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We have investigated orbital character and electron correlation effects on Fermi surfaces in
the hole-overdoped iron pnictide superconductor KFe,Asy, which shows a low T, of ~4 K,
by angle-resolved photoemission spectroscopy. From the polarization-dependence of the
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':::;2';";575";Vanﬁng University ARPES spectra, we have determined the orbital character of each Fermi surface. Electron
China ' ' mass renormalization of each band is quantitatively consistent with de Haas-van Alphen

results. The outer B and middle ¢ Fermi surfaces show large renormalization factor of
m*/mp ~6-7 while the inner o Fermi surface has a smaller factor m*/mp ~2. Middle
hole Fermi surface ¢ has strong three-dimensionality compared to other Fermi surfaces,
indicating the d3,»_ro orbital character, which may be related to the “octet-line nodes”
recently observed by laser ARPES. The observed orbital-dependent mass renormalization
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INTRODUCTION

In contrast to the d-wave superconducting gaps in the high-T,
cuprate superconductors, experimental results on most of the
iron-pnictide superconductors have indicated that superconduct-
ing gaps are nodeless and on the entire Fermi surfaces (FSs)
[1]. However, some of the iron pnictide superconductors show
signatures of the nodes in the superconducting gaps. For exam-
ple, thermal conductivity measurements of isovalent substituted
system BaFe,(As; _xPy)> [2] and the electron doped systems
Ba(Fe; — xCoy)2As; and Ba(Fe; — xNiy)As; [3] in the supercon-
ducting state have shown signature of line nodes. According to
the theories of spin fluctuation-mediated superconductivity, line
nodes may appear when the pnictogen height becomes small [4,
5], the hole FS of dy, character around the zone center disappears
and nesting between hole and electron FSs becomes weakened.

would give constraints on the pairing mechanism with line nodes of this system.
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(Here, x and y are referred to the direction of the nearest neighbor
Fe atoms). The hole FSs of these systems exhibit strong three-
dimensionality [6-8], resulting in poor nesting between the hole
and electron FSs.

The end member compound of K-doped BaFe;As; (K-Bal22)
system, KFe;As,, with a low T, of ~4 K [9] also shows signature of
line nodes in penetration depth [10], thermal conductivity [11],
and nuclear quadrupole resonance (NQR) measurements [12]. In
fact, a recent laser angle-resolved photoemission (ARPES) study
of KFe;As; has revealed a superconducting gap with “octet-line
nodes” on the middle hole FS (¢ FS) [13]. The observed nodes and
a clear FS sheet dependence in the superconducting-gap size were
well explained by a calculation with spin-fluctuation mechanism.
However, the result is in strong contrast to the optimally doped
K-Bal22 [14], while this is consistent with the evolution of the
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gaps as a function of K doping [15]. Such a doping dependence in
the superconducting gap may be related to the change in the FS
topology. In going from the optimally [15, 16] to the overdoped
region [17, 18] in K-Bal22 system, the electron pockets around
the zone corner are replaced by small hole pockets surrounding
the zone corner in a clover shape.

If the spin fluctuations are dominant in the pairing mecha-
nism in KFe;As;, orbital dependent mass renormalization would
be observed as a signature of spin fluctuations. So far, strong
mass renormalization has been observed from the electronic spe-
cific heat coefficient y as large as ~70-100 mJ/K? mol [12, 19].
Also, both the ARPES [18] and dHVA studies [20, 21] have indi-
cated the enhancement of the electron masses compared to those
predicted by the band-structure calculation.

Although three hole FSs (a, B, and ¢) have been clearly resolved
in our previous ARPES study [18], the mass renormalization fac-
tor for each FS has not been clarified yet. In the present study,
in order to reveal the orbital dependent mass renormalization in
the iron-based superconductors, we have performed an ARPES
study of KFe;As, using high-quality single crystals. We have
determined the orbital character of the FSs by polarization depen-
dent measurements and have revealed strongly orbital dependent
correlation effects.

EXPERIMENT AND BAND-STRUCTURE CALCULATION

ARPES measurements were performed at beamline 5-4 of
Stanford Synchrotron Radiation Lightsource (SSRL) and at
BL10.0.1 of Advanced Light Source (ALS). Scienta SES-R4000
electron analyzers and linearly polarized light were used at both
beamlines. The typical energy resolutions were 10 meV at SSRL
and 20 meV at ALS, respectively. Single crystals of KFe,As, were
grown from a self-flux method. Resistivity measurements on
some of the grown crystals showed the residual resistivity ratio
of ~600. Samples were cleaved in situ and measured at a temper-
ature of 15K in a pressure better than 5 x 10~!! Torr. We have
performed the measurements at photon energies from hv = 14
to 40 eV. The in-plane (kx, ky) and out-of-plane (kz) momen-
tum are expressed in units of w/a and 27/c, respectively, where
a = 3.864 A and c = 13.87 A. Here, the X and Y axes point toward
the Fe-As bond direction, while the x and y axes are rotated by
45° from the X-Y coordination. The electronic band structure
of KFe;As; was calculated within the local density approxima-
tion (LDA) by using the full potential LAPW (FLAPW) method.
We used the program codes TSPACE [22] and KANSAI-06. The
experimental crystal structure [23] including the atomic position
zps of As (pnictogen height) was used for the calculation.

RESULTS AND DISCUSSION

Band dispersions for a cut along the diagonal of the two-
dimensional Brillouin zone (BZ) taken with hv = 25¢eV [18] and
30 eV are shown in Figures 1A,B. All the energy bands predicted
by the calculation (Figure 1C) are observed. While three bands (a,
B, and ¢) form hole FSs around the zone center, the € band forms
small hole FSs around the zone corner. The structure around
0.15eV below Er in Figure 1A is z*> band shown in Figure 1C,
which has a strong three dimensionality [18]. Another hole-like
band crossing Er near the zone center is a surface state [18].
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FIGURE 1 | Band dispersions of KFe2As; in the zone diagonal
direction. (A,B) ARPES spectra taken at hv = 256V [18] and 30eV,
respectively, corresponding to k, = 6.5 and 70 (2x/c). SS denotes surface
states. (C) Band dispersions predicted by band-structure calculation.

While the ¢ band is nearly degenerated with the o band at hv =
25 eV, these bands are separated at hv = 30 eV, indicating three-
dimensionality of the band dispersions. Note that the order of the
a, B, and ¢ bands from the zone center is different between theory
and experimental data. We shall describe the present assignment
of the band dispersions based on the matrix-element effect data
as below.

FS mapping in kx-ky plane is shown in Figures2A,B.
By assuming the inner potential Vy = 13.0eV (Figures 2A,B)
approximately represent kx-ky planes including the I' and the
Z point, respectively. All the three hole FSs around the center of
the 2D BZ have been clearly resolved and small hole FSs appear
around the BZ corner due to heavy hole doping. In Figure 2B,
the surface states near the zone center form ridge-like structures
extending to the kx and ky directions, causing the peculiar cross-
like intensity distribution [18]. We found that the middle hole FS
(¢) has different shape between the I" and the Z point, indicating
strong three dimensionality.

In Figure 3, we compare the FSs obtained by ARPES with the
band-structure calculation. As seen in (Figures 3A,B), the sizes of
the observed a and p FSs do not show appreciable change with
k,. On the other hand, the shape of the ¢ FS significantly changes
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FIGURE 2 | FSs of KFe;As; observed by ARPES. ARPES intensity at Ef
mapped in the ky-ky plane taken at different photon energies
corresponding to k; ~ T (A) and k; ~ Z (B). Red dots indicate kg positions
determined by the peak positions of momentum distribution curves
(MDC'’s) and white dotted lines indicate FSs deduced from the kg positions.
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FIGURE 3 | Comparison of FSs obtained by ARPES and those predicted
by band-structure calculation. (A,B) FSs determined by ARPES. kg
positions in Figure 2 have been symmetrized in the first BZ. (C,D) FSs
given by the band-structure calculation. A small FS around the Z point
comes from a three-dimensional d,, band.

between k, ~ T" and Z. While the ¢ FS has a diamond-like cross-
section for k; ~ I" and is nearly degenerate with the o FS in the
zone diagonal direction, it has a circular cross-section for k, ~
Z. Such a change is seen in the inner-most calculated hole FS in
Figures 3C,D.

In order to determine the orbital character of the FSs, we have
investigated the polarization dependence of the ARPES intensity
as shown in Figure 4. FS mapping shown in (Figures 4A,B) indi-
cates clear polarization dependence in the intensity distribution
for each FS. We have simulated the intensity distribution by
using the following assumptions. Based on the result of the band-
structure calculation, we assume that three orbitals xy, yz, and zx

hv=40 eV
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FIGURE 4 | Polarization dependence of the FS mapping for KFe;As;.
(A,B) Measured ARPES intensity at Er in the kx-ky plane taken at

hv =40eV (k; ~ T). Electric vectors are shown by arrows. (C,D) Simulation
of the ARPES intensity distribution corresponding to (A,B). Shapes of FSs
have been taken from Figure 2. By assuming certain orbital character for
each FS, intensity distribution has been simulated and is shown by
thickness of the curves (For details, see the text).

constitute the FSs. We refer to the three band as xy, yz, and zx band
according to the orbital character of the band with momentum
in the zone diagonal ky (// kx + ky) direction. Using the angle 6
around the I' point, the orbital character of the xy, zx, and yz band
can be approximately expressed by |xy >, cos |zx> + sinf |yz>
and -sin6 |zx> + cosH |yz>, respectively. By assuming the dipole
approximation of the transition matrix element |< ile - r|f >|?,
where |i >, |[f >, and € are the initial state, the final state, and
the polarization vector, respectively, one can predict the intensity
distribution. For example, when |i >=|xy>, ¢ //x and |[f > is a
wave function of a free electron, the transition matrix element
|< ile-r|f >|? is proportional to k}z, in the lowest order in k.

Figures 4C,D are the results of the intensity simulations of the
FSs whose shapes have been determined by the present experi-
mental data. Here, we assign the inner, middle, and outer FSs to
the yz, xz, and xy-band, respectively, so that we can reproduce
the experimental intensity distribution. This assignment of the
orbital character is different from the band-structure calculation
where the inner, middle, and outer FSs have xz, xy, and yz orbital
character, respectively. However, the present ARPES result is con-
sistent with the previous ARPES result of Co-Bal22 [24] and
the theoretical prediction of LDA+DMFT [25], which indicate
the energy inversion of the xy and yz/xz bands due to orbital-
dependent correlation effect. This trend is also consistent with an
ARPES result of LiFeAs [26]. That is, the xy band in most strongly
affected by electron correlation and is shifted upward relative to
the other bands.
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Another discrepancy from the band-structure calculation is
the inversion of the yz and xz bands in the kx (ky) direction. In the
result of the band-structure calculation, the inner FS has xz char-
acter (in the kx direction) with rounded-square shape around
the I' point and becomes circular around the Z point because
of hybridization with the z* orbital. In the present ARPES result,
such a character has been observed in the middle ¢ FS. According
to the angular-dependent magnetoresistance oscillations, such a
rounded-square FS is also bigger than a circular hole FS [27].
The observed inversion of the xz, yz bands is consistent with the
ARPES result of Co-Bal22 [24] and the LDA+DMEFT calculation
for KFe,As; [25].

In the dHVA study, the sizes of the hole FSs are found to be
smaller than those predicted by band-structure calculations [9].
We have determined the cross-sectional area of the FSs as listed
in Table 1 together with those of the dHVA measurements and
the band-structure calculation. The cross-sectional areas for the
a and ¢ FSs observed by ARPES are close to those obtained by
the dHvVA result and are smaller than the band-structure calcula-
tion. On the other hand, the area of the § and ¢ FSs determined
by ARPES are much larger than the calculation results. The total
hole count from the observed FSs yields the hole FS volume of
61% of the BZ, indicating a deviation from the value of 50%
expected from the chemical composition, because most of the FSs
observed by ARPES are nearly 10-20% larger than those observed
by dHvA. The deviation of the FS volume implies that there is
excess hole doping of 0.11 per Fe atom at the sample surface.
Nevertheless, the surface effect is not so serious as those in 1111
system where excess 0.5-0.6 holes per Fe are doped [28], and one
can still discuss mass renormalization from the present result.

The effective masses determined by ARPES are compared
with those derived from the dHvA measurements and the band-
structure calculation in Table 1. For all the FSs, the effective
mass ratio m*/m,, where m, is the free electron mass, deter-
mined by ARPES is in good agreement with those obtained by
dHvVA. For the hole FSs around the zone center, the outer B and
middle ¢ FSs show large renormalization factor of m™/my ~6-7,
while the inner a FS has a smaller factor m*/my, ~2. The strong
mass enhancement for the § and ¢ band may be due to the fact
that the orbitals are directed to the Fe-As bond direction, caus-
ing the enhancement of electron correlation effects. Particularly,

according to LDA+DMFT calculation [19, 25], a larger mass
renormalization is expected in the xy band than those of the
yzlxz bands. Thus, the observed mass enhancement factors indi-
cate moderate to strong electron correlation. From the effective
masses m™* listed in Table 1, the electronic specific heat coefficient
vy is calculated to be y ~90 mJ/molK?, which is close to y =
103 mJ/molK? estimated from specific heat measurements [19].
The penetration depth [10] and thermal conductivity [11]
measurements of KFe;As, suggest that line nodes exist in the
superconducting gap. Particularly, recent thermal conductivity
result [29] has been interpreted based on the d-wave symmetry in
KFe;As;. Because the small hole FSs around the zone corner are
too small to account for the linear temperature dependence of the
superfluid density [10], the node should be on the zone-centered
hole FSs. In fact, the “octet-node” has been observed in the ¢ hole
FS by the laser ARPES study [13]. Based on the spin-fluctuation-
mediated model calculation, the octet node can be interpreted as
vertical nodes with A1, gap symmetry, which originates from the
3z%-r? orbital character of the ¢ hole FS. Such octet nodes may
not contradict with the observation of the node on the small hole
pockets in Bag,1 Ko.9FezAsy [30], if the vertical nodal line with Ay,
gap symmetry rapidly shifts in the momentum space with hole
doping. On the other hand, a small-angle neutron scattering mea-
surement on KFe,As, has suggested the existence of a horizontal
node [31]. One should note that both the vertical and horizontal
nodes [32-34] can be realized in the region of the FS with 3z2-
% orbital character. In the present work, we revealed that the ¢
FS has a strong three-dimensionality compared to the other FSs,
implying a significant amount of the 3z2-r% character in the ¢ FS.

CONCLUSION

We have performed an ARPES study of KFe,As, to investigate
orbital-dependent correlation effects. The orbital character of
each FS is determined by the polarization dependence of the
ARPES intensity. The value of the electron mass renormaliza-
tion for each band indicates orbital-dependent correlation effects
and is consistent with the dHVA result [20, 21] and the DMFT
calculation [25]. Particularly, the B and ¢ FS show large mass
enhancement of m*/my, ~ 6-7. Only the middle hole FS ¢ shows
a clear three-dimensionality, suggestive of 3z2-r? orbital charac-
ter, which may be related to the “octet nodes” [13]. The precise

Table 1| Cross-sectional areas and effective masses of FSs of KFe;As; determined by ARPES and dHvA experiment [20, 21].

Area m*/meg (Mm*/mp)
FS k; ARPES dHvA LDA ARPES dHvA LDA
a r 9.1 8.2 20.8 5.1 (2.0) 6.0 (2.3) 2.6
z 9.8 8.6 21.6 6.6 (2.3) 6.5 (2.2) 2.9
4 r 12.2 10.3 12.2 11.0 (7.9) 8.5 (6.1) 1.4
Z 17.0 15.7 13.8 17.7 (7.4) 18 (7.5) 2.4
B r 27.3 25.6 16.7 16.3 (6.3) 19 (7.3) 2.6
z 30.0 17.4 17.9 (6.9) 2.6
€ r 2.1 0.86 0. 5.6 (18.7) 6.0 (20) 0.3
YA 2.1 1.29 0.36 4.1 (13.7) 7.2 (24) 0.3

The areas are expressed as a percentage of the area of the 2D BZ. me and my, are the free-electron and band masses, respectively.
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determination of the orbital dependent mass renormalization in
the present study would give constraint on the pairing mechanism
with line nodes.
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