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The dynamics of the plant microtubule cytoskeleton is a paradigmatic example of the
complex spatiotemporal processes characterizing life at the cellular scale. This system
is composed of large numbers of spatially extended particles, each endowed with its
own intrinsic stochastic dynamics, and is capable of non-equilibrium self-organization
through collisional interactions of these particles. To elucidate the behavior of such a
complex system requires not only conceptual advances, but also the development of
appropriate computational tools to simulate it. As the number of parameters involved is
large and the behavior is stochastic, it is essential that these simulations be fast enough
to allow for an exploration of the phase space and the gathering of sufficient statistics to
accurately pin down the average behavior as well as the magnitude of fluctuations around
it. Here we describe a simulation approach that meets this requirement by adopting an
event-driven methodology that encompasses both the spontaneous stochastic changes in
microtubule state as well as the deterministic collisions. In contrast with finite time step
simulations this technique is intrinsically exact, as well as several orders of magnitude
faster, which enables ordinary PC hardware to simulate systems of ∼ 103 microtubules
on a time scale ∼ 103 faster than real time. In addition we present new tools for the
analysis of microtubule trajectories on curved surfaces. We illustrate the use of these
methods by addressing a number of outstanding issues regarding the importance of
various parameters on the transition from an isotropic to an aligned and oriented state.
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1. INTRODUCTION
A key distinguishing feature between animal and plant cells is the
cellulosic cell wall that encases the latter. This extracellular struc-
ture confers on plant cells the mechanical strength to withstand
their significant internal osmotic pressure. The presence of the
semi-rigid cell wall also imposes a much more defined shape on
plant cells in comparison to animal cells. This in turn poses a spe-
cial challenge to a plant cell, namely how to grow without losing
mechanical integrity and how to control the cell geometry dur-
ing growth. Strikingly, thinking about how these requirements
could be met led Paul Green to deduce, as early as 1962 [1], that
cells must possess filamentous structures with the ability to form
parallel-organized arrays, effectively “predicting” the existence of
microtubules a year before they were first positively identified.
Indeed, we now know that in growing plants cells microtubules
are a key regulator of cell expansion. They do so by forming the
so-called transverse cortical array.

This array consists of microtubules that are physically associ-
ated to the cytoplasmic side of the plasma membrane and statisti-
cally aligned in a preferential orientation transverse to the growth
axis of the cell (3; see Figure 1). The current understanding is
that this array determines the insertion [4] and the subsequent
direction of motion of cellulose synthase complexes that deposit
cellulose microfibrils into the cell wall [5]. Cellulose microfibrils
are the load-bearing elements of the cell wall and their organized

deposition confers the required anisotropic mechanical proper-
ties to the wall that enable its controlled expansion. Live cell
imaging revealed that cortical microtubules can collide [6, 7].
The outcome of these collisions is partly stochastic and depends
on the angle between the incoming growing microtubule and
the obstructing microtubule (7; see Figure 2). At small collision
angles the most likely outcome is zippering, where the incom-
ing microtubule bends to continue growing along the obstructing
microtubule. At increasingly perpendicular collision angles a so-
called induced catastrophe becomes more prevalent, in which
the incoming microtubule switches to the shrinking state. The
remaining possibility is that the incoming microtubule slips over
the obstructing microtubule in what is called a cross-over.

The first full-fledged attempt to simulate cortical array order-
ing is due to Baulin et al. [8], who considered a minimal
model for collision-induced ordering of 2D dynamical fila-
ments, which abstracted from the full complexity of stochastic
microtubule dynamics, and replaced the actual interactions by
collision-induced pausing of otherwise deterministically growing
microtubules. More recently, three groups almost simultane-
ously published computational approaches toward understand-
ing cortical array organization, including realistic microtubule
dynamics. Allard et al. [9] presented results on simulations with
microtubule dynamical parameters taken from observations on
wild-type and MOR1-mutant Arabidopsis thaliana cells and a
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FIGURE 1 | Cortical microtubule array in 3 day old dark grown

epidermal hypocotyl cell. Microtubules are labeled by mCherry-TUA5. For
information about plant material and microscopy settings see Lindeboom
et al. [2]. Scale bar is 5 μm.

FIGURE 2 | Angle dependent outcomes of microtubule collisions.

Graphical depiction of the microtubule interaction model, expressed as
cumulative probabilities as a function of the interaction angle θ . The
experimental data by Dixit and Cyr [7] are indicated using dashed lines and
symbols: induced catastrophes below the crosses, cross-overs above the
circles and zippering in between.

simplified collision scheme with 100% zippering below a criti-
cal incidence angle θ∗ and fixed ratio of induced catastrophes
versus cross-overs above this angle. The simulations were car-
ried out on a two dimensional surface with either periodic
or catastrophe-inducing boundary conditions, using an event-
driven algorithm for individual microtubule dynamics and a fixed
time-step algorithm for the detection of collisions. Eren et al. [10]
presented simulations on cylindrical surfaces in 3-dimensions,
using an event-driven simulation method. Because of the restric-
tive cylindrical system without end caps, these were effectively
2-dimensional simulations with periodic boundary conditions in
one direction, and either catastrophe inducing or a type of reflec-
tive boundary conditions in the other direction. The collision
dynamics and microtubule dynamical parameters were similar to
that of Allard et al. Finally, in our own work [11] we employed an
event-driven simulation technique to study two-dimensional sys-
tems with periodic boundary conditions, including comparisons
with the theoretical model presented in Hawkins et al. [12].

Here we present the first detailed description of our simula-
tion method as well as some novel applications. Our method has
three important features: First of all, it employs a highly efficient
event-driven algorithm making it possible to perform fast and,
in principle, exact simulations, outperforming finite time step
simulations by a wide margin. Next, it leverages the results of
our previous theoretical analysis by employing a single control

parameter Gc to select distinct states of the system, dramati-
cally reducing the number of independent parameters to consider.
Finally, it provides an integrated framework for simulating and
analyzing cortical microtubule dynamics on closed and curved
surfaces, including a number of key biological processes which
have been identified to influence this behavior.

We then address several key conceptual issues in modeling
and understanding interacting cortical microtubules. We start
by presenting a cross-validation of the simulations with our
previously presented theoretical analysis based on mean-field
assumptions. Next, we address how a finite pool of tubulin can
stabilize systems whose dynamical parameters suggest that the
microtubules are in the so-called unbounded growth regime,
which appears to be the case for a number of experimental
data sets that have been discussed in the literature. The ques-
tion of whether induced catastrophes alone are a sufficient cause
of ordering, or whether zippering is necessary or even suffi-
cient by itself appears as an open debate in the current literature
[e.g., compare 13, 14]. Here, we present an extensive analysis of
the complex interplay between induced catastrophes, zippering
and microtubule minus-end treadmilling, which shows, among
others, that zippering is neither necessary nor sufficient to induce
an ordering transition. Finally, we consider the influence of cell
geometry and of local disturbances in microtubule dynamics on
the alignment and the orientation of the cortical array.

2. MODEL FOR MICROTUBULE DYNAMICS AND
INTERACTIONS

At the microscopic level, the formation of the cortical array is
driven by the intrinsic dynamics of microtubules and by micro-
tubule interactions. Here we describe how these are incorporated
into our simulation model.

2.1. INTRINSIC DYNAMICS
We assume that microtubules are nucleated with a random posi-
tion and orientation according to a nucleation rate rn. Once
nucleated, the intrinsic dynamics of the plus end are governed by
the two-state model introduced in Dogterom and Leibler [15].
In the growing (+) state, the microtubule extends at its plus end
with speed v+ and in the shrinking (−) state it retreats with
speed v−. Microtubules spontaneously switch from the growth to
the shrinkage state (a so-called “catastrophe”) with a rate rc (per
microtubule), and the reverse process (a “rescue”) occurs with a
rate rr . On the opposite end of the microtubule, the minus end
optionally retreats with a treadmilling speed vtm [6].

In addition to these microtubule-intrinsic factors we also
include microtubule severing. In plants the microtubule severing
enzyme katanin is responsible for detaching microtubules from
their nucleation complex [16] and for severing at microtubule
crossovers [2]. Here we limit ourselves to delocalized severing,
which we model through a constant severing rate rs per unit
length. Severing is taken to be instantaneous and results in the
formation of two new microtubule ends—plus and minus—at
the severing location. The newly created plus-end immediately
undergoes a catastrophe, which places it in the shrinking state.

The default parameters used for the simulations in this work
are identical to those used in Deinum et al. [17] and are listed
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in Table 1. As in that paper, we modulate the catastrophe rate
to achieve different values of the control parameter Gc (see
section 4.1). Although microtubule severing is included in the
simulation model and accompanying tools, the effect of severing
is not illustrated in this paper, hence rs = 0 for all simulations.

2.2. MICROTUBULE INTERACTIONS
When a growing microtubule plus end collides with another
microtubule, the outcome is a function of the collision angle θ ∈
(0, 90◦]. We follow the simplified interaction model first intro-
duced in Allard et al. [9], and also used by Eren et al. [10]; see
Figure 2. When the collision angle θ ≤ θ∗ = 40◦, the collision
results in zippering, causing the plus end to reorient alongside the
encountered microtubule. For θ > θ∗, the outcome is stochastic
with equal odds for an induced catastrophe and a cross-over (i.e.,
no effect).

The zippering process (and occasionally the severing process)
results in the formation of microtubule bundles. In the simu-
lation model we assume that microtubules in a bundle coalesce
and that a collision of an incoming growing microtubule tip with
bundle is no different than a collision with a single microtubule.
Similarly, a microtubule that is part of a bundle is not affected
by the presence of other microtubules within that bundle when it
collides with another microtubule. An exception is made in sec-
tion 5.2, where we consider convergence to mean-field theoretical
results in the weak interaction limit. In this limit, the interaction
probabilities must be taken proportional to the number of micro-
tubules in a bundle. Finally, we note that other bundle interaction
models are conceivable, and some of these have been explored in
Tindemans [18].

2.3. FINITE TUBULIN POOL
The microtubule dynamic model defined above assumes that the
dynamic parameters are constant in time. Particularly, the use of

Table 1 | Simulation parameters.

Parameter Description Value

v+ Growth speed 0.08 μm s−1

v− Shrinkage speed 0.16 μm s−1

vtm Treadmilling speed 0.01 μms−1

rr Rescue rate 0.007 s−1

rc Catastrophe rate Variable: 0.003 – 0.010 s−1;
default: 0.0045 s−1

rn Nucleation rate 0.001 s−1 μm−2

rs Severing rate 0 μm−1 s−1

θ∗ Maximum zippering angle 40◦

Pcat Induced catastrophe probability 0.5 (for θ > θ∗)

W × H 2D system size (periodic) 80 × 80 μm

L 3D cylinder length 40 μm

D 3D cylinder diameter 40 μm

l0 Natural length scale 4.7 μm

G∗ Critical control parameter (theory) −0.15

Overview of all parameters and their default values. The parameters are equal

to those used in Deinum et al. [17]. The bottom section lists parameters that are

derived in the context of the control parameter Gc (section 4.1).

a constant growth speed implies that the supply of tubulin dimers
that can be used to elongate microtubules is effectively infinite.
Cells do not have such an infinite supply of tubulin, and it is
worthwhile to consider the effects of a limited pool of tubulin.
The depletion of free tubulin (i.e., not currently incorporated
in microtubules) will primarily affect the rate at which tubu-
lin dimers polymerize on growing microtubule tips. This effect
is linear to a first approximation [19], and we therefore include
the finite tubulin pool in our model using a length-dependent
growth rate

v+(t) = v+
0

(
1 − L(t)

Lmax

)
, (1)

where L(t) is the total length of the microtubules in the system,
and Lmax is the length-equivalent of the total amount of tubulin
in the system. This way, the total microtubule length is bounded
by Lmax. In practice, the size of the tubulin pool is best speci-
fied via a mean length-equivalent tubulin concentration ρtub so
that Lmax = ρtubA, where A is the total surface area of the cell.
Note that a more complete implementation would also consider
the effects of the available tubulin concentration on nucleation,
which we keep constant.

The varying plus end growth speed has implications for
the computation of event times in our event-driven simulation
scheme. This will be discussed in section 3.2 and is further elab-
orated in the Supplementary Materials. The effect of a limited
tubulin pool on the simulation results is discussed in section 5.3.

2.4. THE INCLUSION OF A PAUSE STATE
In the present work we have only considered the classical two-
state model of microtubule plus-end dynamical instability. In
reality microtubule plus-ends also display pause states, and both
Allard et al. [9] and Eren et al. [10] have chosen to explicitly take
these into account in their simulations. A legitimate question is
thus whether and, if so, to what extent this difference is important
for understanding the behavior of these systems. Here we argue
that this is not the case. This can be understood on a heuristic level
by considering that the presence of paused states only influences
the dynamics in between the significant events (nucleation, colli-
sions, leaving a bundle by shrinking, or shrinking to zero length)
that determine the ultimate state of the system, but has no direct
impact on these events. This means that microtubule pausing may
affect the kinetics of the model, by affecting the mean waiting
time between events, but not the steady state behavior.

In the Supplementary Material section 1 we formally construct
an exact mapping between the three-state microtubule instability
model and a corresponding two-state model with exactly the same
predictions for the mean length and mean lifetime of a single iso-
lated microtubule. This same mapping moreover induces an exact
correspondence between a three-state mean-field theory and the
two-state theory developed in Hawkins et al. [12], implying that
the predicted phase behavior of both theories will be identical.

The resulting correspondence is as follows. In the three-state
model the microtubules can either grow (+) with speed v+,
shrink (−) with speed v− or pause (p). Microtubules can either
switch directly from the growing to the shrinking state or

www.frontiersin.org April 2014 | Volume 2 | Article 19 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Biophysics/archive


Tindemans et al. Cortical array simulations

vice-versa with rates f+− and f−+, respectively, or switch from
these states into the paused state with rates f+p and f−p, and exit
from the latter state with rates fp+ and fp−. We can now define
the effective growth and shrinkage speeds

ṽ− =
(
fp+ + fp−

)
(
f−p + fp+ + fp−

)v− (2)

ṽ+ =
(
fp+ + fp−

)
(
f+p + fp+ + fp−

)v+ (3)

and catastrophe and rescue rates

r̃c =
(
f+pfp− + f+−fp+ + f+−fp−

)
(
f+p + fp+ + fp−

) (4)

r̃r =
(
fp+f−+ + fp+f−p + fp−f−+

)
(
f−p + fp+ + fp−

) (5)

which define the corresponding two-state model.
In view of these observations we conclude that the explicit

inclusion of paused microtubule states in the simulations is not a
crucial ingredient, and results for the phase behavior from the two
approaches are readily compared by employing the above men-
tioned mapping to determine the equivalent dynamical parame-
ter set.

2.5. MICROTUBULE TRAJECTORIES ON CURVED SURFACES
What is the path that a cortical microtubule follows along a
curved membrane? Depending on the specific constraints there
are two types of solutions to this problem. When the microtubule
is only confined by the cell membrane, but still free to move later-
ally, the solution is given by a global minimization of the curvature
along the microtubule. This solution has been determined for
an infinite cylinder—and, by extension, for spherocylinders—in
Lagomarsino et al. [20] and is shown in Figure 4. As the fila-
ment becomes longer, its free end will tend to align more with
the axis of the cylinder. However, the cortical microtubules in
plant cells are linked to the cell membrane and are therefore
restricted in their lateral movement [6, 21, 22]. This means that
a microtubule cannot make use of lateral relaxation to decrease
its bending energy as it extends. Instead, the polymerizing micro-
tubule end can only locally minimize the bending energy before
the curvature is “frozen in” by binding to membrane linkers. In
this strongly bound limit the trajectory of growing microtubules
is therefore given by a (locally) minimal curvature path on the cell
membrane, starting from a given initial position and direction.
It deserves mention that cortical microtubules are not actually
attached to the cell membrane at all points along their length,
but rather at intervals of a finite size [23–25], so there is some
room for non-local curvature minimization. However, as long as
the attachment interval is much smaller than the radius of the
cylinder, the minimal curvature path is a good approximation.

The curvature κ of any regular curve on a surface can be
decomposed into two components, the normal curvature κn in
the normal plane (pointing out of the membrane) and the lateral

curvature κl in the tangent plane (see Figure 3). These curvatures
are related by

κ2 = κ2
n + κ2

l . (6)

The Meusnier theorem states that for a given surface S, all pos-
sible curves through a certain point with a given tangent vector
have the same normal curvature [26], so that any differences in
curvature must be attributed to the lateral curvature κl. It follows
from Eq. (6) that the total curvature is always minimized by set-
ting κl = 0. This uniquely defines the continuation of a minimum
curvature trajectory.

In this paper we will use flat-capped cylinders to represent
the cell surface in three dimensions. The minimum curvature
solutions on the surface of a cylindrical body are helices defined
by their starting position and angle, which justifies the use of a
wrapped periodic domain to represent a cylindrical surface. In

FIGURE 3 | A trajectory on a two-dimensional curved surface. Indicated
are the tangent vector u and the surface normal n. The normal plane
contains both vectors and the tangent plane contains only the tangent
vector and is perpendicular to the normal vector.

FIGURE 4 | Curvature-minimizing trajectories on a cylinder. Trajectories
resulting from local curvature minimization (solid line) and global curvature
minimization (dashed line) are initiated from a single nucleation point with
an initial opening angle of 5.7◦ from the transverse direction. The curve for
the global energy minimization has a total length of 4.5 times the cylinder
radius. (The length is not relevant for the helical solution resulting from local
curvature minimization).
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Figure 4, the local and global curvature minimization solutions
on the body of a cylinder are compared.

The minimal local curvature model for microtubule propa-
gation is extended to the rim of the cylindrical cell as follows.
The sharp transition from the cylinder body to the flat end caps
is treated as the limiting case of a smooth edge with a vanish-
ing radius of curvature. Locally, the rim of the cylindrical cell is
approximately straight so that the smooth edge may be approxi-
mated by a (quarter section of) a cylinder with a vanishing radius.
Mimimal curvature paths that traverse the edge are locally helical,
which means they conserve the angle between the microtubule
path and the edge of the cylindrical cell. The latter property is
used in the simulations: when a microtubule reaches an edge of
the cylindrical cell it continues on the neighboring face in the
direction that preserves the angle between the microtubule and
the edge.

3. EVENT-DRIVEN SIMULATIONS
Implementing the cortical array model defined in the previous
section in a computer simulation is not trivial, because the sim-
ulation method must accurately span a range of length scales
(0.1–100μm) and time scales (seconds −10 s of hours). In addi-
tion, because of the stochastic nature of the model, a large ensem-
ble of simulations is required to assess the statistical properties of
the outcomes for even a single initial condition.

A straightforward implementation with a fixed time step �t
would require very small time steps to deal with the micrometer
and second scales, leading to unacceptably slow execution times.
An event-driven simulation method is used instead to simulate
the cortical array model in a way that does not introduce intrin-
sic uncertainties in the time domain and is thus both accurate
and fast. The cortical array model exhibits two distinct types of
dynamics: periods of continuous evolution (microtubule growth,
shrinkage) interrupted by events (collisions, nucleations, etc.)
that may trigger a discontinuous change in the system state. At
any time, we can determine the time te at which the next event
will take place. We then fast-forward the system state to te, update
the microtubule lengths to reflect that time and process the event
in question. This cycle is repeated until a predetermined end time
is reached. This process is illustrated in Figure 5.

For computing the next event to take place we make a distinc-
tion between deterministic and stochastic events. Deterministic
events are those events for which the event time is fully deter-
mined by the state of the system (collisions, disappearance,
boundary conditions, simulation control), whereas stochastic
events are the result of a random process (nucleations, sponta-
neous catastrophes, rescues, severing). The times corresponding
to the next deterministic and stochastic events are computed
using the methods outlined below and the event with the nearest
time is executed.

3.1. STOCHASTIC EVENTS
Because all stochastic events are independent and described by
simple rates (memoryless dynamics), we use a kinetic Monte
Carlo algorithm [27] to determine the next stochastic event time,
albeit with a potentially time-dependent event rate. Because of
the memoryless property, we may recalculate �tstoch whenever

FIGURE 5 | The event-driven simulation process. The top panel
illustrates the event-driven simulation cycle. The bottom panel indicates
how the first upcoming event is selected.

it is (potentially) invalidated, such as after the execution of any
deterministic event.

Each stochastic event type is associated with an event rate re(t).
Most event rates are constant between events, with the exception
of the severing rate, which is dependent on the total length of
growing and shrinking microtubules. In particular,

R(t) = rnucleation + rspont.catastrophes + rrescues

+rsevering (7)

= rnA + rcN+ + rrN− + rsL(t), (8)

where A is the cell’s surface area, N+ and N− are the number of
growing and shrinking microtubules, respectively, and L(t) is the
total length of microtubules in the system. For a given rate, the
time interval �tstoch to the next stochastic event follows from the
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expression

∫ t+�tstoch

t
R(t′)dt′ = − log u, (9)

where u is a uniform random variate on the interval (0, 1). The
specific type of stochastic event that will take place may then be
determined by selecting an event e at random in proportion to the
corresponding rates re(t + �tstoch).

The simulations in section 5 were performed with rs = 0, in
which case R(t) is constant between events so that equation (9)
produces

�tstoch = − log u

R
. (10)

The more general case for rs �= 0 is addressed in Supplementary
Material section 2.

3.2. DETERMINISTIC EVENTS
The class of deterministic events includes collisions of micro-
tubule plus ends with other microtubules or cell edges and the
disappearance of microtubule segments because of retreating plus
ends or treadmilling minus ends. Furthermore, the simulation
makes use of deterministic “control” events to take measure-
ments or snapshots at fixed time intervals, to update simulation
parameters and to stop the simulation.

The efficiency of our simulations is greatly enhanced by the
concepts of regions and trajectories. Where possible we partition
the system geometry into regions with a span that is compara-
ble to the natural length scale l0 (see Eq. 12). Trajectories serve as
“tracks” for microtubules. When a microtubule nucleates, a tra-
jectory is created that spans the region as a minimum-curvature
path tangential to the nucleation position and orientation. When
a growing microtubule reaches the end of a trajectory at the
region boundary, a new trajectory is computed as a continuation
of the previous trajectory. If such a continuation already exists,
that trajectory is used instead of creating a new one. Similarly,
after a zippering event, the growing plus end switches trajecto-
ries to grow alongside the existing microtubule. The implication
is that microtubules in a bundle always share a trajectory, which
makes it easy to establish the number of microtubules in a bundle
at a given location.

When a new trajectory is established its intersections with
other trajectories in the same region are computed. These inter-
sections are stored as an ordered list according to their distance
along the trajectory. Because collisions between microtubules can
only occur when their trajectories intersect, we may safely treat
microtubules independently between trajectory crossings. The
crossing events are therefore used as deterministic events in the
simulation, and an actual collision only occurs if a microtubule is
present on the trajectory that is being crossed. A further speedup
is obtained by only updating a microtubule’s position when it is
involved in an event (such as a crossing of its trajectory) or when
the system state is being analyzed for output (e.g., for a snapshot
or order parameter calculation).

In this paper we consider only simulations on flat or cylindri-
cal surfaces. In both cases the trajectories are straight lines in the

appropriate representation, and the computation of their inter-
sections is straightforward. However, the process outlined above
is readily adapted to more general geometries. When a new tra-
jectory is created, a minimum curvature path is created from the
relevant starting orientation, using either analytical or numeri-
cal means appropriate to the geometry. Then the intersections
with pre-existing trajectories in the same region are computed.
Depending on the geometry this procedure may be involved, but
it is robust against numerical errors because the intersections are
only computed once. There is no scope for inconsistencies due to
differences between subsequent evaluations.

For a given state of the system, deterministic events occur at a
known time td in the future. This allows us to pre-compute the
times at which deterministic events will take place and store them
in a queue. At any given time, the front of the queue indicates
the time interval �tdet to the first deterministic event. In gen-
eral, the occurrence of an event (both deterministic and stochastic
types) will change the state of the system, causing new determin-
istic events to be added to the queue, or obsolete events to be
invalidated.

A slight complication occurs with the inclusion of a finite
tubulin pool cf. Eq. (1). In this case the speed of a growing plus
end depends on the collective length of all microtubules in the
system, which varies in unpredictable ways, making it impossible
to precompute collision or boundary traversal times. For these
plus-end associated events we create a second deterministic event
queue. This queue does not store (and sort) events by their time
of occurrence, but rather by the distance that a growing plus end
must travel to arrive at the collision position. Because all plus ends
are affected equally by the limited tubulin pool, their relative posi-
tions in the queue are conserved by the dynamics of the system.
At any specific time t, the plus-end distance dp corresponding to
the first event can be meaningfully converted to an event time tp.
This can be compared to the event time from the other determin-
istic queue and the stochastic event time in order to determine
the event that will occur first. This process is depicted in Figure 5,
and the relevant equations are derived in Supplementary Material
section 3.

4. QUANTITATIVE ANALYSIS
Stochastic simulations of the cortical array make use of a large set
of input parameters to generate a stochastic sequence of events
representing the microtubule dynamics in the system. Formally,
the simulation model represents a stochastic mapping from many
input parameters to a dynamic pattern of interacting micro-
tubules. Without additional structure the characterization of such
a mapping to extract relevant knowledge is cumbersome.

However, on theoretical grounds we are able to condense the
input and output to a small number of real-valued parame-
ters. The microtubule dynamical parameters (see Table 1) are
reduced to a single-valued control parameter Gc. On the out-
put side, the microtubule patterns can be characterized in terms
of the alignment order parameters R2 (S2 for planar systems)
and the orientation angle �2. The existence of these control and
order parameters provides a convenient framework for analysis:
measure the effect of Gc—and the few remaining input parame-
ters not contained in Gc—on R2 and �2.
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4.1. CONTROL PARAMETER GC

The theoretical work described in Tindemans et al. [11] and
Hawkins et al. [12] has identified a control parameter G that can
assist in the understanding of the simulation results, and clarify
their dependence on the system parameters. In Deinum et al. [17]
its definition was extended to include treadmilling microtubules,
resulting in the control parameter

Gc =
(

2(v+ − vtm)2(v− + vtm)

rnv+ (v+ + v−)
) 1

3

×
(

rr

v− + vtm
− rc

v+ − vtm

)
(11)

≡ l0 × (−1/l̄). (for finite l̄) (12)

The control parameter can be expressed as the (negative) ratio of
a natural length scale l0 and the mean length l̄ of microtubules
in the absence of interactions. For the applications in section 5
we modulate Gc through the intrinsic catastrophe rate rc. For the
parameters in Table 1 we have

Gc ≈ −63.2s rc + 0.182. (13)

As noted in Deinum et al. [17], the Gc order parameter has a
theoretical basis for the cases with either non-zero zippering or
treadmilling (vtm �= 0). Although a similar foundation is absent
for the case with both zippering and treadmilling we extend the
use of the control parameter Gc to include this case.

The value of Gc should be compared to the theoretical
bifurcation value G∗, which is fully determined by the angular
probability Pcat(θ) to induce a catastrophe after a collision at
angle θ .

G∗ = (−2ĉ2)
1/3
(

ĉ0

−2ĉ2
− 1

)
, (14)

where ĉn is defined as

ĉn = 4

π

∫ π/2

0
sin(θ) cos(nθ)Pcat(θ)dθ. (15)

For the induced catastrophe probability used in this work (Pcat =
0.5 for angles larger than 40◦), we have G∗ ≈ −0.15. The mean-
field theory developed in Hawkins et al. [12] predicts that the
system will remain in a disordered (isotropic) state if Gc ≤ G∗,
whereas it will align if Gc > G∗. In biologically relevant cases, we
have G∗ < 0. If in addition Gc > 0, the microtubules will align
(as Gc > G∗), but their density will continue increasing without
bounds (unless tubulin depletion ultimately forces a sufficient
decrease in Gc).

4.2. ORDER PARAMETERS
4.2.1. Planar order parameter S2

To measure the degree of alignment of the microtubules in a
planar system, we use the microscopic (i.e., derived from the

individual particles) order parameter S2 from Deinum et al. [17]:

S2 =
∣∣∣〈ei2θ

〉
l

∣∣∣ = |∑n lnei2θn |∑
n ln

=
√(∑

n ln cos 2θn
)2 + (∑

n ln sin 2θn
)2∑

n ln
, (16)

where the index n runs over the microtubule segments in the
system, with length ln and orientation angle θn. The S2 order
parameter has a value of 0 for an isotropic system and a value of 1
for a system in which the microtubules are all perfectly aligned.
Note that this order parameter is insensitive to the polarity of
the segments. This definition is identical to the order parameter S
from Allard et al. [9], but does not require the intermediate deter-
mination of a dominant angle. In the limit of a system with very
many microtubules, it is also equal to the mean-field definition
used in Hawkins et al. [12].

4.2.2. Alignment on curved surfaces
The cell cortex is a curved surface embedded in three dimensions.
The S2 order parameter is defined only for planar systems, and
when we attempt to apply it to curved surfaces we encounter two
problems. First, it can only be used on systems such as the cylinder
without end caps, where the surface can be “unrolled” to a simple
2D plane. The second issue is that even in that case it does not give
valuable information about the orientation of the resulting pat-
tern: for example, transverse and helical arrays can have the exact
same value of S2, even though they are qualitatively different.

To resolve these issues we have constructed a pair of 3D
order parameters: R2 and �2. These parameters are rooted in the
hypothesis that the formation of the cortical array is thought to
serve the purpose of aligning the cellulose microfibrils in the cell
wall, which in turn allows the cell wall to expand in the direction
perpendicular to the microfibrils [28]. This sets two requirements
on the cortical array: a sufficient degree of alignment and an ori-
entation of the array perpendicular to the main expansion axis.
The primary order parameter R2 is an analog of S2, and reduces
to the same definition for a planar system. It has a value between
0 and 1, and measures the extent to which one can identify a
common direction in 3D space that is perpendicular to the cor-
tical microtubules. The secondary order parameter �2 is specific
to the cylindrical geometry and reports the angle between the
preferential expansion axis and the main cylinder axis.

4.2.3. The tensorial order parameter
To measure the degree of order of the collective set of micro-
tubules in the cell cortex, we recall the definition of the 3D
nematic order parameter Q that is commonly used for liquid crys-
tals [see e.g., 29]. It is a second order tensor (equivalent to a square
matrix) that can be defined as

Q =< u ⊗ u > −1

3
I(3), (17)

where ⊗ denotes the outer product of two vectors. In the case
of discrete particles, u is the director of the individual particles
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in the system and the angled brackets denote an averaging over
all particles. In the case of orientational density fields, u is the
orientation and the brackets indicate a density-weighted average
over all angles and space. The definition of Q is easily adjusted for
a two-dimensional system, by reducing the dimensionality and
replacing the fractions by 1/2. However, it is important to realize
that in both of these cases the particles are free to position and
orient themselves freely in the relevant space.

This is clearly not the case in the cortical array, where we have
particles that are constrained by a two-dimensional surface S that
is embedded in R

3, restricting the admissible orientations to the
tangent plane at each location. This means that the surface geom-
etry has a large, possibly non-isotropic, influence on the possible
realizations of Q. This results in the problematic outcome that
a homogeneous and locally isotropic configuration can give rise
to non-zero elements in Q. To rectify this, we note that for the
unconstrained 3D system, it is the identity matrix in (17) that
ensures Q = 0 for any isotropic configuration. We generalize (17)
by replacing the correction term 1

3 I(3) with a geometry-dependent
correction term.

The following definitions will be given in terms of an orien-
tational density field ρ(r, θ), where r ∈ S and θ is a coordinate
indicating the orientation in the local tangent plane. The trans-
lation to a particle-based definition is straightforward, and will
be given below. In terms of the orientational density field ρ, we
define

Q = < u ⊗ u >ρ(r,θ) − < u ⊗ u >iso,homo (18)

= < u ⊗ u >ρ(r,θ) −Tgeom. (19)

Here, the first term is an average that is weighted by the actual
orientation density field and the second is the isotropic correction
term, where the averaging is done with respect to an isotropic and
homogenous distribution. This correction is represented by the
geometry-dependent tensor Tgeom.

The isotropic homogeneous distribution tensor Tgeom is
defined as the result of two subsequent averaging procedures: first
a local averaging over all directions in the tangent plane (isotropy)
and then an averaging over r ∈ S (homogeneity). Defining a local
orthogonal frame by the surface normal n and two orthogonal
unit vectors v and w, the local averaging yields

< u ⊗ u >iso = 1
2 [v ⊗ v + w ⊗ w] (20)

= 1
2

[
I(3) − n ⊗ n

]
. (21)

The tensor Tgeom can now be computed as

Tgeom = 1

2A

∫
S

(
I(3) − n ⊗ n

)
dA′, (22)

where A is the total area of the surface S. Its values for a few
common shapes are

Tplane(x,y) =
⎛
⎝

1
2 0 0
0 1

2 0
0 0 0

⎞
⎠ (23)

and

Tsphere = Tcube =
⎛
⎝

1
3 0 0
0 1

3 0
0 0 1

3

⎞
⎠ . (24)

We note that the generalized definition (19) reduces to the regular
definition (17) on isotropic surfaces such as the sphere, and to its
two-dimensional equivalent on a plane.

4.2.4. A scalar order parameter
The order parameter Q as defined in (19) is a second order ten-
sor (i.e., a matrix). In this section we extract from Q a single
scalar order parameter R2 that indicates the extent to which a
particular direction is avoided by the microtubules. We note that
Q is a symmetric real matrix and as such it has an orthogonal
basis of eigenvectors. By choosing a reference frame that coincides
with the eigenvectors, it is easily seen that the larger eigenval-
ues correspond to preferred directions of the microtubules. The
direction that is avoided by the microtubules (and thus the pre-
ferred direction of cell expansion) is indicated by the eigenvector
corresponding to the lowest eigenvalue λmin(Q).

Furthermore, since Q is traceless, the sum of all three eigen-
values equals zero, implying that λmin(Q) is negative. We can
determine a lower bound for λmin(Q) by evaluating the terms
in equation (19). Suppose we have a director vmin correspond-
ing to the lowest eigenvalue. In every point on S, it is possible to
choose the particle/field director u perpendicular to this vector,
so that the first term of (19) does not contribute to the eigen-
value. The second term is −Tgeom, which in itself is a symmetric
matrix with eigenvalues in the range [0,1/2]. The maximum (neg-
ative) contribution it can give in the direction of vmin is equal
to its maximum eigenvalue λmax(Tgeom). Using this informa-
tion we define the order parameter R2 ∈ [0, 1] that measures the
expansion asymmetry in plant cells as

R2 = − λmin(Q)

λmax(Tgeom)
. (25)

For the special case of a distribution of microtubules on a 2D
plane it can be shown that R2 is identical to the 2D order
parameter S2.

4.2.5. Microtubules on cylindrical geometries
For the purpose of illustrating the simulation method presented
in this paper we make use of a simple approximation of the cell
cortex as a flat-capped cylinder. In this section we will specialise
the order parameters for the special case of elongated micro-
tubules on a closed cylindrical surface, resulting in the order
parameter pair (R2,�2). We define the 3 × 3 matrix Q with the
elements

Qαβ =
∑

i

∫ li
0 u(i)

α (l′)u(i)
β (l′)dl′∑

i li
− Tαβ, (26)

where li is the length of the i-th microtubule segment and u(i)(l′)
is the 3D tangent vector at position l′ along the segment i. We
refer the interested reader to the Supplementary Material section
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4 for the expression in terms of cylindrical coordinates and micro-
tubule lengths. In the case of a cylinder of length L and diameter
D that is oriented along the x-axis, the isotropic correction matrix
Tcyl is given by the matrix

Tcyl = 1

2L + D

⎛
⎝ L 0 0

0 1
2 (L + D) 0

0 0 1
2 (L + D)

⎞
⎠ (27)

The order parameter R2 that describes the magnitude of the order
can be computed from Q and Tcyl using Eq. (25). Furthermore,
the lowest eigenvalue λmin(Q) of Q is associated with an eigenvec-
tor vmin that indicates the preferential direction of cell expansion.
Rather than using this vector directly, we remove the redundancy
caused by the rotational symmetry of the cylinder and reduce it
to the angle �2 between vmin and the cylinder axis (ex).

�2 = arccos |vmin · ex| (28)

Summarizing, the value of R2 ∈ [0, 1] measures the degree in
which there is a preferred expansion direction and �2 indicates
its deviation from the transverse orientation. Note that the high-
est attainable value of R2 depends on the orientation of vmin. For
the case of a cylinder with L ≥ D, the range of possible values
for R2 decreases from [0, 1] when �2 = 0 to [0, 1

2 (1 + D/L)] for
�2 = π/2.

5. APPLICATIONS
5.1. GENERIC BEHAVIOR
We first illustrate the generic behavior of the interacting
microtubule system in the simplest possible geometry, a two-
dimensional square “cell” with periodic boundary conditions,
using the default parameter set of Table 1. The simulations
track the evolution over time starting from an initial condition
in which there are no microtubules present, equivalent to the
immediate post cell division state of a plant cell, in which cor-
tical microtubules have not yet re-appeared [30]. The snapshots
in Figure 6 show how initially (t = 30 min) the system, while
already building up its density, remains in an isotropic state,
characterized by relatively short microtubules. Once ordering sets
in (t = 2 h), ordered domains of relatively longer microtubules
are apparent. Finally, at longer times (t = 8 h) a global direc-
tion is fully established. Tracking the evolution of the density
over time shows (Figure 7) a relatively gradual build-up over
time. For comparison with biological data we also show the
so-called optical density, which, by counting multiple collinear
microtubules within the same bundle only once, mimics the lim-
ited spatial resolution of confocal microscopy images. Note that
the optical density saturates much earlier than the true den-
sity, showing that the long-time behavior is dominated by the
slow incorporation of more microtubules into the longer-lived
bundles.

Looking at the time evolution of the degree of alignment as
measured by the scalar order parameter S2 (Figure 8), we see that
it saturates long before the density reaches it stationary value. The
time-scale of the build-up of the alignment, over the first few
hours, is slightly slower than the experimental measurements in

FIGURE 6 | 2D snapshots. Snapshots of configurations of a 2D system
evolving over time from an initially empty state. Default parameters.

FIGURE 7 | Time evolution of microtubule density. The gray zone
indicates the actual microtubule density over time of the 10–90% interval of
n = 1000 independent runs, with the average density indicated in white.
Black traces show the densities recorded in 10 individual runs. Below, in
red, are the optical densities of the same ten runs (a similar band in pink
indicates the group statistics, but the band is so narrow that it is hardly
visible). Default parameters.

Lindeboom et al. [30]. There we showed that microtubule bound
nucleation can account for the final factor ≈2 speedup needed to
match the biological data. Note, also, that the run-to-run fluctua-
tions in the degree of order are significantly smaller than those
of the density. In the following sections we will consider the
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FIGURE 8 | Time evolution of microtubule alignment. S2 order
parameter of the same 1000 runs as in Figure 7. The black curves show
the results for 10 individual runs.

state at t = 20 h to be representative of the system’s steady state
alignment.

5.2. CROSS-VALIDATION OF THEORY AND SIMULATIONS IN THE
WEAK-INTERACTION LIMIT

The theory of Hawkins et al. [12] that led to the identifica-
tion of the control parameter G and the predictions for the
bifurcation point G∗ is based on a mean-field assumption that
couples the rates of interaction with densities of microtubules,
which specifically neglects both spatial and temporal correlations
between subsequent collision events. To validate the correspon-
dence between the theory and simulations, we should therefore
choose our interaction parameters such that we are in the limit
of a very low frequency of interactions, which effectively decou-
ples subsequent events involving the same microtubule. To probe
the low interaction frequency limit we employ the scaling param-
eter α ≤ 1 introduced in Hawkins et al. [12], which uniformly
scales the probabilities of zippering and induced catastrophes
from the nominal values shown in Figure 2 and thereby increases
the probability of cross-overs.

Moreover, the concept of microtubule bundles is also at odds
with the mean-field approximation, because bundles consist of
strongly correlated microtubules by definition. In the weak inter-
action limit we adopt a modified bundle collision model which
treats a collision with a bundle of N microtubules as the collision
with a single microtubule with an N-times larger probability of
zippering or induced catastrophe (maximized at 1). One can show
that this is the correct low collision frequency limit of a scheme in
which an incoming microtubule can repeatedly collide with all N
microtubules separately [18].

As explained in Hawkins et al. [12], the critical control param-
eter behaves as G∗(α) = α1/3G∗(1) under this scaling. In Figure 9
we therefore show the value of the S2 order parameter as a func-
tion of Gc/α

1/3. The results for four values of α show that indeed
as α ↓ 0 the onset of the ordering transition appears to converge
to the theoretically predicted value G∗(1) ≈ −0.15. Previously,

FIGURE 9 | Cross validation of theory and simulations. Order parameter
S2 as a function of the scaled control parameter Gc/α1/3 for decreasing
values of the interaction strength parameter α : 0.3, 0.1, 0.03, 0.01. The
arrow and dashed line denote the location of the predicted critical value of
the control parameter G∗/α1/3 ≈ −0.15. All data points are averages of n
independent runs, and standard errors of the mean are indicated. For
α = 0.3, 0.1 we used n = 100 and S2 was computed at t = 20 h. For
α = 0.03, 0.01 a larger equilibration time of t = 100 h was used, and
n = 42. Default parameters were used, except for disabling of treadmilling.

we have shown that in the absence of zippering as a source of ori-
entational correlations, the theory can quantitatively describe the
simulation data as is [11]. Taken together, these results provide
a solid cross-validation of the theory and the simulations in this
limit.

5.3. TUBULIN POOL
We now consider a system for which the value of the sponta-
neous catastrophe rate is rc = 0.0025 s−1. For this low value we

find G(0)
c ≈ 0.024, indicating that the microtubules are in the

unbounded growth regime (Gc > 0). However, at the same time
we limit the available tubulin pool by setting the available tubulin-
length density to ρtub = 10μm/μm2. As Figure 10 shows, the
system over time “eats up” the available tubulin, causing the
growth speed to decrease in accordance with Eq. (1), and hence
also decreasing the effective value of Gc. This process contin-
ues until it robustly reaches a steady state for an effective value

G(∞)
c < 0, and the corresponding S2 value lies on the universal

steady state S2–Gc curve for the default interaction parameters.

5.4. THE IMPORTANCE OF INDUCED CATASTROPHES, ZIPPERING, AND
TREADMILLING

In this section we empirically probe the effects of three features
that intuitively have the potential to influence microtubule align-
ment. Zippering causes the growing plus ends of microtubules
to align with existing microtubules; induced catastrophes punish
microtubules that are misaligned with a dominant orientation;
treadmilling (especially in combination with zippering) allows
dangling minus ends to be removed without the need for the
entire microtubule to disappear.

For each permutation of these three features we have per-
formed a series of simulations, spanning a range of values of
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FIGURE 10 | Finite tubulin pool. The colored traces show three
independent runs initiated in the unbounded growth regime (Gc > 0; with
rc = 0.0025s−1). Note that all three runs converge to the steady state
Gc–S2 curve computed for these interaction parameters (black line). The
gray area denotes the 10–90% range for a set of n = 500 simulations at
t = 20h.

the Gc parameter. The results are summarized in four panels in
Figure 11: the column indicates the presence of induced catas-
trophes (left: without; right: with) and the row the presence
of zippering (top: without; bottom: with). Furthermore, each
panel contains curves for systems with and without minus end
treadmilling.

These results show that induced catastrophes that suppress dis-
cordant microtubules are the main driver of alignment. Zippering
alone, on the other hand, is not sufficient to cause significant
global alignment, even for high values of Gc (long microtubules).
These qualitative results are in agreement with the mean field
theory developed in Hawkins et al. [12].

The case of zippering without induced catastrophes (panel C)
warrants further discussion. A closer inspection of very dense
systems for these parameters reveals that these systems are not
aligned (as measured by S2), but not disordered either. These
systems consist of overlapping sets of dense microtubule bun-
dles with dominant angles that differ by more than 40◦. This
can be understood as follows: microtubules with similar orien-
tations form bundles through zippering interactions. However, in
the absence of induced catastrophes, microtubules with orienta-
tions that differ by more than 40◦ can cross each other without
impediment, and are free to form bundles with other micro-
tubules having a similar orientation. The result is a system in
which independent populations of parallel bundles can coexist.
For a zippering angle of 40◦, up to four such populations may be
present, as 4 × 40◦ < 180◦. The lack of interactions between pop-
ulations means there is no mechanism for a single orientation to
prevail, and this is borne out by simulations with very long run
times (see Supplementary Material section 5 for a snapshot of a
system at t = 1000h).

The absence of alignment in Figure 11C is at odds with the
results reported in Allard et al. [9] and Eren et al. [10]. In the
case of Eren et al. [10], we note that non-isotropic boundary

A B

C D

FIGURE 11 | Effect of zippering, induced catastrophes and treadmilling

on alignment. Each panels (A–D) shows two Gc -S2 curves, comparing
systems with (tm+; dashed black line) and without (tm-; solid red line)
minus end treadmilling. Comparisons between adjacent panels illustrate
the effect of induced catastrophes (columns) and zippering (rows). The
simulations for non-interacting microtubules (A) were not performed for
values of Gc very close to 0 due to diverging numbers of microtubule
trajectories. Because alignment cannot occur in the absence of interactions
this limitation is not significant. All points are the average of n = 50
independent runs, evaluated at t = 20h. Standard errors of the mean are
shown, but smaller than the data markers for most cases.

conditions were present for all cases considered. In a sufficiently
small system these are able to create net alignment even in the
absence of microtubule interactions. In addition, the entropy
metric used in that work to quantify the degree of alignment is
also sensitive to patterns other than simple alignment, such as
the cross-hatch pattern described above. In the work of Allard
et al. [9] the interactions between microtubules were detected
using a fixed time step, during which a growing plus end tra-
verses approximately 1% of the system size. It is not mentioned
how collisions with bundles or multiple collisions within a single
time step are processed, which complicates a direct comparison.
Furthermore, the small system size of 10 × 10μm enhances any
finite-size effects.

Finally, we consider the effect of treadmilling by comparing
the curves within each panel of Figure 11. In the absence of zip-
pering (top row), we find that the effect of treadmilling is fully
accounted for by the definition of Gc (see also Deinum et al. [17]).
In the presence of zippering (bottom row) the additional presence
of treadmilling leads to a slight increase in alignment for a given
value of Gc. This is consistent with the interpretation that tread-
milling removes the discordant dangling ends that remain after
zippering. The relative positioning of the curves in panels B and
D is dependent on the shape of the angle-dependent interaction
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function (see Figure 2), but we have consistently observed the rel-
ative effect of treadmilling across different interaction functions
(data not shown).

Summarizing, we conclude that induced catastrophes are a
necessary ingredient for alignment, and zippering alone is not
sufficient to establish a dominant orientation. Furthermore, in
the presence of zippering and induced catastrophes, treadmilling
further enhances alignment (for a given value of Gc).

5.5. EFFECT OF CELL GEOMETRY AND LOCAL CHANGES IN
MICROTUBULE DYNAMICS ON ARRAY ORIENTATION

The previous sections have focused on the ability of microtubules
to form an array, as measured by the alignment order param-
eter S2 or its generalization R2. In this section we consider the
orientation of the array as measured by the order parameter �2.
Cells within a single type of tissue often show a similar degree of
alignment and orientation of their cortical array [31], which indi-
cates that the process of array formation is robust and repeatable.
On the other hand, external triggers such as light [2], hormones
[32], and mechanical cues [33, 34] are able to modify the array
orientation, illustrating that the process is susceptible to orienta-
tional cues, which may in turn be subject to cellular control. In
this section we investigate factors that affect the orientation of the
cortical array. See Figure 12 for an illustration of a longitudinal
and a transverse pattern and the associated (R2, �2) pairs.

We consider cylindrical cells with default length L = 40μm
and diameter D = 40μm. This cell geometry and size resem-
bles young tobacco BY-2 cells, a commonly used cell line in the
investigation of cortical microtubule dynamics. We established a
baseline for alignment and orientation by performing 500 runs
on this geometry with our default parameter set. The distribu-
tion of the resulting order parameters in Figure 13A shows that
the systems were generally aligned and favored transverse and
longitudinal over intermediate orientations. The geometry does
not strongly impose a single orientation, which may be con-
sidered a desirable property as it leaves room for regulation by
the cell.

5.5.1. Local changes in microtubule dynamics
One mechanism for cellular control was proposed by Ambrose
et al. [35]: a combination of differential crossing probabilities
for the different cell edges, resulting from differences in the
edges’ curvature and the differential presence of (CLASP) pro-
teins that could facilitate edge crossing. The authors performed
proof-of-principle simulations for this mechanism and the sta-
tistical reliability of this mechanism was further investigated in
Deinum [36].

Alternatively, whole regions of the cell could be more or less
favorable to microtubule propagation and alignment. Such a cell
face-based mechanism has recently been proposed by Vineyard
et al. [32] to explain drug-induced array reorientation in A.
thaliana hypocotyl cells. We therefore investigated how locally
changing the microtubule dynamic instability parameters affects
array orientation. We chose to increase the spontaneous catas-
trophe rate rc on the end caps, thus effectively making it harder
for microtubules to grow longer and interact on these cell faces.
Raising the spontaneous catastrophe rate by a factor 2 was suf-
ficient to cause each of the 500 independent simulations in

FIGURE 12 | Examples of oriented alignment on cylindrical domains.

Top: longitudinal orientation (R2 = 0.63; �2 = 70◦), default parameters at
t = 20h. Bottom: transverse orientation (R2 = 0.88; �2 = 7◦). Simulation
parameters as on top, except spontaneous catastrophe rate on cylinder
caps that have been increased by a factor 2, resulting in reliable transverse
ordering.

Figure 13B to end with a transverse orientation. Further increas-
ing rc on the end caps to four times the value on the cylinder body
continued this trend and further increased the average degree of
alignment (R2) (Figure 13C).

We note that with the parameters used in Figure 13B the local
value of the control parameter Gc on the cylinder caps drops
below that of the bulk ordering transition, which occurs for values
of rc between 0.00575 s−1 and 0.0065 s−1. We hypothesize that
the local crossing of the ordering transition is the main driving
force behind the strong orienting effect of this mechanism. Using
rc = 0.003 s−1 instead of rc = 0.0045 s−1 (default) on the cylin-
der wall the end caps remain within the ordered regime, which
caused some runs to end with a longitudinal or oblique orienta-
tion. Nevertheless, also in that case the vast majority of the runs
ended with a transverse orientation (> 80% with �2 < 27◦; data
not shown). These results demonstrate that subtle orientational
cues can be sufficient to establish a strong bias in the cortical array
orientation.
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A B C

D E F

G H I

FIGURE 13 | Alignment and orientation in capped cylinder geometries.

Each panel contains points that indicate the alignment (S2) and orientation
(�2) of n = 500 independent runs. Histograms for each axis indicate the
aggregate distributions. A dot on the horizontal axis represents a perfectly
transverse array orientation and a dot on the vertical axis represents a
perfectly longitudinal orientation. The further the dot is away from the origin,
the stronger the degree of alignment. For cylinders with aspect ratios other
than 1 : 1, the maximum attainable R2 value is angle-dependent (see section

4.2.5). The default cylinder has length L = 40μm and diameter D = 40μm.
Simulations were performed using default parameters and the results were
analyzed at t = 20h. (A–C): Sequence with increasing multipliers for the
spontaneous catastrophe rates on the cylinder end caps: 1 ((A); default), 2
(B), and 4 (C). D–F: Sequence of different aspect ratios, obtained by
decreasing the cylinder diameter: D = 40, 20, 10μm, respectively. G–I:
Sequence of decreasing absolute system sizes: (L, D) = (160, 40); (80, 20);
(40, 10)μm, respectively.

5.5.2. Geometric effects
We proceed to dicuss in more detail the role of the cell geometry in
determining the cortical array orientation. Increasing the cell’s L :
D aspect ratio by decreasing the cell’s diameter (Figures 13D–F)
also caused a shift toward predominantly transversely oriented
arrays. In Figure 13F, 84% of all runs have �2 < 27◦ and 78%
have �2 < 4.5◦. In this case the intrinsic microtubule dynam-
ics were the same everywhere on the cell’s surface and any bias
in the preferred orientation must have been a direct effect of the
geometry itself. The bias appears to have resulted from finite-size
effects.

In support of this interpretation, we found that increasing the
absolute size of the elongated cells, whilst keeping the aspect ratio

fixed (Figures 13I–G) resulted in a loss of this transverse bias.
This result shows that the effects of cell geometry must be consid-
ered in relation to the intrinsic length scales l0 and l̄ of the system
(see section 4.1). It is intuitively clear that in an infinitely large sys-
tem one would encounter locally aligned domains that compete
for global dominance. These domains would have certain typical
dimensions that would depend on the length scales l0 and l̄ and
possibly on the equilibration time t. Shrinking this hypothetical
cell back to more natural proportions, there will be some size at
which a single aligned domain is able to “wrap around” the whole
cell, thus enabling coordinated alignment over the whole cell sur-
face. This could explain the larger fraction of runs with relatively
low R2 values seen in Figure 13G as compared to Figure 13I and,
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to a lesser extent, Figure 13H. Natural BY-2 cells and our sim-
ulated equivalents in Figure 12 are in this “small cell” regime.
Depending on their parameters and geometry, some plant cells
may (occasionally) be in the “large cell” regime, as distinct ori-
entational domains within a single cell face have indeed been
observed experimentally [37]. We have repeatedly observed the
formation of such local domains in our simulations (Deinum [36]
and unpublished results), including in systems of realistic sizes.

We repeated the simulations shown in Figure 13 with
rc = 0.0030 s−1 and rc = 0.0055 s−1 on the cylinder wall (data
not shown). As a general trend, we observed that systems
that are less entrenched in the ordered parameter regime (i.e.,
with larger rc) tended to be more sensitive to subtle orienting
effects of the geometry. This is consistent with the idea that
close to critical points, where correlations lengths diverge, sys-
tems generically become more sensitive to boundary conditions
[see e.g., Privman 38].

6. DISCUSSION
We have provided the reader with an overview of the techniques
we have developed to study the dynamics and organization of the
plant cortical array. As modeling is becoming increasingly cen-
tral to (cell)biological research (see e.g., [39]), it is only fitting
that more attention is devoted to the necessary methodologies.
Biological systems are in general highly complex, involving many
interacting components giving rise to structures and processes on
a wide range of length- and time scales. We believe that the type
of event-driven approach presented here is a highly effective tool
in enabling the simulation of such systems in a reasonable time
frame, as has also been recognized elsewhere [40]. At the same
time, we emphasize the utility of complementary analyses using
more analytical theoretical approaches. The latter can provide
valuable controls on simulations in the form of explicit predic-
tions on limiting cases and expected trends. Moreover, as our use
of the control parameter Gc illustrates, results from theory can
help to guide parameter choices and thereby significantly reduce
the number of simulations required.

In addition to the core biological features described in sec-
tion 2 and analyzed in section 5, there are further mechanisms
that are—out of necessity—beyond the scope of this paper. The
two most important of these, both included in our software,
are as follows. First, although only briefly mentioned in the text
and described in somewhat more detail in the Supplementary
Material (sections 2 and 3), our simulation approach can read-
ily incorporate the effects of microtubule severing by the enzyme
katanin. A spate of recent articles [2, 41, 42] has underscored
the fact that, in concert with adaptor proteins such as SPIRAL2,
katanin induced severing is major factor in shaping the abil-
ity of the cortical array to change its orientation [2, 34]. We
therefore expect this ability to play an important role in future
work in this area. Second is the fact that microtubule nucleations
are most often initiated from protein complexes bound to pre-
existing microtubules and display distinct orientational patterns
with respect to the parent microtubule. We have addressed the
basic effects of this fact in a previous publication [17]. Work
of Lindeboom et al. [2], moreover, shows that the regulation of
this mode of nucleation can also play a key role in reorientation

processes within the cortical array. We expect that a comprehen-
sive and quantitative approach to modeling, made possible by
computational tools such as the one described here, will play a
major role in providing a mechanistic understanding of these
phenomena.
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