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We consider the one-dimensional quantum mechanical problem of defining interactions
concentrated at a single point in the framework of the theory of distributions. The often
ill-defined product which describes the interaction term in the Schrödinger and Dirac
equations is replaced by a well-defined distribution satisfying some simple mathematical
conditions and, in addition, the physical requirement of probability current conservation
is imposed. A four-parameter family of interactions thus emerges as the most general
point interaction both in the non-relativistic and in the relativistic theories (in agreement
with results obtained by self-adjoint extensions). Since the interaction is given explicitly,
the distributional method allows one to carry out symmetry investigations in a simple way,
and it proves to be useful to clarify some ambiguities related to the so-called δ′ interaction.
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1. INTRODUCTION
Point (zero-range) interactions have attracted great interest in
quantum mechanics [1–7]. They provide important solvable
models with a wide variety of applications in atomic physics, such
as the Lieb-Liniger [8, 9] model for a one dimensional gas of
bosons interacting by means of a δ-function potential (for other
applications see e.g., [10–12] and references therein). In addition,
point interactions have proven to be a fruitful theoretical labora-
tory to investigate methods of quantum field theory (QFT), such
as regularization and renormalization, in simpler and more man-
ageable models in one and two-dimensional quantum mechanics
[13–15].

The simplest point interaction in one dimensional non-
relativistic quantum mechanics is given by the Dirac’s δ-function
potential, which is well defined and has well-known solutions.
However, attempts to consider more general interactions, such as
that associated with a δ′ potential (the prime indicates a spatial
derivative), have been known to be plagued with difficulties asso-
ciated with the definition of the interaction [6, 16–21] (also see
[22] and references therein).

Mathematically rigorous methods were employed to define
such interactions by obtaining self-adjoint extensions (SAE) of
the kinetic energy operator for Schrödinger’s theory. It was shown
that a four-parameter family of interactions, defined by their
boundary conditions, exhaust all the possibilities for point inter-
actions in non-relativistic quantum mechanics [6, 23, 24] (for a
review of the mathematical literature on this subject see [1]).

Given the somewhat abstract and mathematically involved
nature of SAE, another approach was developed for this sub-
ject, consisting in the investigation of regularizations using
sequences of regular short-range potentials which converge to

point potentials in the zero-range limit [16, 20, 21, 25]. Even
if this method is more intuitive and appealing from a physi-
cist’s point of view, such an approach has often led to ambiguous
and even contradictory results—which, in general, arise from the
dependence of the particular regularizing scheme employed (see,
for instance, [5, 7, 26] and references there cited).

In relativistic quantum mechanics, for a Dirac particle, even
the δ-function potential (which is the most singular interaction
allowed in the Dirac’s equation) is problematic and it is known
to lead to ambiguities [27–30]. Similarly to the non-relativistic
case, the SAE approach implies that the most general point inter-
actions in Dirac’s theory are also given by a four-parameter family
of interactions [31, 32]. The most commonly studied particular
cases of relativistic point interactions correspond to pure electro-
static and pure scalar potentials, which have also been investigated
by regularization through δ-converging sequences of functions,
with results that are, in general, dependent on the regularizing
function used [5, 27, 28].

The situation described above is not entirely new: analogous
difficulties involving regularization ambiguities arise in QFT and
have been successfully addressed by using the Epstein-Glaser
approach to QFT, in which distribution theory is employed from
the beginning and the symmetries of the system are carefully
implemented (see e.g., [33–36] and references therein). In a simi-
lar vein, in this paper we will introduce a distributional approach
to point interactions in quantum mechanics – first announced in
a preliminary version in [37].

The method proposed here starts from the realization that
both the singular potential and the wave function in the
Schrödinger or Dirac equations must be considered as distri-
butions. This precludes the naive definition of the interaction
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term in these equations as the usual product between the wave
function and the potential energy, since such a product is gener-
ally ill-defined in distribution theory [38, 39]. We will introduce
a well defined distribution to play the role of the interaction
term, the properties of which must follow from simple mathe-
matical requirements concerning its support and singular order
(a concept introduced in the next section), besides the physical
requirement of conservation of the probability current across the
singular point. As a consequence, a four-parameter family of dis-
tributions will naturally emerge as the most general point inter-
action in both non-relativistic and relativistic one-dimensional
quantum mechanics, a result which is in complete agreement
with those obtained with the SAE approach [32, 40]. However,
there is an important conceptual difference between the SAE and
the distributional approaches, for while the first characterizes all
the possible point interactions only through the boundary con-
ditions that the wave function must satisfy around the singular
point, the latter explicitly gives the interaction term as a dis-
tribution concentrated at that point—thus, in the distributional
approach the boundary conditions emerge as a consequence of the
properties of the particular interaction distribution substituted
into the Schrödinger or Dirac equations. Thus, the distributional
approach provides an alternative (also mathematically rigorous)
to the method of SAE, with the advantage of being less abstract
(to a physicist) and allowing a more intuitive physical interpreta-
tion of the interaction term, which here is presented explicitly as
a distribution. In addition, the distributional approach can con-
tribute to clarify some ambiguities which arise from the use of
regularizations to treat zero-range potentials – in particular, the
explicit form of the interaction distribution allow us to address,
in a straightforward way, the much debated question about the
existence or not of a “true” (i.e., odd under parity) point interac-
tion associated with a δ′ potential. Notice that a proper definition
of the notion of an odd point interaction is a non-trivial task in
the context of the SAE approach.

It is worth to notice that in this work we are concerned only
to the well-established Schwartz’s theory of distributions, which
considers only distributions defined on spaces of infinitely dif-
ferentiable test functions. An approach based on an alternative
theory of distributions defined on spaces of discontinuous test
functions was also proposed by Kurasov [41], who assumes the
wave function to be a member of a space of test functions and
claims that point interactions cannot be properly defined in the
framework of the standard distribution theory. In the approach
proposed here such a difficulty does not arise because the wave
function itself must be consistently treated as a distribution,
not as a test function. This is analogous to what occurs in the
Epstein-Glaser distributional approach to QFT, in which quanti-
ties defined in terms of quantum fields must be treated themselves
as (operator-valued) distributions [33, 34].

This paper is organized as follows. In section 2 we intro-
duce the distributional approach by considering the Schrödinger
equation with a singular potential of order rs = 1, the most singu-
lar point interaction allowed in non-relativistic one-dimensional
quantum mechanics. In Section 3 we extend our methods to con-
sider Dirac’s equation with a singular interaction of order rs = 0.
Section 4 is reserved for our concluding remarks.

2. SCHRÖDINGER’S EQUATION WITH POINT INTERACTIONS
In this Section we introduce the distributional approach to point
interactions in one dimensional quantum mechanics. We con-
sider distributions defined on the Schwartz space of rapid descent
test functions—for a comprehensive treatment of distributions
see [38], which we follow closely (also see [39]).

For a non-relativistic particle moving under the influence of
a potential energy V(x) which is assumed to be a locally inte-
grable function (i.e., a function integrable in the Lebesgue sense
over every finite interval), the one-dimensional time-independent
Schrödinger equation can be written as (in this section we will
adopt units such that h̄ = 1 and 2m = 1)

d2

dx2
ψ(x) + Eψ(x) = V(x)ψ(x). (1)

Then, by assuming that the wave function ψ is continuous
everywhere, the interaction term, V(x)ψ(x), is well-defined and
corresponds to a locally integrable ordinary function. On the
other hand, potentials which do not correspond to locally inte-
grable functions are called singular, as it is the case of the Dirac
δ-“function” or its derivatives, and only make sense as distribu-
tions. Distributions corresponding to locally integrable functions
are said to be regular. As a consequence, in the case of singular
potentials the Schrödinger equation is in general mathematically
ill-defined, since the wave function itself must be considered
as a distribution and the product appearing on the r. h. s. of
Equation (1) is not a well defined operation for two arbitrary
distributions [38, 39].

The starting point of a distributional approach to singular
interactions is to rewrite Schrödinger’s equation as

ψ ′′(x) + k2ψ(x) = s[ψ] (x), (2)

where k ≡ √
E, the prime indicates a distributional derivative

with respect to x, and the interaction term was substituted by
a distribution s[ψ](x), still to be determined by mathematical
and physical requirements, and which univocally determines the
interaction. Then, in any interval which does not include the
singularities the potential is regular (and the wave function ψ
continuous), and therefore the interaction distribution, s[ψ](x),
coincides with the ordinary product of functions ψ(x)V(x) in
such an interval.

In order to determine the interaction distribution s[ψ](x) let
us define the singular order (or simply the order) of a distribu-
tion, a concept that characterizes the “strength” of the singularity
and plays a crucial role in this approach. The definition of singu-
lar order of a distribution adopted in this work is the extended
concept of order considered by Zemanian (see [38], p. 162–163),
which can be written as follows. A distribution f is said to have
singular order r ∈ Z on a closed finite interval I if f = v(r+2) in
this interval, where v is a distribution corresponding to a con-
tinuous but not differentiable function on I and v(r+2) is the
(r + 2)-th distributional derivative of v (a “derivative of negative
order" means an indefinite integration, as usual). An infinitely
smooth function is said to have order r = −∞. If a distribution
has a finite order the operations of differentiation and indefinite
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integration change its order by +1 and −1, respectively. It follows
that distributions having r ≤ −2 are regular, whereas distribu-
tions having r ≥ 0 are singular. When r = −1 the distribution
can be regular or singular, depending on the case. As some impor-
tant examples, the Heaviside θ distribution has singular order −1
(and it is a regular distribution), while its primitives have r = −2,
and correspond to continuous but not differentiable functions.
The Dirac’s delta δ( = θ ′) and its first derivative δ′ are singular
distributions with singular orders 0 and +1, respectively.

Let us now return to the task of determining the interaction
distribution s[ψ](x). We require that:

(i) supp s ⊆ supp V ;
(ii) the singular order of the distribution s[ψ](x) cannot exceed

the singular order of V(x) in any closed subset of its support,

where supp s indicates the support of the distribution s, which is
the smallest closed set outside of which s equals zero [38]. Both
these requirements are automatically satisfied when V(x) cor-
responds to a regular distribution—here we are just extending
them in a natural way to the case of potentials described by sin-
gular distributions. In particular, requirement (ii) prevents the
introduction of interaction terms even more singular than the
original potential (this is analogous to the minimal distribution
splitting condition introduced in the Epstein-Glaser approach to
QFT [33, 34]).

In this paper we are interested only in singular point interac-
tions, i.e., interactions which vanish everywhere except at a single
point, which is assumed to be the origin x = 0, where they are
singular. Thus, from the requirement (i) above, it follows that
supp s[ψ] = {0}.

We now recall a fundamental theorem from distribution the-
ory (see [38], Theorem 3.5-2, p. 98):

Theorem 1. A necessary and sufficient condition for a distribu-
tion f (x) on R to have a support concentrated at the origin is
that it be a finite sum

f (x) =
rs∑

m = 0

αm δ
(m)(x), (3)

where the αm are (complex) constants, αrs 
= 0, δ(m) is the m-th
derivative of the δ distribution, and rs is the singular order of
distribution f .

From this theorem we conclude that the interaction distribution
s[ψ](x) must be a linear combination of the delta distribution and
its derivatives at the origin, which implies

s[ψ](x) =
rs∑

m = 0

αm[ψ] δ(m)(x), (4)

where rs stands for the singular order of the interaction term, δ(m)

denotes the m-th derivative of the δ-distribution and αm[ψ] are
complex numbers, expressed as linear functionals depending on
the behavior of the wave function around the singular point, i.e.,
αm[ψ] ≡ αm[ψ (0±) , ψ ′ (0±)]. This last condition is needed if

only local interactions are to be considered, and the linearity of
αm[ψ] is required by the superposition principle.

The specification of the singular order rs and of all the coeffi-
cients αm (m = 0, · · · , rs) in Equation (4) uniquely determines
the interaction. However, in order to determine such quanti-
ties we must impose on the system some fundamental physical
requirements and, since we are considering a stationary system, it
is natural to require that

(iii) the probability current must be conserved everywhere –
in particular, it must be conserved across the singular
point;

there is, of course, nothing new about this requirement in itself –
however, when considered together with (i) and (ii) it drastically
reduces the number of free parameters in a point interaction, as
shown below.

From now on, let us restrict ourselves to point interactions
of singular order rs = 1 and look for the most general s[ψ](x)
allowed by the requirements (i)-(iii). We observe that rs = 1 is the
maximum singular order allowed in order to have normalizable
wave functions (i.e., square integrable ordinary functions)—if
rs > 1 were allowed the stationary wave function would have sin-
gular order greater than or equal to zero, and it would necessarily
be a singular distribution.

An example of a potential with singular order rs = 1 is given by
the so-called delta prime potential energy, namely V(x) = γ δ′(x)
with the strength of the interaction γ being a real constant. This
potential, when naively substituted in Schrödinger’s Equation (1),
is well-known to lead to contradictions—see, e.g., [6, 19, 22]. The
reason for such contradictions is that the product ψ(x)δ′(x) can
be defined in distribution theory if, and only if, both the wave
function and its first derivative are continuous at the origin (in
which case it is ψ(x)δ′(x) = −ψ ′(0)δ(x) + ψ(0)δ′(x), see [38])
– but such requirement is not compatible with Schrödinger’s
Equation (1), as a simple analysis of the singular order shows:
both sides of this equation must have the same singular order
at the origin, and the r.h.s. −ψ ′(0)δ(x) + ψ(0)δ′(x) has singular
order +1; henceψ ′′(x),ψ ′(x) andψ(x) must have singular orders
+1, 0, and −1, respectively, which means that the wave function
must be discontinuous at the origin.

Let us return to our task of determining the s[ψ](x) which
corresponds to a point interaction with singular order rs = +1.
According to conditions (i), (ii) and Theorem 1, one must
consider (2) for the most general interaction distribution with
singular order +1 and concentrated at the origin:

s[ψ] (x) = α0[ψ] δ(x) + α1[ψ] δ′(x), (5)

with α1 [ψ] 
= 0. The coefficients α0 [ψ] and α1 [ψ] have yet
to be determined (the δ-function potential, which has singu-
larity rδ = 0, can be obtained as a particular case of the above
interaction by requiring α0 [ψ] 
= 0 and α1 [ψ] = 0).

We recall that taking the indefinite integral of a distribution
decreases its singular order by one. Thus, since ψ must have sin-
gular order −1, any primitiveψ (−1) must have singular order −2,
and corresponds to a function continuous (but not differentiable)
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at the origin. Therefore, by taking the indefinite integral in both
sides of Equation (2), with the interaction distribution given by
Equation (5), we have

ψ ′(x) + k2ψ (−1)(x) = α0 [ψ] θ(x) + α1 [ψ] δ(x) + c1, (6)

where c1 is an arbitrary (complex) constant. In any interval which
does not include the origin both sides of the above equation
equal an ordinary function (in particular, the distribution δ van-
ishes identically in such an interval). Taking into account the
continuity of ψ (−1) at the origin, from the above expression
we have

ψ ′ (0+)− ψ ′ (0−) = α0 [ψ] . (7)

Similarly, taking the indefinite integral of Equation (6), and using
the continuity of any primitive θ (−1) of the distribution θ (since
such a primitive has singular order −2), we conclude that

ψ
(
0+)− ψ

(
0−) = α1 [ψ] . (8)

Equations (7, 8) reflect the fact that the boundary conditions
(b.c.) at the origin are completely determined from the knowl-
edge of the interaction, i.e., from the functional coefficients α0

and α1.
The above b.c. can be written in terms of the wave function

and its derivative by noticing that the most general way to express
the linear functionals α0 and α1 is

�≡
(
α1

α0

)
= M+�

(
0+)− M−�

(
0−) , with �(x) ≡

(
ψ(x)
ψ ′(x)

)
(9)

where M± are 2 × 2 complex matrices yet to be determined.
Equation (9) is a direct consequence of requirements (i) and

(ii) and the solution of the distributional Schrödinger equation
with the general interaction (5). This alone, however, does not
impose any constraints on the form of M± (i.e., on the functionals
α0 and α1); such constraints will come from imposing, in addition
to (i) and (ii), condition (iii).

Conservation of the probability current across the origin
simply means j

(
0−) = j

(
0+) and, since in any interval which

does not include the origin the distribution describing the
probability current coincides with the ordinary product of
functions j(x) = −i

[
ψ∗(x)ψ ′(x) − ψ∗′(x)ψ(x)

]
, both sides of

that equation are well defined and finite for a general point
interaction.

In order to impose (iii) it is convenient first to use the identity
|z + iw|2 − | − z + iw|2 = 2

i (zw∗ − z∗w), which is valid for any
pair of complex numbers z and w, and rewrite the current density
as [42]

L0j(x) = 1

2

[|L0ψ
′(x) + iψ(x)|2 − | − L0ψ

′(x) + iψ(x)|2] ,
(10)

where L0 is an arbitrary non-zero constant inserted for dimen-
sional reasons. Introducing the vectors

V1[ψ] ≡
(

L0ψ
′(0+) + iψ(0+)

−L0ψ
′(0−) + iψ(0−)

)
;

V2[ψ] ≡
(−L0ψ

′(0+) + iψ(0+)
L0ψ

′(0−) + iψ(0−)

)
(11)

the condition of probability current conservation, j(0+) = j(0−),
can be rewritten as the requirement that the vectors V1[ψ] and
V2[ψ] have the same length: V†

2 [ψ]V2[ψ] = V†
1 [ψ]V1[ψ]. Thus,

there must exist an unitary matrix U such that [42]

V2[ψ] = UV1 [ψ] . (12)

The boundary conditions (7–9) can be written in matrix form in
terms of the vectors V1[ψ] and V2[ψ] as

� = A1V1[ψ] − A2V2[ψ] , (13)

with

A1 = 1

2

(−i i
L−1

0 L−1
0

)
, A2 = 1

2

(
i −i
L−1

0 L−1
0

)
, (14)

and after using the condition of probability current conservation,
Equation (12), the above expression for� becomes

� = [A1 − A2 U] V1[ψ] (15)

= 1

2

(−i
[
1 + ei θ (z + w∗)

]
i
[
1 + ei θ (z∗ − w)

]
L−1

0

[
1 − ei θ (z − w∗)

]
L−1

0

[
1 − ei θ (z∗ + w)

]
)

V1[ψ],

where we used the following parametrization for the unitary
matrix U :

U = ei θ
(

z w
−w∗ z∗

)
, θ ∈ [0, π), |z|2 + |w|2 = 1. (16)

After rewriting V1[ψ] in (15) in terms of �(0±) we obtain � in
the form (9), with M± given by

M+ = 1

2

(
1 + ei θ (z + w∗) −iL0

[
1 + ei θ (z + w∗)

]
iL−1

0

[
1 − ei θ (z − w∗)

]
1 − ei θ (z − w∗)

)

(17)

M− = −1

2

(−1 − ei θ (z∗ − w) −iL0
[
1 + ei θ (z∗ − w)

]
iL−1

0

[
1 − ei θ (z∗ + w)

]
eiθ (z∗ + w) − 1

)

then, the b.c. (13) can be rewritten as

R+�
(
0+) = R−�

(
0−) , (18)

where we defined R± = 1 − M±. It is easy to show that
det R+ = −w∗eiθ and that det R− = weiθ . Thus, R+ and R− are
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both invertible if, and only if, w 
= 0, in which case we can write

�
(
0+) = 
 �

(
0−) , (19)

where


 = R−1+ R− = i

w∗

(
sin θ − �(z) L0 (cos θ + 
(z))

− cos θ + 
(z)
L0

sin θ + �(z)

)
, (20)

with 
(z) and �(z) indicating the real and imaginary parts of z,
respectively. From (20), it follows that | det
| = | − w

w∗ | = 1 and

 can be rewritten in the form


 = eiϕ
(

a b
c d

)
, ad − bc = 1, ϕ ∈ [0, π) and

a, b, c, d ∈ R. (21)

The four parameter family of point interactions given by
Equation (21) represents the most general point interactions con-
sistent with a rigorous distributional approach to Schrödinger
equation, under the requirements (i)-(iii) and the condition
det R± 
= 0 [see (18)]. This result is in agreement with the results
obtained by the method of SAE, and corresponds to the case of a
four parameter family of non-separated solutions [40].

From Equations (13, 19) in the case w 
= 0 one can rewrite the
functionals α1 and α0 in terms of�

(
0−) as

� = �
(
0+)−�

(
0−) = (
− 1)�

(
0−) , (22)

from which one can obtain the explicit form of the interaction
distribution as

s [ψ] (x) =
[

c eiϕψ
(
0−)+

(
d eiϕ − 1

)
ψ ′ (0−)] δ(x)

+
[(

a eiϕ − 1
)
ψ
(
0−)+ b eiϕψ ′ (0−)] δ′(x). (23)

Alternatively, one can invert (19) and substitute into (22) to
obtain

s [ψ] (x) =
[

c e−iϕψ
(
0+)−

(
a e−iϕ − 1

)
ψ ′ (0+)] δ(x)

−
[(

d e−iϕ − 1
)
ψ
(
0+)− b e−iϕψ ′ (0+)] δ′(x). (24)

In order to complete the analysis of Schrödinger’s equation with
point interactions, we still have to consider the case in which w =
0 (which reduces the number of free parameters to 2). In this case
both det R± = 0 and, from Equation (12), we obtain

(
zei θ − 1

)
ψ
(
0+)− iL0

(
zei θ + 1

)
ψ ′(0+) = 0, (25)(

z∗ei θ − 1
)
ψ
(
0−)+ iL0

(
z∗ei θ + 1

)
ψ ′(0−) = 0. (26)

The solution of these equations is as follows. If zeiθ + 1 = 0
(z∗eiθ + 1 = 0) we obtain ψ(0+) = 0 with ψ ′(0+) an arbitrary
finite number [ψ(0−) = 0 and ψ ′(0−) arbitrary, respectively].

On the other hand, if zeiθ + 1 
= 0 it follows that ψ ′(0+) =
h+ψ(0+), with h+ = zeiθ−1

iL0(zeiθ+ 1)
= 2�(zeiθ

)
L0|1 + zeiθ |2 a real number

[analogously, if z∗eiθ + 1 
= 0, we have ψ ′(0−) = h−ψ(0−) with

h− = 1 − z∗eiθ

iL0(z∗eiθ+1)
= −2�(z∗eiθ

)
L0|1 + z∗eiθ |2 real]. Therefore, one can sum-

marize the case w = 0 as

ψ ′ (0±) = h±ψ
(
0±) , h± ∈ R ∪ {∞}, (27)

which, for instance, implies that j(0+) = j(0−) = 0. Again, this
result is in agreement with the results obtained from the SAE
approach, and corresponds to a two-parameter family of sepa-
rated solutions [40]. In this case the explicit form of the inter-
action distribution is

s[ψ] (x) = [
h+ψ(0+) − h−ψ(0−)

]
δ(x)

+ [ψ(0+) − ψ(0−)
]
δ′(x) (28)

= [
ψ ′(0+) − ψ ′(0−)

]
δ(x)

+
[

h−1+ ψ ′(0+) − h−1− ψ ′(0−)
]
δ′(x).

The ability to provide explicit forms for the interaction, such
as (23), (24), and (28), in terms of well defined distributions
(consistent with the equation of motion), is the main difference
between the results obtained from the distributional and the SAE
approaches. While both methods coincide in the characterization
of all point interactions by a four parameter family, only the dis-
tributional approach provides such an explicit visualization of the
interaction as a distribution concentrated at the origin, a feature
which allows one to investigate the properties of the interaction
under symmetry transformations in a straightforward way. This
will be used in the next section to properly define the notion of
a point interaction that is odd under parity – a non-trivial task
in the context of SAE (see, for instance, [40] for a broad investi-
gation of the symmetries of the Schrödinger operators with point
interactions).

2.1. SYMMETRY UNDER PARITY TRANSFORMATIONS
Let us investigate the behavior of the Schrödinger Equation (2)
under parity transformations, in order to select subfamilies of
interactions according to their symmetry properties. From (5)
and (15) the interaction distribution can be put in the form

s[ψ](x) = (
δ′(x) , δ(x)

)
�

= (
δ′(x) , δ(x)

)
[A1 − A2 U] V1[ψ], (29)

with the matrices Ai’s given by (14). Defining φ( − x) ≡ ψ(x)
and noticing that ψ(0±) = φ(0∓) and ψ ′(0±) = −φ′(0∓), the
Schrödinger Equation (2) can be rewritten in terms of φ as

φ′′( − x) + k2φ( − x) = (
δ′(x) , δ(x)

)
[A1 − A2 U] σ1 V1 [φ] ,

(30)
where σi (i = 1, 2, 3) indicates a Pauli matrix and V1[φ]
is obtained from (11) by making the substitution ψ → φ.
Performing a space reflection, x → −x, and taking into account
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that δ′( − x) = −δ′(x) and δ( − x) = δ(x) the above equation
becomes

φ′′(x) + k2φ(x) = (
δ′(x) , δ(x)

)
[−σ3 (A1 − A2 U) σ1] V1[φ]

≡ s̃[φ](x). (31)

Since −σ3 Ajσ1 = Aj, (j = 1, 2), and

Ũ = σ1Uσ1 = eiθ
(

z∗ −w∗
w z

)
, (32)

we have that

−σ3 (A1 − A2 U) σ1 = A1 − A2 Ũ. (33)

Therefore, φ solves a Schrödinger equation with an interaction
term s̃[φ](x) which conserves probability across the origin and it
is completely determined by the unitary matrix Ũ .

For a regular potential, the interaction is said to be even under
parity if φ(x) = ψ( − x) is a solution of the same Schrödinger
equation solved by ψ(x). Extending this concept to point inter-
actions, we say that an interaction is even if s̃[φ](x) = s[φ](x),
which is equivalent to the condition Ũ = U . From (32) we see
that this condition is satisfied if, and only if, z = z∗ and w = −w∗.
Thus, for w 
= 0 Equations (20, 21) imply that the interaction
is even if a = d and ϕ = 0, whereas for w = 0 we must have
h+ = −h− < ∞ or h+ = h− = ∞.

As an example of an even interaction we mention the well-
known δ-interaction, given by ϕ = 0, a = d = 1, b = 0 and c
an arbitrary real number. Another example of an even inter-
action is given by the choice ϕ = 0, a = d = 1, c = 0 and b
an arbitrary real number, which corresponds to the interac-
tion term s[ψ](x) = bψ ′(0−) = bψ ′(0+) ≡ bψ ′(0), the so-called
δ′-interaction – which, as it is well-known, does not have the “cor-
rect” (odd) symmetry under parity, as one would expect from
an interaction associated to the “potential” δ′ (see, for instance,
[6, 20, 21]).

Given the “unexpected” behavior of the δ′-interaction under
parity transformations, let us investigate whether the four param-
eter family of general point interactions includes or not any
interaction which behaves under parity in the same way that we
would expect of an interaction associated with an odd poten-
tial. To this end, we recall that for a regular odd potential V(x)
[i.e., V( − x) = −V(x)] it follows that φ(x) = ψ( − x) satisfies
a Schrödinger equation for an interaction term with the opposite
sign with respect to the interaction term in the equation satis-
fied by ψ(x). This is generalized to point interactions by saying
that an interaction is odd under parity if it satisfies the condition
s̃[φ](x) = −s[φ](x). From (29), (31), and (33) this condition is
satisfied if, and only if,

A1 − A2 Ũ = − [A1 − A2 U] . (34)

Condition (34) implies that 
(z) = 0, θ = π
2 and �(w) = −1;

these, together with the unitary condition (16), give �(z) =

(w) = 0. Notice that this case (w = −i 
= 0) is characterized

by a matrix 
 which, according to (20), is the identity matrix.
This corresponds to an interaction term which is identically zero
and proves that there is no point interaction in non-relativistic one-
dimensional quantum mechanics that behaves properly as an odd
interaction. Therefore, point interactions are either even or have
no defined parity under space reflections.

A similar result about the nonexistence of a “genuine” δ′-
interaction was obtained in [20] through a particular regular-
ization procedure. We stress that our result is mathematically
rigorous and independent of regularization, thus helping to clarify
and to put into perspective any result obtained from a regular-
ization procedure. In fact, suppose that a regularized product
ψ(x)Vε(x) is used as the interaction term into the Schrödinger
equation, where Vε is a sequence of regular distributions con-
verging to a point potential V(x) in the zero-range limit ε → 0
(here ε may indicate multiple indices). If in this limit the regular
products ψ(x)Vε(x) converge in the sense of distributions, our
approach implies that the limiting distribution must be a member
(or a subfamily) of the four-parameter family of point interac-
tions described above, which does not contain any genuinely odd
interaction. Thus, we conclude that there is no regularization pro-
cedure which is able to produce an odd point interaction: even
if all the regular products ψ(x)Vε(x) of the sequence are odd
under parity, in the zero-range limit the interaction term will
lose this property. As an illustration of this fact, we recall that in
[16] Šeba demonstrated that if one considers the δ′(x) potential
as the zero-range limit of the particular sequence of (singular)
distributions Vε(x) = [δ(x + ε) − δ(x − ε)] /2ε (for which the
product ψ(x)Vε(x) is well defined for all ε > 0), the interaction
term obtained in the zero range limit corresponds to an impene-
trable barrier, with reflection and transmission coefficients R =
−1 and T = 0 (see also [6])1. Notice that for ε > 0 each reg-
ularized product ψ(x)Vε(x) behaves as an odd interaction, but
in the limit ε → 0 these products converge to an interaction
of the form (28) with h+ = h− = ∞, which corresponds to an
impenetrable δ-interaction – an even interaction under parity
transformations.

3. DIRAC’S EQUATION WITH POINT INTERACTIONS
In this section we generalize the approach introduced in the pre-
vious section to find the most general family of point interactions
allowed in one-dimensional relativistic quantum mechanics, in
the context of Dirac’s equation. Let us first recall that, in one
dimension, the time-independent Dirac equation for a particle of
mass m interacting with a regular potential V(x) is (throughout
this section we adopt natural units, h̄ = c = 1)

(
iαx

d

dx
− βm + E

)
ψ(x) = ψ(x)V(x), (35)

where αx and β are the Dirac matrices satisfying {αx, β} = 0 and
which can be chosen as β = σ3 and αx = σ1, with σi indicating
the Pauli’s matrices. The Dirac spinor ψ(x) can be written in

1Šeba [16] has also shown that the same result holds if one uses as Vε(x) a
sequence of infinitely smooth functions converging to δ′(x) in the sense of
distributions.
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terms of its two components as ψ(x) = (u(x), v(x))T , where T
stands for the transpose.

As it is well known, in the relativistic case even for the simplest
point interaction (i.e., the Dirac delta potential) the interaction
term cannot be naively defined as the product ψ(x)V(x): defin-
ing the interaction as ψ(0)δ(x) is inconsistent with the fact that
Dirac’s equation implies that ψ(x) must be discontinuous at the
origin, as can be seen by equating the singular order in both sides
of the resulting equation. Thus, in the same spirit of the previ-
ous section, we rewrite Dirac’s Equation (35) with the interaction
term substituted by a well-defined interaction distribution,(

iαx
d

dx
− βm + E

)
ψ(x) = S[ψ](x), (36)

where S[ψ](x) is a two-component spinor whose components are
well defined distributions. Similarly, we demand that requirement
(i) and (ii) of the previous section be satisfied. Together with
Theorem 1 these imply that

S[ψ] (x) =
rs∑

n = 0

�n [ψ] δ(n)(x), (37)

where rs is the singular order of the interaction term and

�n [ψ] = (
ϕ0

n[ψ], ϕ1
n[ψ])T

are spinors whose (yet to be deter-
mined) components are linear functionals of the boundary values
ψ(0±), which completely characterize the interaction. However,
the most singular point interaction allowed in the one dimen-
sional Dirac’s equation (which still gives the possibility to build
normalizable wave functions as superpositions of the stationary
solutions) is described by a distribution with singular order zero,
corresponding to a δ interaction. Thus, from now on we restrict
ourselves to consider Equation (37) with rs = 0, which is then
reduced to

S[ψ] (x) = �0[ψ] δ(x) ; �0[ψ] =
(
ϕ0

ϕ1

)
, (38)

where we dropped the subscript “0” in the components ϕ0(1), to
simplify the notation.

Substituting the interaction (38) into Dirac’s equation results
in b.c. for the Dirac spinor given by

ψ
(
0+)− ψ

(
0−) = −iαx�0[ψ] , (39)

as can be seen by taking an indefinite integral of the Dirac equa-
tion and using the fact that the primitive ψ (−1) is continuous
(since rs = 0, this primitive has singular order −2).

The equation resulting from the substitution of (38) into (36)
can be rewritten as two coupled first order equations for u(x) and
v(x), which in turn can be reduced to

v(x) = 1

(E + m)

[
ϕ1δ(x) − iu′(x)

]
, (40)

and a second order equation for u(x):

u′′(x) + k2
r u(x) = (E + m)ϕ0 δ(x) − iϕ1 δ′(x), (41)

with kr ≡ √
E2 − m2. Equation (41) is a Schrödinger-like equa-

tion for u(x) with a singular interaction of order +1.
The solution of (40, 41) follows directly from the results in

section 2. However, before proceeding to obtain the explicit form
of the interaction term, let us first consider the requirement
(iii) of probability current conservation. In one dimension the
relativistic current density is given by j1(x) = ψ†(x)αxψ(x) =
u∗(x)v(x) + u(x)v∗(x); from Equation (40) it follows that
v(0±) = − i

(E + m) u′(0±) and therefore

j1
(
0±) = 1

i(E + m)

{
u∗(0±) u′(0±)− u∗′(0±) u

(
0±)} . (42)

Hence, conservation of the “non-relativistic” probability current
associated with u(x) implies the conservation of the relativistic
current across the singular point.

The formal similarity between (41) and the Schrödinger equa-
tion with the interaction term (5) allows us to find the b.c.
for u and u′ at the origin by identifying (E + m)ϕ0 = α0 and
iϕ1 = α1, so that all the results from the previous section are
also valid for the u-component of the Dirac spinor. Then, by tak-
ing into account (40) we obtain the b.c. for v and for the Dirac
spinor ψ . In fact, it follows from (18) that the vector ϒ(x) ≡(
u(x), u′(x)

)T
satisfies the b.c. R+ϒ(0+) = R−ϒ(0−), with R±

given in section 2. Noticing that ϒ(0±) = Gψ(0±), with the G
matrix defined as

G =
(

1 0
0 i(E + m)

)
,

from the results for the non-relativistic theory it follows directly
that:

(a) If det R± 
= 0 the relativistic b.c. can be written as

ψ(0+) = 
r ψ(0−), (43)

where
r = G−1
G can be written as (the subscript “r” is to
indicate relativistic quantities)


r = eiϕr

(
ar ibr

−icr dr

)
, ardr − brcr = 1, (44)

with ϕr ∈ [0, π) and ar, br, cr, dr ∈ R are (dimensionless)
constants.

(b) If det R± = 0, the relativistic b.c. can be written as

v
(
0±) = ih±

r u
(
0±) , h±

r ∈ R ∪ {∞} . (45)

Therefore, we conclude that, similarly to the non-relativistic
case, there are two possible situations in one-dimensional rel-
ativistic quantum mechanics: for non-separated solutions [case
(a) above] there is a four-parameter family of interactions that
includes all the possible point interactions, and for separated solu-
tions [case (b) above; corresponding to set w = 0 in (16)] the
number of free parameters is reduced to two. Again, this result
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agrees with that obtained by SAE [32] – for works dealing with
particular one-parameter subfamilies of these interactions see
[27–30].

The explicit form of the relativistic interaction term for the
case (a) above can be found from (38), (39), and (43) as

S[ψ] (x) = iαx (
r − 1) ψ
(
0−) δ(x), (46)

whereas for the case (b) we use (38), (39), and (45) to obtain

S [ψ] (x) = iαx

[(
1 0
ih+

r 0

)
ψ
(
0+)−

(
1 0
ih−

r 0

)
ψ(0−)

]
δ(x).

(47)
It is convenient to express (41) explicitly in terms of the parame-
ters in (44) or (45). For case (a), with the interaction term given
by (46), the u-component of the Dirac spinor satisfies [also see
Equation (38)]

u′′(x) + kr u(x) =
[
(E + m)cr eiϕr u(0−)+

(
dreiϕr − 1

)
u′(0−)

]
δ(x)

+
[(

areiϕr − 1
)

u(0−) + br

E + m
eiϕr u′(0−)

]
δ′(x).

(48)

Similarly, when the interaction term is given by (47) [case (b)] the
equation for the u-component reads

u′′(x) + k2
r u(x) = (E + m)

[−h+
r u(0+) + h−

r u(0−)
]
δ(x)

+ [u(0+) − u(0−)
]
δ′(x). (49)

Equations (48, 49) are suitable to analyze the non-relativistic limit
(characterized, as usual, by E → m, kr → k) of Dirac’s equa-
tion. Following a procedure analogous to the one presented in
[43], it can be shown that in the non-relativistic limit v(x) is
the “small” component of the Dirac spinor, whereas the above
Schrödinger-like equations satisfied by the “large” component
u(x) correspond, in that limit, to Equations (23, 27), respec-
tively. Comparing the above equations with their equivalent in the
non-relativistic case [see Equations (23, 28), respectively], we can
establish a one-to-one correspondence between the parameters of
the relativistic and non-relativistic families of point interactions:

ϕ = ϕr, a = ar, b = br

2m
, c = 2m cr, d = dr, (50)

h± = −2m h±
r , (51)

which was also reported in the context of SAE [32]. For instance,
from these relations it is straightforward to see that the relativistic
interaction that corresponds in the non-relativistic limit to a δ-
interaction with strength γ is given by ϕr = br = 0, ar = dr = 1,
cr = γ , which corresponds to the following interaction term in
the Dirac equation

S[ψ] (x) = 1

2
γ (1 + β)ψ(0−)δ(x), (52)

where 1 is the 2 × 2 identity matrix. This interaction is an equal
mix of electrostatic and scalar potentials, which is known to
be a confining interaction [29] (i.e., the transmission amplitude
approaches zero in the limit γ → ∞). On the other hand, the rel-
ativistic interaction given by ϕr = 0, ar = dr = 1, br = −γ and
cr = 0,

S[ψ] (x) = 1

2
γ (1 − β)ψ(0−)δ(x), (53)

is the inverted mix of electrostatic and scalar potentials (also con-
fining [29]) and corresponds, in the non-relativistic limit, to the
interaction given by ϕ = c = 0, a = d = 1 and b = − γ

2m , which
is the so-called δ′-interaction (with strength −γ /4m2). Other
well-known one-parameter subfamilies of relativistic interactions
are the pure scalar (ϕr = 0, br = cr = γ , ar = dr = 1) and pure
electrostatic (ϕr = 0, −br = cr = γ , ar = dr = 1), which do not
correspond in the non-relativistic limit either to a δ or to the
δ′ interaction, as already observed by Benvegnù and Da̧browski
[32]. These are, of course, just some examples of particular
one-parameter subfamilies often studied in the framework of rel-
ativistic quantum mechanics in one dimension; all of them are
included in the four-parameter family of interactions considered
above.

Finally, the results of subsection 2.1, concerning the char-
acterization of non-relativistic point interactions with respect
to their behavior under space reversal (parity transformations),
can be straightforwardly extended to relativistic interactions.
Accordingly, if ψ(x) solves a Dirac equation with the interac-
tion S[ψ](x), the interaction is said to be even under space
reversal if ψ̃(x) ≡ βψ( − x) solves the same equation, and it is
said to be odd if ψ̃(x) solves the Dirac equation for an inter-
action term with reversed sign, −S[ψ̃](x). The conditions that
the relativistic parameters must satisfy to characterize an even
interaction are ϕr = 0, ar = dr for the non separated solutions,
and h+

r = −h−
r < ∞ or h+

r = h−
r = ∞ for the separated solu-

tions. These are exactly the conditions that we would obtain from
the correspondence relationships between the non-relativistic and
relativistic parameters, Equations (50, 51). In a similar way, we
conclude that there is no point interaction which is odd under
space reversal in one dimensional relativistic quantum mechanics.

4. CONCLUDING REMARKS
In this work we considered a distributional approach to treat
singular point potentials in one-dimensional quantum mechan-
ics. The method relies on the fact that any singular distribution
concentrated at a point must be a linear combination of the δ-
distribution and its derivatives (see Theorem 1). This, together
with requirement (ii) (section 2), allows us to substitute the
ill-defined product V(x)ψ(x) in the Schrödinger and Dirac equa-
tions by a well-defined interaction distribution with a given
singular order. Then, the interaction distribution is completely
determined by imposing the physical requirement that the proba-
bility current is conserved across the singularity—notice that even
though the probability current is, in general, ill-defined at the
singularity, it is well-defined on both sides of the singularity, so
that in all the steps we only deal with well defined distributions.
Implicit in the method is a locality condition, i.e., the interaction
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term depends both on singular potential and the wave function at
the vicinities of the singular point.

The application of the distributional approach to both non-
relativistic and relativistic quantum mechanics leads to a four-
parameter family of point interactions, a result in agreement
with that obtained by the method of self-adjoint extensions.
It is important to notice that, while our results coincide with
those of SAE in what regards the characterization of the fam-
ily of all point interactions for Schrödinger’s and Dirac’s the-
ories, there is an important conceptual difference between the
two methods. While in SAE the interaction is defined only in
terms of the boundary conditions around the singular point,
in the present distributional approach the interaction is explic-
itly constructed from simple mathematical and physical require-
ments as an interaction distribution concentrated at the origin,
which implies the boundary conditions satisfied by the wave
function.

The fact that the interaction term is explicitly provided [fol-
lowing from the requirements (i)-(iii) in section 2] makes it
particularly simple to analyze the symmetries of the interac-
tion, as the investigation of parity transformations in sections
2, 3 shows. As one of the main results of the distributional
approach such an analysis shows, in a simple way, why there is
no odd point interaction in one dimension. Indeed, an imme-
diate general consequence of the distributional method is that
any regularization using δ′-converging sequences of functions
for the potential must converge, in the sense of distributions, to
an interaction distribution which cannot be odd under parity.
We conjecture that a failure to satisfy this criterion is at the
origin of the sometimes contradictory results appearing in the
literature of regularization based treatments of zero-range inter-
actions. Notice that, in general, these regularization methods
assume from the start odd sequences of short-range potentials
with the expectation of obtaining an “odd δ′-interaction” in the
zero-range limit (even though, of course, this is no guarantee of
convergence to an odd distribution, as clearly demonstrated by
Šeba [16]).

Finally, we note that the distributional approach to point
interactions developed here offers a mathematically rigor-
ous and less abstract alternative to the (also rigorous) SAE
method. In addition, the method is expected to generalize in
a straightforward way to higher dimensions as well as to more
general interactions in one or more dimensions which still
present open questions, such as the Coulomb potential [44].
Preliminary work applying the distributional approach to the
one-dimensional Coulomb interaction suggests that the fact
that one obtains an explicit form for the interaction distribu-
tion, together with symmetry considerations, may help to clarify
some ambiguities concerning a proper characterization of this
interaction.
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