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We review recent advances on the mesoscopic modeling of water-like fluids, based
on the lattice Boltzmann (LB) methodology. The main idea is to enrich the basic LB
(hydro)-dynamics with angular degrees of freedom responding to suitable directional
potentials between water-like molecules. The model is shown to reproduce some
microscopic features of liquid water, such as an average number of hydrogen bonds
per molecules (HBs) between 3 and 4, as well as a qualitatively correct statistics of the
hydrogen bond angle as a function of the temperature. Future developments, based on the
coupling the present water-like LB model with the dynamics of suspended bodies, such
as biopolymers, may open new angles of attack to the simulation of complex biofluidic
problems, such as protein folding and aggregation, and the motion of large biomolecules
in complex cellular environments.
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1. INTRODUCTION
Water is a very special fluid, key to most human activities and
life itself on our planet. As compared to standard fluids, water
exhibits many anomalies, primarily the fact of being denser in
the liquid than in the solid phase, exposing a density maximum
above the freezing point, a large latent heat and heat capacity, high
surface tension, and many others [1–3]. Although a fully com-
prehensive theory of water thermodynamics is still lacking, there
is an increasing consensus that many of these anomalies can be
traced back to the peculiar nature of the hydrogen bond (HB)
[4, 5]. Indeed, the HB dynamics plays a vital role on structure
formation within water. For instance, in water at low tempera-
ture, the HBs lead to the formation of an open, approximately
four-coordinated (tetrahedral) structure, in which entropy, inter-
nal energy, and density decrease with decreasing temperature
[1, 6, 7]. The equilibrium thermodynamics, i.e., phase diagram of
water is exceedingly rich, and an Ab initio comprehensive anal-
ysis of its properties is still beyond computational reach. As a
result, many models have been developed [8–11], including lattice
ones displaying water-like behavior. Such lattice models are typ-
ically based on a many-body lattice-gas Hamiltonian mimicking
the essential features of water interactions, with no claim (aim)
of (at) atomistic fidelity [12]. To the best of our knowledge, these
models have been employed mostly for the study of equilibrium
properties, typically via Monte Carlo simulations. Yet, in most
phenomena of practical interest, water flows and, most impor-
tantly, a variety of molecules, say colloids, ions, and biopolymers,
flow along with it, typically in nano-confined geometries. In the

biological context, it is well known that the competition between
hydrophobic and hydrophilic interactions plays a crucial role in
affecting the conformational dynamics of proteins [13–15]. On
a larger scale, hydrodynamic interactions are known to exert
a significant effect on the collective dynamics and aggregation
phenomena within protein suspensions. More generally, hydro-
dynamic interactions are crucial in the presence of confining
walls, due to their strong coupling with resulting inhomogeneities
[16]. Based on the above, there is clearly wide scope for a mini-
mal model of water behavior, capable of including hydrodynamic
interactions and geometrical confinement.

A methodology to develop an appropriate multiscale approach
to water modeling is offered by the Lattice Boltzmann method,
a simulation technique based on a minimal form of Boltzmann
kinetic equation living on a discrete space-time lattice [17–20].
Lattice Boltzmann equations have proven fairly successful in sim-
ulating a broad variety of complex flows across scales, from
macroscopic fluid turbulence, all the way down to biopolymer
translocation in nanopores [21, 22]. The lattice Boltzmann (LB)
approach is mostly valued for its flexibility toward the treat-
ment of complex geometries and seamless inclusion of complex
physical interactions, e.g., flows with phase transitions, flows
with suspended bodies, dynamics of droplets and many oth-
ers [23–25]. The appeal of the method is due to its conceptual
simplicity and computational efficiency, especially on parallel
computers [26, 27]. Recently a LB model implementing the two-
dimensional Ben-Naim model (BN2d) has been presented and
applied to the simulation of simple confined water-like fluids
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[28]. In this paper, we present three-dimensional extensions deal-
ing with both 3d Ben-Naim and TIP3P water potentials and
explore the properties of such model in free space (bulk water).
This serves as a preparatory step for future applications to com-
plex situations involving nano-confinement and hydrodynamic
interactions.

The paper is organized as follows. In section 2 we briefly
mention the main classes of water models, from Ab initio
molecular dynamics, to phenomenological lattice models. In
section 3 we discuss the main ideas behind the LB for sim-
ple fluids, fluids with no internal structure. In section 4, we
present the basic elements of our fluid model, while in sec-
tion 5 we discuss the lattice implementation of the BN3d
and TIP3P potentials. Section 6 then describes the dynam-
ics of rotational degrees of freedom within a quaternion rep-
resentation. Section 7 presents numerical results for various
parametrization of the lattice BN3d potential, with special
attention to the formation of hydrogen bonds in the course
of the evolution, while section 8 describes dynamic energy
minimization results. A summary and outlook are given in
section 9.

2. COMPUTATIONAL MODELING OF WATER
Like most complex dynamical systems, water can be modeled at
different levels, seeking an optimal compromise between physical
accuracy and computational efficiency.

At the most fundamental level, electronic and protonic degrees
of freedom, essential to the hydrogen bond formation, are explic-
itly taken into account at quantum-mechanical level, along with
the classical motion of oxygen ions. This Ab initio Molecular
Dynamics (AiMD) approach is, however, very expensive, and cur-
rently limited to samples of about 100 molecules over trajectories
spanning about 1 ns [29–33].

At the next level, the quantum-mechanical description is sur-
rended in favor of empirical potentials, which release consider-
ably the computational burden. Even so, world-record all-atom
Molecular Dynamics (MD) simulations of protein folding in
water, tracing the trajectory of roughly 104 water molecules over
1 ms, takes several CPU months on the special-purpose super-
computer ANTON [34]. Substantial savings can be obtained by
replacing all-atom solvent with implicit formulations, whereby
the water solvent is treated like a dielectric continuum media, but
at the expense of physical realism.

Finally, at a purely mesoscopic level, water is often represented
as a collection of fields living on a discrete lattice and inter-
acting according to stylized lattice Hamiltonians. Despite their
minimality, such models have proved very valuable in exploring
equilibrium properties of water via extensive Monte Carlo sim-
ulations [35–41]. The present paper falls within this latter class
of lattice water models, with a few distinctive features, namely the
possibility of including (1) full hydrodynamic interactions and (2)
confined geometries.

The simulations discussed hereafter shall be restricted to
periodic geometries with no net hydrodynamic motion. This
responds to the need of calibrating the models against the existing
literature, mostly Monte Carlo and Molecular Dynamics simula-
tions. However, the mathematical formulation presented in the

sequel is sufficiently general to encompass both items (1) and (2)
above for future applications.

3. LATTICE BOLTZMANN REPRESENTATION OF
FLUID-DYNAMICS

The macroscopic dynamics of water is commonly described by
the Navier–Stokes equations of continuum mechanics, whereas at
a micro-nanoscopic scale the motion of water molecules is stud-
ied with the methods of Newtonian molecular dynamics. In this
paper, we shall put forward a third avenue, based on a mesoscopic
representation of water in terms of Boltzmann kinetic theory.
In this representation, fluid dynamics is described by the prob-
ability distribution function (PDF) f (x, v; t) of finding a water
molecule at given position in space x, at a given time t, with
molecular velocity v. The Boltzmann PDF is a rather heavy-duty
object, living as it does in seven dimensional phase-space, three
for ordinary space, three for velocity space, plus time. Once the
PDF is available, however, macroscopic fluid quantities are read-
ily obtained by simple integrations in velocity space. For instance,
by integrating upon all possible velocities, one obtains

ρ (x; t) =
∫

f (x, v; t) dv (1)

which represents the fluid number density, i.e., the number of
molecules per unit volume at time t. By the same token,

u (x; t) =
∫

f (x, v; t) v dv

ρ (x; t)
(2)

represents the local fluid speed.
A practical question immediately arises: why should one solve

a complicated equation in seven variables, given that macroscopic
fluid dynamics lives in the much smaller three-dimensional space?
In principle this looks like a truly self-inflicted pain.

The answer to this question is indeed far from obvious: in
essence the point is that in the last decade highly stylized ver-
sions of the Boltzmann equation have been developed, in which
velocity space is reduced to a handful of discrete velocities,
usually denoted by ci. As a result, instead of dealing with a six-
dimensional PDF (leaving time aside), one generates dynamic
equations for a relatively small set, typically of order 20, of
three-dimensional discrete distributions

fi (x; t) ≡ f (x, v = ci; t)

Twenty is still larger than the number of hydrodynamic fields,
typically five, for density, three fluid velocity components, and
pressure. Hence, the bargain is still not obvious. The second and
crucial point is the evolution of these discrete distributions can
be formulated in terms of elementary hops from site to site in
a regular lattice and subsequent site-by-site relaxation to a given
local equilibrium. The resulting Lattice Boltzmann (LB) dynam-
ics has been proven to offer major advantages as compared to
the discretization of the Navier–Stokes equation. Among others,
the main advantage is that information always travels along sim-
ple straight lines, defined by the so-called lightcones �xi = ci�t,
where �t is the discrete time-step of the lattice dynamics. This
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is much simpler than transport along the material fluid lines
�xu = u(x; t)�t, where the fluid velocity is often a very com-
plex function of space and time. Because of this simplicity, the
LB method has proved to be an outstanding performer for the
simulation flows in complex geometries, especially on parallel
computers. The reader interested in full details is kindly directed
to the vast literature on the subject [17–20]. So much for the
macroscopic side of LB.

Living at an intermediate level between continuum and atom-
istic descriptions, LB also has a second side, pointing toward
the microscopic description. In this respect, the potential advan-
tage of the LB formalism is its flexibility toward the inclusion
of suitably coarse-grained features of the underlying microscopic
physics, such as customized pseudo-potentials describing inter-
molecular interactions as a mesoscopic level, i.e., at space and
time scale beyond reach for molecular dynamics.

In this paper, we shall make use of both faces of the LB method.

3.1. COARSE-GRAINING: FROM LATTICE TO PHYSICAL SPACE-TIME
UNITS

The LB method was born as a computational alternative to the
numerical solution of the Navier–Stokes equations for macro-
scopic fluids. Later on, and not without some controversy, it has
been extended to the realm of micro and nanofluidics. Such
extensions command a careful analysis of the foundations of the
method, since it is clear at the micro and nanoscale LB no longer
enjoys the rigorous back-up of Chapman–Enskog asymptotic
ensuring the correct hydrodynamic limit.

A description of the issues associated with these extensions
goes beyond the scope of this paper. Here we shall only touch
at the basic question of the conversion between LB and physical
units, one which bears directly upon the degree of coarse-graining
associated with the LB representation, which bears directly on its
computational efficiency.

3.1.1. Space units
To fix the length units, a natural choice is to stipulate a coarse-
graining ratio between the mesh-spacing and the range σ of the
intermolecular potential:

b = �x

σ
, (3)

where σ is typically of the order of 0.3 nm. As a result, each LB
cell contains of the order of b3 molecules.

In macroscopic applications, with, say, �x = 10−3 m,
b3 ∼ 1018, so that fluctuations are totally negligible. In microflu-
ids, with, say, �x = 10−6 m, each lattice cells still contains
billions of water molecules. At the nanoscopic level, however, say
�x = 10−9 m, b3 ∼ 30, and fluctuations play a relevant role.

The case b = 1, which we denote by molecular mesh-spacing
(MMS) corresponds to one water molecule per water-like
molecule, hence no spatial coarse-graining.

This is consequential to the idea of attaching a rigid-body
structure (water-like molecule) to each LB cell, as it belongs to
the sequel of the paper.

It is worth recalling that the idea of taking LB down to molec-
ular length scales has been applied before, to perform head-on

comparisons between LB and MD for the case of flows past nano-
sized obstacles [42]. Such studies highlighted that quantitative
agreement between the two methods requires even sub-molecular
mesh-spacing i.e., b < 1. This choice runs into an apparent para-
dox: each LB particle represents less than one water molecule!

The paradox is possibly lifted by recalling that LB also implies
a form of time-average and the fact that f (x, v; t) represents a
probability density, to be discussed in the following.

3.1.2. Time units
The conversion to time units proceeds as follows. The LB timestep
is given by

�t = �x2

ν
, (4)

where ν is the physical kinematic viscosity. Taking ν = 10−6m2/s
in the MMS scenario, we obtain �t ∼ 0.1 ps, to be compared with
the typical MD time-step, �tMD ∼ 1fs.

This is a gift of the LB time-marching scheme, which remains
stable with discrete timesteps of the same order of the relaxation
time.

This also informs us that each LB step collects an average over
about 100 MD steps, thus implying the notion of time-average
mentioned earlier on.

3.1.3. Mass, energy, and temperature units
The standard LB choice is to fix the mass units at the molecular
mass of the species under consideration.

Since this paper is centered about the capability to form
hydrogen bonds (HB), here we fix the energy units instead. In par-
ticular, the unit energy is set by the HB energy, about 10 kJ/mole,
εHB = 1. This also fixes the mass and temperature units.

However, temperature calls for a few additional considera-
tions. To this purpose, it is expedient to consider the so-called
Boltzmann number [43], defined as:

Bo = kBT

mc2
s

(
d

�x

)3

(5)

where d is the mean intermolecular separation. This number can
be taken as a dimensionless measure of the relative strength of
energy fluctuations, �E/E, within a single LB cell. Hence, by
definition, Bo → 0 denotes the macroscopic limit.

Assuming to a first approximation that the intermolecular sep-
aration in liquid water is basically the same as the interaction
range, the Boltzmann number can also be rewritten as:

Bo = kBT

mc2
s

1

b3
(6)

The first term at the rhs is dictated by the equation of state, and for
a liquid under ordinary conditions it can be taken of the order of
1 (for an ideal gas, it is exactly 1). The second term is fixed by the
spatial coarse-graining and, as previously discussed, for macro-
scopic or even microscopic flows, it takes pretty negligible values.
For the present application, b = 1, and consequently, the condi-
tion Bo � 1, which is necessary to either ignore fluctuations, or
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handle them as a weak perturbation, is naturally attained by the
fact that in water at ambient temperature the thermal speed is
about 1/3 of the sound speed, i.e., v2

T/c2
s ∼ 0.1. However, for rea-

sons of numerical stability, in the simulations this ratio is further
lowered to about 10−3.

Since we take kBT/mc2
s = 0.001, the Boltzmann number

remains pretty small, Bo = 0.001, even though we do not perform
any coarse-graining in space (b = 1). Given that in the absence
of hydrodynamic motion, the rotational dynamics is arguably
dominant over the translational one, we feel that the neglect
of translational fluctuations (i.e., fluctuations in the stress ten-
sor) is a pretty reasonable approximation. Although reasonable
under the present circumstances, such an approximation should
be lifted in view of future applications involving net hydrody-
namic motion under confinement, where hydrodynamic stress
cannot be neglected and might have an influence on the dynam-
ics of HB formation. This is a challenging issues for future
research, since, to the best of our knowledge, the condition b = 1
is not addressed by any of the existing formulations of fluctuating
Lattice Boltzmann [43, 44].

3.1.4. Gain from coarse-grain
Having discussed the conversion from physical to LB units, it is
apparent that the space-time coarse-graining factor, hence the
potential computational gain, associated with LB as compared to
MD, is approximately given by:

G ∼ 100 b3 = 100 (7)

where 100 comes from the ratio of time-steps and b3 is the coarse-
graining in space, b = 1 in our case.

The above equation is based on the assumption that the CPU
cost of a LB and MD step be the same, which is probably short
of a factor 10 against LB, since each LB cell interacts with 27
fixed neighbors instead of about twice as many time-changing
neighbors of a typical MD simulation for the same potential.

The above relation shows that even taking no coarse-graining
in space, LB can potentially offer at least two orders of magnitude
savings vs. an atomistic simulation of water.

Realizing this potential in actual practice is, however, con-
ditioned to the usual tradeoff: that the information projected
away by the coarse-graining be inessential to the physics under
inspection.

This can be only verified case-by-case by actual simulations.

4. THE LATTICE BOLTZMANN MODEL OF WATER-LIKE
FLUIDS

We construct a mesoscopic model for water, geared to obey the
incompressible Navier–Stokes equation in the macroscopic limit,
namely:

∂t u + u · ∇u = ν�u − ∇p (8)

where u is the fluid velocity, p the fluid pressure and ν is the kine-
matic viscosity and density has been set to the conventional value
ρ = 1, on account of the incompressibility condition [45]:

∇ · u = 0

Instead of discretizing the NSE as a set of non-linear partial
differential equations, it is expedient to solve a minimal lattice
version of an underlying kinetic Boltzmann equation [17]. Our
fluid model is based on an extension of the lattice Boltzmann
method for ideal fluids. We use a three-dimensional lattice with
27 discrete velocities (including the cell-center), known as D3Q27
in the LB literature. The elementary cell of the D3Q27 lattice is
reported in Figure 1 and the implications of the lattice connectiv-
ity on the tetrahedral structure of the water-like molecules shall
be discussed later.

At each grid node x, the velocity distribution function fi(x; t),
i.e., the probability to find a particle at location x, moving along
the lattice direction defined by the discrete speed ci, is evolved
according to the lattice Bhatnagar-Gross-Krook model equation
[46, 47]:

fi (x + ci�t, t + �t) − fi (x, t) = −ω
[
fi (x, t) − f

eq
i (x, t)

]
(9)

where �t is the time-step, ω = �t/τLB and τLB is the relaxation
time toward local equilibrium. The relaxation time fixes the fluid
kinematic viscosity as follows:

ν = c2
s (τLB − �t/2) (10)

where cs is the sound speed of the lattice fluid. By taking �x =
�t = 1, as it is customary in the LB literature, for the D3Q27 one
has cs = 1/

√
3. The local equilibrium distribution function is a

FIGURE 1 | The unit cell of the D3Q27 lattice. The nearest neighbors,
next-nearest neighbors and next-next nearest neighbors are shown in
green, blue, and red, respectively. The weighting factors, wi , for the D3Q27
are: w0 = 8/27 (the cell-center), wi = 2/27 (i = 1 − 6), wi = 1/54
(i = 7 − 18), and wi = 1/216 (i = 19 − 26).
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Maxwellian, expanded to the second order in the fluid velocity:

f
eq
i = ρwi

(
1 + ci · u

c2
s

+
(

cici − c2
s I
) : uu

2c4
s

)
(11)

where wi is a lattice-dependent set of weighting factors, normal-
ized to unit value and such that c2

s = ∑
i wic2

ia, a = x, y, z. The
macroscopic observables, i.e., the fluid density and velocity are
defined as follows:

ρ (x, t) =
∑

i

fi (x, t) (12)

ρ (x, t) u (x, t) =
∑

i

cifi (x, t) (13)

where mass has been set to unit value for convenience.
It is worth noting that the kinetic evolution of Equation (9)

reproduces the macroscopic Navier–Stokes equation for small
departures from local equilibrium, that is, when the Knudsen
number Kn ∼ (|f eq − f |)/f � 1. However, the small Kn condi-
tion is not strictly valid at mesoscopic level, since the mean free
path of molecules is comparable with the intermolecular spacing.
It is thus implicit in our treatment that the mesoscopic model can
give rise to a non-hydrodynamic response on the small space/time
scale. At numerical level, such regime receives substantial con-
tributions from high-order kinetic moments and can give rise
to spurious anisotropic effects arising from the finite number of
discrete speeds that represent the distribution function [48].

5. MODEL POTENTIALS FOR WATER
In this section, we introduce two well-known potentials which are
used for simulations of liquid water, and present the associated
results from our LB simulations.

5.1. LATTICE THREE-DIMENSIONAL BEN-NAIM (LBN3D) MODEL
We model the interaction of water molecules on a lattice along the
specifications given in Refs. [28, 49–51], i.e., the hydrogen bond
interaction potential for two neighbor water molecules located
at xj and its neighbor along lattice direction i, xi, as shown in
Figure 2, based on three-dimensional Ben-Naim (BN3d) poten-
tial.

Although conceptually patterned after its two-dimensional
predecessor [28], the three-dimensional extension requires signif-
icant technical upgrades [52], which we now proceed to illustrate.
The BN3d potential, as presented in Hynninen [53], is given by:

V
(

xj, xi
) =

4∑
k = 1

4∑
l = 1

Vkl
(

xj, xi
)

= −G (ri, ρ)

4∑
k = 1

4∑
l = 1

εHB
kl e

− (Wik+Wil)

2σ2
θ . (14)

Note the minus sign in front of the potential, which connotates
the global minimum as the most negative value. In the above,
ri = xi − xj is the distance between the centers of two neighbor
tetrahedra, while εHB

kl is a selective matrix accounting for the fact

FIGURE 2 | Tetrahedral representation of water-like molecules sitting

at lattice site xj and its neighbor xi . The four arms are denoted by the
corresponding normals nk , k = 1, 4 (unprimed) and nl , l = 1, 4 (primed),
respectively. Blue and red code for donor and acceptor arms, respectively.
Here the index i corresponds to i = 23 in Figure 1.

that donor (acceptors) arms, corresponding to hydrogens (oxy-
gens) may or may not be allowed to interact with each other. In
the present study, all interactions have been enabled, including the
repulsive ones, donor–donor and acceptor–acceptor. As a result,
we set:

εHB
kl = ∓1 (15)

for repulsive (attractive) interactions, respectively. With this
convention, repulsive(attractive) interactions contribute positive
(negative) energy, respectively.

The radial interaction is chosen in the form [28]

G (ri; ρ) = W (ρ) e
− 1

2

(
ri − RHB

σR

)2

(16)

where RHB is the selected length of the hydrogen bond and
σR controls the sharpness of the radial interaction. Each of the
three choices, RHB = 1,

√
2,

√
3, places a preferential bias on

the formation of hydrogen bonds between face-centers (N2 =
nearest-neighbors), edge-centers (N3 = next–nearest neighbors)
or corners (N4 = next–next nearest neighbors) of the D3Q27 lat-
tice, respectively. Note that each set of neighbors counts more
than four sites, hence it can, in principle, saturate the four hydro-
gen bonds per molecule, with no extra contribution from other
neighbors. The radial part of Equation (16) has been shown in
Figure 3.
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FIGURE 3 | The angular potential Vikl for σθ = 0.28. θik and θil are shown
in degrees.

In Equation (14), the density ρ(xj) (at lattice site xj) enters the
weighting function through the empirical factor:

W (ρ) ∝
(

1 + e
−α

(
ρmax−ρ

ρmax−ρmin

))−1

(17)

which takes into account the density-dependent propensity of
water to form ordered states [28] at a lower density ρmin, while
the disordered states have a higher density ρmax.

The parameter α > 0 controls the range of this density vari-
ation near solid walls, or due to salvation forces in the presence
of any solute, Since in this paper we shall deal with bulk fluid
only, without any solute, here and throughout we set α = 0, i.e.,
W(ρ) = 1.

The terms governing the directional interactions read as
follows:

Vikl = e
− Wik+Wil

2σ2
θ (18)

where we have defined

Wik = (
n̂k · r̂i − 1

)2
(19)

and

Wil = (
n̂l · r̂i + 1

)2
. (20)

These are the central objects governing directional interactions.
The unit vector for the direction of the tetrahedral arm k, is
denoted by n̂k = rk/rk, while we have defined r̂i = ri/ri as the
unit vector along the i-th link of the lattice. In the above, σθ is
a parameter controlling the stiffness of directional interactions
(small sigmas code for “stiff clicks”). It can be seen from Figure 2
that nk · r̂i = cos (θik), where θik is the angle between the k-th arm
and the direction of the neighboring tetrahedron. The extremal
values of Vikl for σθ = 1 are reported in Table 1.

Since Wik + Wil takes values in the range [0, 8], the corre-

sponding range of variation of Vikl is [e−4/σ 2
θ , 1] for attractive

Table 1 | Extremal values of the angular potential

Vikl ≡ e−(Wik +Wil )/2σ2
θ , corresponding to cos (θik ) = 1, 0, 1 and

cos (θil ) = 1, 0, 1 for the case σθ = 1.

cos θik ↓ | cos θil → −1 0 1

1 1.000 0.607 0.135

0 0.607 0.368 0.082

−1 0.135 0.082 0.018

FIGURE 4 | Radial shape functions for the case σR = 0.28 and

RHB = (
√

2 + √
3)/2. Note that nearest-neighbor interactions are roughly an

order of magnitude weaker than next and next–next nearest neighbor ones.
The blue points show the value of radial shape function for
ri = 1,

√
2 and

√
3 corresponding to the nearest, the next–nearest and the

next–next nearest neighbors, respectively.

interactions and [−1, −e−4/σ 2
θ ] for repulsive ones (please note

that the overall contribution is negative for attractive and positive
for repulsive, on account of the minus sign upfronting the over-
all energy). This range exhibits a non-analytic dependence on the
value of σθ . The angular potential Vikl is reported in Figure 4 for
the case σθ = 0.28. It can be noted that such case corresponds
to a sharp (selective) landscape, taking the system toward the
local minimum at cosθik = 1 and cosθil = −1, respectively. Thus,
to enforce sharp HB formation, σθ is selected to be sufficiently
smaller than 1.

5.2. LATTICE TIP3P (LTIP3P) MODEL
In the LTIP3P1 model the potential of two neighboring molecules
located at lattice nodes j and i, as shown in Figure 5, is given by

V
(

xj, xi
) = ke

3∑
k = 1

3∑
l = 1

QkQl

|xl − xk| (21)

in which ke is the Coulomb’s constant. The indices k and l refer
to the charges of the water molecules associated with two hydro-
gens and one oxygen atoms for each molecule. Both hydrogens
carry the same positive charge (+Q/2), while the oxygen carries a
negative charge (−Q).

1The LTIP3P model has been discussed in details in a paper currently under
review, available at: arXiv:1403.2432 [physics.comp-ph].
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FIGURE 5 | Illustration of two water molecules sitting at lattice site xj

and its neighbor xi on the D3Q27 lattice in the LTIP3P model. The
center of mass of the molecules is fixed at the lattice nodes.

Since the center of mass of water-like molecules is fixed on lat-
tice nodes at a distance of 2.77 Å, the Lennard–Jones potential is
relatively weak as compared to the Coulomb potential and can
therefore be neglected. We use the standard parameters for TIP3P
water model given in the paper by Jorgensen and his coauthors
[54]. Besides, the distance between the COM of a molecule with
its nearest neighbor is fixed to 2.77 Å, as observed from molecular
dynamics simulation of the bulk liquid [55]. In order to deter-
mine the full potential of a single molecule, we sum over the first
shell of neighboring molecules only (26 molecules).

6. EQUATION OF MOTION OF THE ROTATIONAL DEGREES OF
FREEDOM

At each lattice site, the water-like molecules perform rigid-body
rotations under the drive of the torque associated with directional
interactions with neighboring sites.

To compute such an effect, let us recall that the total potential
energy of the water-like molecule sitting at lattice site xj, is given
by the sum of the pair potentials over the set of lattice neighbors,
Equation (14), namely:

V
(

xj
) =

∑
i

V
(

xj, xi
)

(22)

The torque τ acting on the angular momentum � of the water-like
molecule placed at xj, is given by:

τ =
26∑

i = 1

τ i =
26∑

i = 1

χ∑
k = 1

r (nk) × Fik (23)

where r(nk) represents the position of the donor (or the acceptor)
sitting at the tip of arm k and the force Fik is given by the negative
gradient of the potential energy of the arm k, due to the inter-
action with its ith neighbor, −∇∑χ

l = 1 Vikl (see Equation 14).
It should be noted that in LBN3d model χ = 4 and in LTIP3P
model χ = 3. Since there is no radial dependence, it is convenient
to calculate the force and the torque in spherical coordinates and
then map the components back to the corresponding Cartesian
coordinates (see Figure 6).

We consider a driven-damped motion of the tetrahedron,
according to the following Langevin equation:

�̇ = −γ � + τ + τr (24)

where τ r is a random component, encoding rotational diffu-
sion effects. By construction, it obeys the fluctuation-dissipation
relation:

〈τr(t)τr(t′)〉 = 3γβ−1Iδ(t − t′) (25)

β being the effective temperature of the fluid (β−1 ≡ kBT), I the
moment of inertia, a unit matrix of magnitude I, and δ is the delta
function.

Next, we make the usual overdamping assumption, |�̇| � γ |�|,
so that we may neglect the time rate of change of the angular
momentum, to obtain:

ω = 1

γ I
(τ + τr) (26)

where we have used the convention � = Iω, so that � = Iφ̇ Thus,
by discretizing Equation (26), we have

�φ = τ + τr

γ I
�t. (27)

This provides a rotation axis and a magnitude for the rota-
tion around it, modulo 2π . The orientation of the tetrahedron
is described by a quaternion with components qμ [56], μ =
0, 1, 2, 3.

6.1. THE KINETIC EQUATION FOR THE QUATERNION MOMENTS
The quaternion macrofields qμ(x, t) introduced in the previous
section are assumed to obey the following transport equations:

∂tqμ (x, t) + u · ∇qμ (x, t) = D�qμ + q̇μ (x, t) (28)

where u is the fluid velocity and D is the kinematic translational
diffusivity of the quaternion components. The last term at the
right hand side is the rate of change of the quaternion fields, due
to the rigid-body rotation driven by the torque [56].

The idea behind the above equation is that the six translational
and angular degrees of freedom are largely independent of each
other, so the mean values of the angular degrees of freedom are
simply advected by the mean flow and diffuse across it due to
molecular collisions. This plausible approximation is necessary
to turn around an otherwise intractable probability distribution
of 12 independent variables, three position and three velocity
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FIGURE 6 | The torque acting on the arm nk has two components in

the direction of eφ (nk ) and eθ (nk ). The total torque acting on the
tetrahedron is then the vector sum of the torques acting on all four arms in
the LBN3d model.

coordinates, three angles and the corresponding three angular
velocities.

The above equation is also solved by a Lattice Boltzmann
technique, leading to the following set of kinetic equations:

qiμ (x + ci�t, t + �t) = qiμ (x, t)

(
1 − �t

τ

)
+ q

eq
iμ (x, t)

�t

τ

+ wiq̇μ (x, t)�t (29)

where wi are the lattice weights and ci the lattice velocities
introduced in section 3. In the above, τ is the quaternion relax-
ation time, controlling the kinematic diffusivity of quaternion
according to

D = c2
s (τ − 1/2) (30)

in lattice units �t = �x = 1.
Each component of the quaternion field, qμ(x, t), is treated as

the scalar density of a corresponding set of discrete distribution
functions, according to:

qμ (x, t) =
∑

i

qiμ (x, t) (31)

In other words, each single component is treated as a fictitious
density (note that this fictitious densities do not need to be posi-
tive definite). The local quaternion equilibrium in Equation 29 is
given by

q
eq
iμ = wiqμ

(
1 + u · ci

c2
s

)
(32)

in which the local velocity u is again provided by the coupled LB
dynamics of the fluid. The quaternion components are updated
concurrently with the LB fluid solver, and once this step is com-
pleted, the arms of the tetrahedron are updated accordingly.
This way, the quaternion dynamics is coupled self-consistently
to the hydrodynamic motion of the water-like fluid. We should
mention that an imposed flow u, supplied by a standard LB
scheme for fluid flow separately (introduced in section 3), does
affect the quaternion dynamics (rotation of water molecules) via
Equation 32 but the fluid flow itself is independent of the quater-
nion dynamics. In the current work we focus on the bulk water
(no hydrodynamics) and set u = 0.

We wish to emphasize that even though the quaternion pop-
ulations qiμ live on lattice sites, their average (the actual physical
observable), qμ does not, as it is designed to obey the advection-
diffusion-reaction equation (Equation 28). Thus, the observable
rotational degrees of freedom are not bound to lattice sites. In par-
ticular, the relaxation time τ controls the translational diffusion
of angular degrees of freedom, through Equation 30, while rota-
tional diffusion is controlled by the strength of the noise in the
Langevin equation for the angular momentum, Equations 26, 27.

7. NUMERICAL RESULTS
Any water-like model must necessarily pass a series of validation
tests, depending on the application it is intended to. As a calibra-
tion of the present three-dimensional models, here we focus on
their propensity to form hydrogen bonds under an optimal choice
of simulation parameters.

7.1. SIMULATION SET-UP IN THE LBN3D MODEL
All simulations are performed on a D3Q27 lattice, with peri-
odic boundary conditions. Initial conditions shall be dis-
cussed shortly. As noted earlier on, the D3Q27 lattice con-
sists of three classes (“shells”) of sites: six face-centers at
distance r = 1, 12 edge-centers at a distance r = √

2, and
eight corners at a distance r = √

3. Unless stated oth-
erwise, the simulations are performed with the following
set of input parameters: σR = 0.28, σθ = 0.28, τ = 103, γ =
105�t−1, τLB = 1, and RHB = (

√
2 + √

3)/2. The lattice con-
sists of Nx = Ny = Nz = 10 grid points, for a total of 103 lattice
sites, each hosting a tetrahedral water-like molecule. Different
values of the effective temperature are explored, approximately
in the range between 10−4 ≤ β−1 ≤ 10−3. All values are given
in dimensionless LB units (�x = �t = 1). More precisely, ini-
tial conditions are taken random in the angular momentum, and
then evolved at a low effective temperature (β−1 = 10−4), until
the system attains the condition HBs = 2. This transient thermal-
ization helps minimizing trapping in local minima of the water
potential associated with random initial conditions, which carry
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a low number HBs ≈ 0.2, very far from the global minimum at
HBs = 4.

After such transient thermalization, the fluid configuration is
further evolved at different values of the effective temperature,
until a statistical steady-state is attained.

7.2. DYNAMICS OF HYDROGEN BOND FORMATION IN LBN3D MODEL
In Figure 7, we show the time evolution of the water potential,
Equation 17, with RHB = (

√
3 + √

2)/2, for the four effective
temperatures: β−1 = 10−4, β−1 = 4 × 10−4, β−1 = 5.5 × 10−4,
and β−1 = 7 × 10−4. The total energy of system is monitored, in
order to appraise the tendency of the system toward minimum
energy configurations. Technically, we stipulate that a hydro-
gen bond is formed whenever a donor and acceptor arms come
head-on together, within a tolerance cone of aperture 20◦ [57].

It should be noted that our results show sensitivity to the shape
of radial interactions and sharing between competing shells of lat-
tice molecules, so that a certain degree of fine-tuning is required.
The choice RHB = (

√
2 + √

3)/2, is found to provide satisfactory
results, with HBs pretty close to the top value, HBs = 4. Besides,
the amplitude of thermal fluctuations depends on the choice of
parameters in the BN3d potential particularly εHB

kl . High ther-
mal fluctuations may corrupt the norm of quaternions, which
must remain constant during the simulations, thus leading to
numerical instabilities.

From Figure 7, it is apparent that a very substantial number
of hydrogen bonds, nearing the top value HBs = 4, is formed
at all effective temperatures, with a slight decrease at decreasing
the effective temperature [5]. Also apparent is the strong corre-
lation between the energy decrease (more negative) in time and
the increasing number of hydrogen bonds, all along the simula-
tion. This provides a neat indication that the number of hydrogen
bonds serves indeed as a representative order parameter for the
evolution of the system, from a high-energy disordered configu-
ration to a quasi-ordered minimum-energy configuration.

7.3. VISUAL INFORMATION IN LBN3D MODEL
To obtain a visual appreciation of the spatial ordering of the rota-
tional degrees of freedom, the angular momenta, in Figure 8, we
report the initial and the final configurations (steady state) of the
water-like fluid at β−1 = 10−4 and without thermal fluctuations.
In case of no thermal fluctuations (Figure 8B), the final state is a
highly ordered, ice-like crystal (HBs = 4). When thermal fluctua-
tions are introduced (Figure 8C), the final configuration deviates
from the crystal state (but still almost ordered) associated to a
local minimum with a HBs < 4, namely HBs � 3.7. Clearly, the
smaller β, the more pronounced is the deviation from an ordered
crystal. Here, for the sake of a better visualization, the simulation
has been performed for a small system of size N = 63. The other
LB parameters are the same as in the case of N = 103.

7.4. DISTRIBUTION OF THE HB ANGLE AS A FUNCTION OF THE
TEMPERATURE IN LTIP3P MODEL

As we already mentioned, many water anomalies can be traced
back to the nature and the particular geometry and structure of
the hydrogen bonds (HB), which make and break within a very
short lifetime. Considering the vital role of hydrogen bonding on

FIGURE 7 | Time evolution of the total potential energy vs. the LB time

steps together with the number of hydrogen bonds for four different

effective temperatures, at (A) β−1 = 10−4, (B) β−1 = 4 × 10−4, (C)

β−1 = 5.5 × 10−4, and (D) β−1 = 7 × 10−4. Main parameters are as follows
N = 103, σR = 0.28, σθ = 0.28, and RHB = (

√
3 + √

2)/2.

FIGURE 8 | (A) Initial random distribution of tetrahedra and the
corresponding final distribution at steady state with and without thermal
fluctuations in (B,C), respectively.

the properties of water, here we focus on the angular distribu-
tion of hydrogen bonds in LTIP3P model. More results on the
statistics of HB in LTIP3P model will be published elsewhere.
A comparison with results of other studies can be regarded as
a further validation of the current model. Here, we define the
HB angle as the angle between the oxygen–oxygen connection
line and the oxygen–hydrogen arm of two bonded (neighbor-
ing) water molecules. With this definition, a perfect HB angle
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corresponds to zero degrees. Our simulation results for the dis-
tribution of the HB angle at different temperatures is shown in
Figure 9. It should be noted that our calculations were performed
for the four best (smallest) HB angles for each molecule. For the
sake of a better comparison we have renormalized our data in
such a way that the highest distribution (which is known to occur
at zero temperature) is taken to be 1.0.

As one can appreciate from the figure, the most probable
angle goes from about 10o at β−1 = 0, to about 15◦ at β−1 =
0.03. With the same HB definition and via an Ab initio density
functional calculations, Modig and coauthors [58] have reported
the HB angle in a temperature range between 0◦C and 80◦C.
As a reference for the distribution of the HB angle as a func-
tion of temperature, we have reported the data from Modig’s
study in the inset of Figure 9. Comparing the present simula-
tion results and the reference results by Modig et al. one can
appreciate a qualitative agreement between the two studies. For
example, in the case of no thermal fluctuations, 1/β = 0.0, our
model and the results of Modig’s study at zero degree both
show a nearly zero value at HB angle = 0. Moreover, both
results show a very similar increasing trend with the HB angle,
reaching their maximum at an angle of about 10◦. Finally they
both decrease again to zero at an angle about 50◦. A similar
study has also been conducted (but with different HB angle
definition) in Svishchev and Kusalik [59]. Our results are also
qualitatively in line with the reported data in Svishchev and
Kusalik [59].

We believe that such an agreement can be regarded as an addi-
tional validation of our water model and lends further credit to
the current lattice approach for mesoscopic modeling of liquid
water, at least for a certain class of applications.

8. DYNAMIC MINIMIZATION
We have run several simulations based on both LTIP3P and
LBN3d, with different parameters. For the sake of validation, the
same minimization problem has also been solved by an annealed
Metropolis MC method.

FIGURE 9 | The normalized HB angle distribution at different

temperatures in the LTIP3P model with β−1 ≡ kBT . In the inset the
same distribution is presented using the data reported by Modig et al. [58].

8.1. LBN3D SIMULATIONS
In Figures 10A,B, we present the simulation results [energy in
panel (A) and HBs in panel (B)] for a system size N = 63, with
γ = 105�t−1, at different τ and the same initial random dis-
tribution. For the case of LBN3d, we report the energy of the
system in suitable dimensionless LB units, i.e., energy per pseudo-
molecule divided by |εHB

kl |. We note that the optimum value of τ ,
meaning by this the value achieving the fastest energy minimiza-
tion, depends on the potential, which explains why the optimum
τ (τ/�t = 1000) is different from the case of LTIP3P. As in
the case of LTIP3P, in the early-time evolution only the over-
relaxation regime (τ/�t = 100 and τ/�t = 1000) reaches the
minimum, supporting faster minimization in the over-relaxation
regime. Here, again the HBs increases with decreasing potential
energy and reaches up to HBs = 4 [52]. Under all circumstances,
it is seen that the optimum τ is always much larger than 1, indi-
cating that LB operates best far from the hydrodynamic regime.

Here, we wish to observe that a nice property of LB is that
beyond the hydrodynamic limit (τ � 1), D is no longer propor-
tional to τ , but actually becomes a non-local operator, leading to
an effective diffusion which scales sub linearly with τ for τ � 1
(see the reference by Blaak et al. 60). This is, we believe, the
reason why LB delivers its best performance beyond the hydro-
dynamic limit. If D were too grow linearly with τ , for τ � 1, it is
unlikely that the scheme would still be able to capture the correct
minimum.

8.2. LTIP3P SIMULATIONS
In Figures 10C,D, we have shown the total potential energy of
the system in units of kJ/mol vs. the LB steps in panel (A) and
their corresponding HBs in panel (B) at different τ but with the

FIGURE 10 | Energy and number of HB vs. LB steps at different τ : (A,B)

for LBN3d and (C,D) for LTIP3P.
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same initial random distribution. In the LTIP3P simulations, a
hydrogen bond is considered to be formed when the distance
between the donor H and the acceptor O is below 2.22 Å. This
value represents the position of the first minimum of the OH
radial distribution in our simulations, signaling a bonded state.
Here, the system size is N = 103 and the damping constant has
been set to γ = 50�t−1. From Figure 10, it is apparent that the
simulation time to reach the global minimum for the largest τ is
about a 100 times shorter than for the case of the lowest τ .

The long time behavior of the simulations shows that differ-
ent τ finally lead to almost the same minimum, as well as the
same HBs, confirming the consistency of the model. As it can
clearly seen from the figure, our results indicate faster minimiza-
tion in the over-relaxation regime. It can also be seen that the HBs
increases with the decrease of the potential energy of the system,
finally arriving at HBs ≈ 4, as expected [5].

We speculate that non-hydrodynamic operation is more effi-
cient because “jumps” are long enough to avoid trapping in
unfavorable minima, and at the same time, short enough to
avoid overlooking the favorable ones. Here by “long enough,”
we mean longer than those associated with standard local dif-
fusion (τ � 1), while “short enough” implies that beyond the
hydrodynamic regime (τ � 1), the effective non-local diffusiv-
ity associated with the LB dynamics scales sublinearly with the
relaxation time τ (see comment in section 8.1).

This is the essence of kinetic over-relaxation: extreme but
not too extreme. Simulations at high Knudsen numbers are not
reproducing Equation 28, as they include higher order, isotropy-
breaking, terms. However, since the goal is to attain the global
minimum and not to reproduce the dynamics associated to a
higher order versions of Equation 28, we are confident that our
results are to a large extent insensitive to anisotropic effects. The
above statement is indeed supported by quantitative comparison
with Monte Carlo simulations as follows.

8.3. COMPARISON WITH SIMULATED ANNEALING MONTE CARLO
In order to validate the model, we have compared our LB results
with simulated annealing MC. In each MC sweep we randomly
rotate the pseudo-molecules, and if the total potential energy of
the system E is lower than the previous distribution, the move is
accepted.

If not, the move is accepted with probability p ∝ e−βE, where β

is proportional to the inverse of temperature T−1. In the annealed
version, β is progressively increased during the MC simulation. In
the present work, the MC scheme is characterized by three types
of moves: (1) global rotations; (2) local rotation; (3) global refine-
ment. In I each molecule rotates about a random axis by a random
angle, chosen in the range [0◦, 360◦]. In (2), we randomly pick
one water molecule and rotate it about a random axis by a random
angle in the range [0◦, 360◦]. (3) is similar to (1), but the random
angles are chosen in a narrower range [0◦, 10◦]. In Figure 11 we
compare both cases, the LBN3d and the LTIP3P, with the simu-
lated annealing MC discussed above. As it can be seen from the
figure, in both cases LB attains the same minimum as in MC,
which provides a validation of the LB model. Although our MC
scheme can certainly be improved (no optimization has been car-
ried out to ensure an optimal acceptance ratio between, say, 0.3

FIGURE 11 | Energy vs. annealing MC sweeps (in blue) and LB steps (in

red) for the LBN3d (A) and the LTIP3P (B). Both the MC and the LB
methods reach the same minimum for the two potentials. In the case of
LTIP3P, the main LB parameters are N = 103, γ = 50�t−1, and τ/�t = 20
and in the case of LBN3d N = 63, γ = 105�t−1, and τ/�t = 1000. The
insets show the very early LB steps/MC sweeps.

and 0.5), the computational performance of the LB minimizer
remains remarkable.

8.4. TIME TO MINIMUM VS. SYSTEM SIZE
Two important quality factors of dynamic minimizers are their
robustness toward changes in the initial conditions and the scal-
ing of the time to solution with the size of the problem. The LB
model is a deterministic minimizer, hence exposed to a sensitivity
to the initial conditions for the minimization of highly corrugated
potentials. However, this sensitivity can be strongly mitigated by
a proper choice of LB parameters. On the other hand, owing to
its strong locality, it features a remarkable linear scaling with the
system size. As a result, the power of the LB minimizer is prob-
ably best displayed for large systems, a statement which is only
accrued by the excellent amenability of LB scheme to parallel
computing [61].

As it can be seen from Figure 12A, the LB model minimizes
water energy based on the LTIP3P at different system sizes within
nearly the same number of LB steps. Contrarily, as it can be seen
from Figure 12B, the number of MC sweeps needed to reach the
global minimum increases with the system size. Since the com-
putational cost of the LB time-step scales linearly with the system
size, we conclude that CPU time-to-minimum is also linear with
the system size. This stands in notable contrast with annealed
MC, where the number of sweeps to reach the global minimum
grows rapidly with the system size [62]. Since each MC sweep
takes about the same CPU time as a LB step, the end result is that
LB becomes increasingly advantageous at larger system sizes. The
simulations were performed on the same computer architectures
and the comparison between MC and LB is based on pure obser-
vational evidence. Namely, we observed that the ratio of CPU time
taken by a single LB step vs. a single MC sweep is about 1.5. This
is plausible, because in both cases, most of the CPU time is taken
by the calculation of the potential and torques, which is basically
the same in the two cases. The next observation is that MC takes
about 100 times more sweeps than LB steps to reach the global
minimum. It should be further noted that even when LB does
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FIGURE 12 | (A) Potential energy for the water model based on the LTIP3P
vs. LB steps with τ/�t = 20 (over-relaxation regime) and γ = 50�t−1 for
different system sizes. (B) Potential energy vs. (simulated annealing) MC
sweeps for two different system sizes. The insets zoom into final energies.

not reach the global minimum, due to a poor choice of the initial
condition, it often attains a close-by local minimum.

As a result, one may envisage a synergistic coupling between
LB as a fast quasi-global minimizer, to be combined with a
subsequent MC minimization taking the system to its global
minimum.

9. CONCLUSIONS AND FUTURE PROSPECTS
Summarizing, we have presented a Lattice Boltzmann model of
water-like fluids based on two well-known three-dimensional
potentials for water simulations, BN3d and TIP3P.

The main results of the Lattice Boltzmann approach to water
modeling presented here are as follows:

(1) The LBN3d model achieves a number of hydrogen bonds in
the expected range, between 3 and 4. It also shows a sensi-
tivity to the shape of radial interactions and sharing between
competing shells of lattice molecules, so that a certain degree
of parametric fine-tuning is required. The choice RHB =
(
√

2 + √
3)/2 in LBN3d model, is found to provide satisfac-

tory results, with HBs pretty close to the top value, HBs = 4
and a qualitatively correct dependence on the effective fluid
temperature, if only in a limited range.

(2) Using TIP3P a qualitatively corrects statistics of the HB angle
has been obtained as a function of the temperature.

(3) As an interesting bonus, the present LB scheme seems to act
as a very effective a dynamic minimizer for the water-like
lattice potential at hand. Under all conditions explored to
date, many more than those reported in the present paper,
it was able to find the near-global minimum starting from
very far initial conditions, and typically significantly faster
than annealed Monte Carlo. More importantly, perhaps, the
time-to-minimum was found to scale linearly with the system
size.

In the first place, a thorough series of validation test must be
undertaken to identify which properties of real water can be
reproduced to the desired level of accuracy: from water-like fluids
to real water. In this paper we have discussed a key one, namely
the capability to form hydrogen bonds, but many others need to
be assessed, depending on the specific application at hand. Given

the mesoscopic nature of the method, it is clear that each property
may exhibit a different sensitivity to the degree of coarse-graining
inherent to the LB representation (molecular individualism).

Once this validation/calibration campaign is completed, the
model can be used to attack several prominent problems in
computational chemistry and biology, for instance, a thorough
investigation of the electrostatic properties, such as screening and
dielectric behavior, are of utmost importance for a highly polar
fluid such as water, or protein folding and aggregation at space
and time scales beyond reach of atomistic simulations.

The present method, based on a minimally discretized ver-
sion of the Boltzmann equation, leads to an efficient way of
coarse-graining in time. This feature, together with the inherent
efficiency of the lattice Boltzmann scheme, potentially allows to
simulate water at larger length and time scales than molecular
dynamics, without loosing (some of) the important microscopic
features which control the main properties of water. Clearly,
the latter statement must be constantly monitored against lat-
tice discretization effects. Since the lattice Boltzmann discrete
velocities have been designed to comply with the basic symme-
tries of continuum hydrodynamics, recovery of hydrodynamic
behavior is automatically secured by the lattices used in this
work, basically with second order accuracy in space and time.
Should higher kinetic moments of the Boltzmann distribution
play a major role on other properties of water, lattices with
higher order symmetries will be required. Such lattices are avail-
able, as they have made the object of intense development in
modern lattice Boltzmann theory. Given the broad use of lat-
tice potentials in statistical mechanics, the approach described
in this paper might open up an interesting direction for future
research on multiscale simulations of micro and nano-biological
phenomena.

The method also offers potential advantages vs. Monte Carlo,
as it provides access to the non-equilibrium dynamics of the
water-like fluid under heterogeneous hydrodynamic conditions.
On the other hand, as compared with traditional models of lattice
proteins, the present LB approach offers the advantage of cou-
pling an explicit model of the solvent with hydrodynamic interac-
tions, as combined with off-lattice representation of the protein.
The present mesoscale approach may also open new perspectives
for MM/QM multiscale simulations of complex chemical systems
[63, 64].

Although extensive work is required to turn the above
prospects into operational tools, the picture looks tantalizing.
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