and isotropic DW is
thoroughly discussed in relation to the microstructural properties
of the phantom. The meaning of the newly introduced parameters
μFA and OP is demonstrated and the limitations of the q-MAS
DW experiment and its analysis are discussed. The following sec-
tion presents the results on the asparagus phantom obtained at
a whole-body scanner. In the third section, the potential of μFA
and OP as novel biomarkers and the key aspects of the q-MAS
DW implementation in a clinical setting are considered.

MICROIMAGING
Experimental results for the liquid crystal/yeast phantom are
shown in Figure 5 as parametric images and histograms. We reca-
pitulate that the concentric phantom is designed to have an outer
compartment with a broad distribution of isotropic diffusivities
and an inner compartment with microscopic diffusion anisotropy
as well as varying degrees of voxel-scale anisotropy on account of
the alignment of the underlying anisotropic objects with respect
to the glass wall separating the two compartments (see Figure 3).

The map of the mean diffusivity D in Figure 5A shows clear
differences between the surfactant/water mixture and the yeast
suspension, with values of 0.51 and 1.5 μm2/ms, respectively, at
the maxima of the narrow distributions in the histogram. A ref-
erence experiment with pure H2O (data not shown) gives D =
2.3 μm2/ms, in good agreement with the literature value [67]. A
wide range of microscopic mechanisms could cause the observed
reduction of D from the value for pure H2O: from confinement
of the water in more or less impermeable micrometer-scale pores
[68] to the presence of colloidal obstacles at high concentrations
[69]. The values of D are by themselves not sufficient to make any
detailed inferences on microstructure.

Diffusion tensor
The FA map in Figure 5B shows that the water diffusion is essen-
tially isotropic in the yeast suspension (FA < 0.05). A closer look

www.frontiersin.org February 2014 | Volume 2 | Article 11 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Biophysics/archive
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FIGURE 5 | Parameter maps and histograms for the liquid crystal/yeast

phantom. The panels show (A) mean diffusivity D, (B) fractional anisotropy
FA, (C) planar index Cp , (D) scaled variance μ̃2, (E) scaled isotropic variance
μ̃iso

2 , and (F) the difference in scaled variance �μ̃2. The red crosses,
numbered with roman numerals in panel (A), point out pixels for which the
acquired signal is shown in detail in Figure 6. The colors in the Cp map
indicate the direction of the vector corresponding to the minimum
eigenvalue of the diffusion tensor (red: x, green: y, blue: z). Pixels with
signal below a threshold value are shown in black in the parameter maps
and excluded from the calculation of the histograms.

at the FA histogram reveals that the values for the yeast have
an approximately Gaussian distribution with mean value 0.04
and standard deviation 0.02. The positive bias at low values of
FA originates from the fact that any deviation from the equality
λ1 = λ2 = λ3 gives a positive value of FA according to Equation
(6). In the surfactant/water mixture, the values of FA cover the
range from 0 to 0.6, with the highest values concentrated in a
0.5 mm wide band along the outer edge of the compartment.
Information about the shape and orientation of the diffusion ten-
sor can be obtained from the planar index, Cp, color-coded with
the direction of the eigenvector v3, corresponding to the mini-
mum eigenvalue λ3. In Figure 5C, values of Cp above 0.7 can be
observed at the rim of the interior compartment, indicating an
essentially planar diffusion tensor. The radial orientation of v3

verifies that the lamellar planes have the same orientation as the
adjacent glass surface. A perfectly oriented lamellar liquid crys-
tal, with D|| << D⊥, would give FA = √

1/2 ≈ 0.71 and Cp = 1.
The values observed experimentally, FA ≈ 0.6 and Cp = 0.7, are
smaller than the ideal ones, indicating that there is a distribu-
tion of lamellar domain orientations within the voxels and/or
that D|| is not negligible in comparison to D⊥. The values of FA
and Cp are by themselves not sufficient to distinguish between
the two cases. The interior of the tube with the surfactant/water
mixture contains extensive regions where FA and Cp are close
to zero. From the conventional DTI parameters, one could be
tempted to draw the conclusion that these regions contain an
isotropic phase, e.g., a sponge phase or cubic liquid crystalline
phase, rather than the lamellar liquid crystalline phase that is

expected from the sample composition and the equilibrium phase
diagram [58].

Diffusion variance in directional and isotropic DW
Figure 5D shows the scaled variance of the distribution of appar-

ent diffusivities P(D), μ̃2 = μ2/D
2
, for the powder-averaged data

acquired with directional DW. We reiterate that μ̃2 is a measure
of the width of the P(D) and the curvature of logS(b), and is
closely related to the diffusional kurtosis [43]. Non-zero values
of μ̃2 can result from diffusion anisotropy and/or the presence
of more than one microscopic environment for the water. As
shown in Figure 2A, diffusion anisotropy can by itself give a
maximum μ̃2 value of 0.8. Both the liquid crystal and the yeast
suspension display μ̃2 values being substantially different from
zero. The histogram in Figure 5D features two overlapping dis-
tributions with maxima at 0.35 and 0.23 for the surfactant/water
mixture and the yeast suspension, respectively. Since FA for the
yeast is zero within experimental noise, it seems safe to assume
that the non-zero values of μ̃2 originate from the presence of
multiple microenvironments. In the case of a yeast suspension,
these microenvironments correspond to the intra- and extracel-
lular spaces [70]. Conversely, comparison between Figures 5B,D
shows that, for the surfactant/water mixture, high values of μ̃2

occur for regions with both high and low values of FA, thus mak-
ing the interpretation of μ̃2 in terms of either diffusion anisotropy
or multiple environments highly ambiguous. The crucial infor-
mation needed for discriminating between the two cases can
be found in Figure 5E, displaying the scaled variance for data

acquired with isotropic DW, μ̃iso
2 = μiso

2 /D
2
. This parameter is

insensitive to diffusion anisotropy and is non-zero only if there
are multiple environments with distinct isotropic diffusivities.
While the surfactant/water mixture has values close to zero, the
values for the yeast suspension are, within experimental noise,
identical in Figures 5D,E, confirming the presence of a distri-
bution of environments with different isotropic diffusivity. On
account of the limited spatial resolution, the voxels at the border
between the surfactant/water mixture and the yeast suspension
contain signal from both compartments, leading to exceptionally
high values of μ̃iso

2 which can be observed as a thin bright circle
in Figure 5E.

As shown in Figure 5F, taking the difference �μ̃2 = (μ2 −
μiso

2 )/D
2

isolates the effect of diffusion anisotropy. Non-zero
values of �μ̃2 are expected when the microscopic structure is
anisotropic on the length scale of the molecular displacements
during the diffusion time, typically tens of micrometers. If dur-
ing the diffusion encoding, molecules would have enough time to
migrate between anisotropic domains with different orientations,
this would affect the diffusion variance in both isotropic and
directional DW. In the limit of long diffusion times, the variance
observed in a directional DW vanishes [38], while in isotropic
DW the variance is expected to increase due to incoherent aver-
aging across microdomains. The dependence of the q-MAS DW
on diffusion time can be viewed in analogy to the effects of the
MAS in solid-state NMR spectroscopy. The broadening of P(D)
in isotropic DW corresponds to the broadening of the sidebands
at low frequencies of sample MAS when the rates of spinning
and reorientation are similar [71]. The �μ̃2 values for the yeast

Frontiers in Physics | Biophysics February 2014 | Volume 2 | Article 11 | 8

http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics/archive
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suspension are close to zero, consistent with isotropic diffusion.
Detailed inspection of the histogram in Figure 5F reveals that
the yeast data can be described with an approximately Gaussian
distribution with mean 0.03 and standard deviation 0.03, thus
spanning both positive and negative values. The data for the sur-
factant/water mixture is centered at �μ̃2 = 0.25 and, as for the
yeast, has a standard deviation of 0.03. Assuming that the true
value is homogeneous in both the liquid crystal and the yeast
compartments, the observed standard deviation of 0.03 can be
interpreted as the precision in the estimation of �μ̃2 at the cur-
rent experimental settings. The observation of �μ̃2 values well
above zero for the surfactant/water mixture is a strong indica-
tion that the water resides in an anisotropic microenvironment, in
agreement with the presence of a lamellar liquid crystalline phase.
In contrast to FA, the values of �μ̃2 do not depend on the details
of the orientation distribution of the anisotropic objects within
the voxel, and is consequently better suited for detecting diffusion
anisotropy.

Taken together, the parameters shown in Figure 5 give a rather
complete description of the nature of the water environments
within each voxel. Whereas the yeast suspension contains multi-
ple water environments (μ̃iso

2 > 0) that are isotropic (�μ̃2 = 0),
the surfactant/water mixture consists of a single type of environ-
ment (μ̃iso

2 = 0) with diffusion anisotropy on the microscopic
scale (�μ̃2 > 0) and varying degrees of orientation coherence on
the voxel scale, from random orientations (FA = 0) to preferential
alignment with the lamellae following the curvature of the glass
surface (FA > 0, radial orientation of v3).

Fractional microscopic anisotropy
The information about microscopic diffusion anisotropy lies
in the difference between S(b) data acquired with isotropic or
powder-averaged directional DW. We believe that it is good prac-
tice to inspect the raw data to make sure that the fitted parameters
are consistent with the features that can be observed visually.
Figure 2B illustrates that very small deviations from a mono-
exponential form of S(b) correspond to relatively large μFA val-
ues, potentially leading to erroneous conclusion when noisy data
is used to estimate μFA. Data for four representative voxels can
be found in Figure 6. Plotting the data as a function of bD rather
than b emphasizes the deviation from mono-exponential decay
and facilitates the comparison of data from voxels having differ-
ent values of D [72]. The data for voxels i and ii originate from
lamellar liquid crystalline phases that are coherently oriented
(FA = 0.54) and randomly oriented (FA = 0.08), respectively. The
mono-exponential decay of the isotropic data shows that there is a
single type of water environment within the voxel, while the pro-
nounced multi-exponential decay of the powder-averaged data
proves that this environment is anisotropic. The similarity of the
data for the voxels i and ii verifies that there is no influence from
the voxel-scale orientation distribution of the anisotropic objects.
Completely different behavior can be observed in the data from
the yeast suspension in voxel iii. In this case both the isotropic
and the powder-averaged data feature pronounced and identi-
cal signal attenuation, consistent with the presence of multiple
isotropic water environments. Voxel iv is located at the border
between the liquid crystal and yeast suspension compartments

FIGURE 6 | Normalized signal S(b)/S0 vs. normalized diffusion

weighting bD for selected pixels in Figure 5. The roman numerals of the
panels correspond to the pixel labels in Figure 5A. Powder-averaged
directional and isotropic data is shown with open blue and solid red circles,
respectively. The solid lines indicate fits of Equation (25) to the data using
S0, D, μ2, and μiso

2 as adjustable parameters. The dashed lines show the
single-exponential decay S/S0 = exp(–bD). The inserts illustrate the
microstructure, with water occupying the white space between the black
barriers: (i) single-orientation anisotropic, (ii) randomly oriented anisotropic
domains, (iii) water inside and between spherical compartments, and (iv)
mixed case with spherical compartments and anisotropic domains. The
panels are labeled with the characteristic relations between μ2 and μiso

2 .

and shows signs of both multiple environments (the isotropic
data) and diffusion anisotropy (pronounced multi-exponentiality
for the powder-averaged data). For now, we refrain from try-
ing to disentangle the contributions from multiple environments
with varying degrees of anisotropy, but we conjecture that our
approach with isotropic DW could add sufficient information
to make such deconvolution feasible in a manner analogous to
the separation of isotropic and anisotropic contributions to the
chemical shift in solid-state NMR spectroscopy [73].

The parameter �μ̃2 is in itself an adequate measure of diffu-
sion anisotropy. The values of �μ̃2 are related to the eigenvalues
of the diffusion tensor through Equation (11), covering the range
from 0, for isotropic diffusion, to 0.4 when D|| << D⊥ and 0.8
if D|| >> D⊥. The FA index has been adopted as the standard
measure for voxel-scale diffusion anisotropy, and it is thus desir-
able to convert �μ̃2 to a parameter that is directly comparable
with FA. As described in the theory section, we define the micro-
scopic fractional anisotropy, μFA, as the value of FA that would
be observed if all the anisotropic objects had the same orienta-
tion throughout the voxel. The value of μFA can be calculated
from �μ̃2 using Equation (14), which is also shown as a graph
in Figure 2A. A comparison of FA and μFA data for the liq-
uid crystal/yeast phantom is shown in Figure 7. Because of the
highly non-linear relation between μFA and �μ̃2, even moder-
ate fit errors in �μ̃2 get greatly amplified in the conversion to
μFA when the values of �μ̃2 are smaller than approximately 0.1
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FIGURE 7 | Diffusion anisotropy and orientation dispersion in the

liquid crystal. The analysis is performed on the data from Figure 6 fulfilling
the conditions D < 1μm2/ms and �μ̃2 > 0.15, thus excluding pixels
dominated by signal from the yeast suspension. (A) Parametric map with
brightness given by the fractional anisotropy (FA) and color-coding according
to Dxx /λ1 (red), Dyy /λ1 (green), and Dzz /λ1 (blue), where Dxx , Dyy , and Dzz

are elements of the laboratory-frame diffusion tensor and λ1 is its largest
eigenvalue. (B) As in panel (A), but with brightness given by the
microscopic fractional anisotropy (μFA) calculated from �μ̃2 in Figure 5F

using Equation (14). Bright pixels with weak color saturation are observed
when μFA >> FA. (C) Scatter plot showing the correlation between μFA
and FA. The solid and dashed lines indicate μFA = FA and μFA = √

1/2,
respectively, the latter being expected for a liquid crystal with ideal lamellar
geometry. (D) Parametric map and histogram of the order parameter (OP)
calculated with Equation (21). The color-scale is given by the bar above the
histogram. Pixels not included in the analysis are shown in black.

(see Figures 2C,D). Consequently, we select the pixels for which
the conversion can be reliably performed by applying a thresh-
old value of 0.15. With this threshold, only the pixels from the
liquid crystal are included in the analysis. The histograms in
Figures 7A,B show that FA covers the range from 0 to 0.6 while
the values of μFA are centered at 0.76 with a standard deviation
of 0.03. No correlation between μFA and FA can be discerned in
the scatter plot in Figure 7C, indicating that the observed spread
in μFA can be attributed to the precision of the experiment rather
than any true inhomogeneity of the liquid crystal sample. Even
when taking into account the spread of the data, the experimental
values are consistently located above the line μFA = 0.71 which
is the theoretical maximum for oblate diffusion tensors. This dis-
crepancy originates from our procedure for estimating the values
of μ2 from the experimental data using Equation (25) as a fitting
function. A positive bias of μFA, visible in Figures 2C,D, arises
due to the interplay between the functional form of Equation (25)
and the rather extended range of b-values used for the fit. When
the gamma distribution is used to approximate the diffusion dis-
persion due to the orientation dispersion in purely anisotropic
systems, the attenuation data can be described accurately by the
function in Equation (25) only for a limited range of b-values. In
the case of anisotropy with axial symmetry, for which the echo
attenuation can be calculated analytically (see Equation 35 in
[34]) and the exact values for D and μ2 are given by Eq. (11),
the function in Eq (25) increasingly underestimates the signal

intensity at bD > 1. Thus, the μ2 value tends to be overestimated
when Equation (25) is regressed onto the dataset with too high b-
values resulting in an overestimation of the μFA. The bias could
be reduced by limiting the range of b-values, but unfortunately
at the expense of a severe loss in precision of the fitted parame-
ters. Finding the optimal fitting function and b-values could be
decisive for the success of transferring our approach to in vivo
measurements. Still, we choose to postpone further investigations
of this subject.

In the FA and μFA parameter maps in Figures 7A,B, the RGB
levels are based on the three diagonal elements of the diffusion
tensor in the laboratory frame of reference. The alignment of the
lamellar planes at the glass surface gives rise to an intensely col-
ored band at the outer edge of the liquid crystal compartment in
both the FA and μFA maps. In stark contrast to the FA map, the
brightness of the μFA map is constant on account of the nearly
uniform values of μFA. Weakly colored bright pixels can be found
in the interior of the compartment where there is no preferential
orientation of the lamellar microcrystallites. The corresponding
pixels in the FA map are nearly black because of the absence of
voxel-scale anisotropy.

Order parameter
While the μFA parameter contains information about the micro-
scopic diffusion anisotropy, the value of FA additionally includes
the effect of voxel-scale alignment of the underlying anisotropic
objects. Consequently, it seems logical to use the values of FA and
μFA to define a parameter quantifying the orientational order or,
alternatively, disorder. In the field of liquid crystals, the orienta-
tional ordering is conventionally described with an OP, defined as
an ensemble average in Equation (18). In cases of lower than uni-
axial symmetry, the scalar OP is generalized to an order matrix.
Complete alignment of the anisotropic objects gives OP = 1,
while random orientations correspond to OP = 0. Equations (19)
and (21) describe how OP can be calculated from the measured
diffusion tensor eigenvalues and the variances of the diffusion dis-
tribution, respectively. The eigenvalues and variances correspond
to the information contained in the FA and μFA parameters,
respectively. The resulting OP map for the liquid crystal is shown
in Figure 7D. In line with the previous results, a highly ordered
region can be found next to the glass surface, while the inte-
rior of the liquid crystal displays low order. Since the values of
μFA are nearly constant, and there is a monotonous, albeit non-
linear, relation between FA and OP, as described by Equations
(21) and (22), the corresponding histograms in Figures 7A,D
have similar shapes. The benefit of using OP, rather than some
more directly calculated measure such as the ratio FA/μFA, is
that it has a simple geometrical definition through Equation
(18), and that it is a well-established parameter in other fields of
science.

WHOLE-BODY SCANNER
Measurements of μFA were also successfully implemented on
a clinical system. The highly efficient single-shot isotropic
DW protocol, based on the optimized q-MAS gradient mod-
ulation [37], allows to achieve high DW even at a stan-
dard clinical scanner with significant gradient amplitude and

Frontiers in Physics | Biophysics February 2014 | Volume 2 | Article 11 | 10

http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics/archive
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energy constrains. It is worth noting that, although the clini-
cal scanner was equipped with gradients capable of 80 mT/m
on axis, the maximum b-value of 2800 ms/mm2 for a total
diffusion encoding time of 125.8 ms was mainly restricted by
the power available to the gradient amplifiers. The results for
the whole-body scanner imaging experiments are shown in
Figure 8 as parametric maps, histograms and signal curves.
The measurements were performed on a phantom consisting
of one compartment that contained coherent micro domains
(intact asparagus stems) and another compartment that con-
tained small domains with high orientation dispersion (pureed
asparagus).

The FA map for the intact asparagus phantom indicates a
high degree of voxel scale anisotropy, as seen in Figure 8B.
However, when the coherent geometry of the asparagus stem
is distorted, as in the pureeing process, the anisotropy on the
voxel scale is strongly suppressed (see Figure 8G). By contrast,
the microscopic anisotropy is visible in the μFA both before
and after the pureeing process, as seen in Figures 8C,H. The
effects on FA and μFA were quantified using two ROIs placed
in specific regions of the phantom in order to reduce the influ-
ence from the free water. The first ROI was placed over several
intact asparagus stems and the second included the central parts
of the asparagus puree. Notice that several stems of asparagus
exhibited hyperintensity in the T2 map, and were also found to
have lower values of FA and μFA, suggesting that the micro-
architecture of these stems was compromised, possibly due to
mechanical damage or natural degradation. In order to avoid
such damaged tissue, these stems were excluded from the ROIs.
The mean parameter value in the two ROIs was FAintact = 0.50
and FApuree = 0.06, and μFAintact = 0.75 and μFApuree = 0.50,
respectively. The FA value of intact asparagus is in agreement
with other experiments that have employed similar diffusion
times [41]. The distributions of parameter values are presented
in histograms in Figures 8D,I. The histogram visualizes the high
contrast between the FA and the μFA in the pureed tissue,
demonstrating how the μFA is still sensitive to the anisotropic
diffusion at the scale of each asparagus fragment even if the dif-
fusion is approximately isotropic on the voxel scale. The fact
that the μFA is decreased in the pureed tissue can be attributed
to the loss of anisotropy in the tissue microstructure and the
relatively large water component introduced in the pureeing
process.

The fitted lines for the representative voxels, resulting
from regression of Equation (25), are shown in
Figures 8E,J. The fit parameters in the intact asparagus
were D = 1.55 ± 0.05 μm2/ms, μiso

2 = 0.60 ± 0.12 μm4/ms2

(μiso
2 /D

2 ≈ 0.25) and μ2 = 1.24 ± 0.18 μm4/ms2 (μ2/D
2 ≈

0.52) resulting in a μFA value of 0.77 ± 0.03. The corresponding
values in the pureed asparagus were D = 1.96 ± 0.02 μm2/ms,

μiso
2 = 0.17 ± 0.06 μm4/ms2 (μiso

2 /D
2 ≈ 0.04) and μ2 = 0.64 ±

0.06 μm4/ms2 (μ2/D
2 ≈ 0.17) result in a μFA value of 0.60 ±

0.02. The standard deviations were estimated by a Monte
Carlo error analysis [66]. The high apparent diffusivity in the
pureed asparagus tissue further supports the notion that the
calculation of μFA in the pureed tissue was affected by a free
water component.

FIGURE 8 | Results of the whole-body scanner experiment on water in

intact and pureed asparagus. The left column (A–E) shows the resulting
images in the intact asparagus, and the right column (F–J) shows
corresponding images for the pureed asparagus. The top row shows high
resolution T2-weighted images. The second and third rows show FA and μFA
maps, respectively. A high FA is only observed in the intact asparagus while
μFA can be observed in both intact and pureed asparagus. The histograms
show the distribution of FA and μFA in the ROIs (blue outline superimposed
on FA and μFA maps). The bottom row shows normalized signal intensity vs.
diffusion weighting, S(b)/S0, for representative voxels found in the ROIs
(signal from isotropic DW: empty blue circles; powder-averaged directional
DW: filled black circles). The bottom left plot (E) includes the signal from a
region consisting of unobstructed water measured by directional (crosses)
and isotropic DW (circles). The fitted regression lines, according to Equation
(25), correspond to μFA values of 0.77 and 0.47 in the intact and pureed
asparagus, respectively.

Parts of the phantom with intact asparagus consist purely
of unobstructed water and thus serve as a reference to validate
that in these regions the isotropic and directional DW indeed
yield identical signal attenuation. The signal from one such
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region with unobstructed water (ROI not shown), is depicted
by circles and crosses in Figure 8E. The data coincide and show
mono-exponential attenuation, thus verifying that the isotropic
and directional experiments give the same DW for an isotropic
liquid.

SIGNIFICANCE AND IMPLEMENTATION OF MICROSCOPIC
ANISOTROPY BIOMARKERS
Biophysical modeling of WM is a field that has attracted much
activity lately [74], and the need to disentangle orientation dis-
persion from dispersion in compartment size is now obvious
[23, 75, 76]. Isotropic q-MAS DW could be an important tool
to help disentangle the two phenomena. We suggest that the
implementation of the isotropic DW in combination with the
standard high b-value directional DW may generate new valuable
biomarkers, such as the μFA and OP, that would allow identify-
ing more specific mechanisms in cases where confounders would
otherwise lower the specificity of parameters such as FA. This
could be particularly helpful in selective WM atrophy in cross-
ing geometries where the removal of one fiber population would
cause the FA to increase, creating an opposite effect size as com-
pared to unidirectional geometries [17]. Unlike the FA, the μFA
is not restricted to macroscopically anisotropic tissue and it is
thus suited for diagnosing also macroscopically isotropic tissue
such as GM, where it could detect changes in the anisotropic
diffusion, a feature that is useful in the mapping of GM deteri-
oration. The μFA could also assist in the pre-surgical planning
of tumor removal by differentiating different types of tissue
consistency [77].

The application of the method for in vivo quantification of
microscopic anisotropy should be straight forward, but was out-
side the scope of this paper. Previous studies employing non-
conventional diffusion encoding have produced promising results
in the human brain despite the long echo times required by
the signal preparation [78–80]. For accurate μFA quantifica-
tion, especially in tissue close to cerebrospinal fluid, such as
the cortical GM, the partial volume effect needs to be con-
sidered. Ignoring this problem is known to bias the results of
conventional DTI and non-conventional diffusion MRI such as
filter-exchange imaging [78, 81]. The most straightforward means
of mitigating the partial volume effect would be to include an
isotropic component with high-diffusivity and zero anisotropy in
addition to Equation (25) for the tissue signal. Once a suitable
signal model is constructed, the experiment design can be opti-
mized to minimize the influence of noise on parameter estimates
[82]. Finally, the noise-induced variance should be compared
to the biological variance in μFA, to aid the design of clinical
studies [83].

CONCLUSION
We demonstrated that the microscopic anisotropy can be quan-
tified based on the comparison between isotropic and powder-
averaged directional DW data. Proof-of-principle experiments
were carried out on selected phantoms at a high-field spectrom-
eter as well as on a standard clinical scanner. The spin-echo
implementation of the optimized single-shot q-MAS DW pro-
vides efficient diffusion encoding. On the clinical scanner, q-MAS

DW using echo-time of 160 ms yields b-values comparable to DKI
experiments.

While adding the isotropic DW experiment to the standard
DTI requires only minor additional experimental time, it adds
valuable information to the powder-averaged directional DW
data. In addition to FA, available from the DTI, the experi-
ment with isotropic DW allows disentangling the contributions
of microscopic anisotropy and orientation dispersion of micro-
domains, which can be quantified by the herein introduced μFA
and OP parameters. The μFA is not affected by the orientation
dispersion of microscopic structures and it corresponds to the val-
ues of FA in the absence of orientation dispersion. Since the μFA
is not sensitive to the macroscopic organization of anisotropic
structures, like crossing fibers of the WM, the μFA could provide
a valuable new biomarker to characterize tissue.
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