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1. INTRODUCTION

The quantum pendulum problem has a venerable history stretch-
ing back to the early days of quantum mechanics. First tackled
by Condon in 1928 [1] in its planar variety, the quantum pendu-
lum has since turned up in a number of research areas of atomic,
molecular and optical physics, ranging from spectroscopy to the
stereodynamics of molecular collisions to the manipulation of
matter by external electric, magnetic and optical fields. Although
both the planar and the full-fledged 3D spherical pendular vari-
eties possess analytic asymptotic states [2—10], the planar case
has been explored with particular tenacity [11-19], apparently
because of its prototypical character, dwarfed only by that of few
other systems such as of the harmonic oscillator.

The planar quantum pendulum or planar hindered rotor
problem has been extensively employed to model internal molec-
ular rotation and molecular torsion in spectroscopy [20-22]
and coherent control [23-25] as well as molecular orientation
and alignment in spectroscopy and photodissociation dynamics
[14, 26]. However, unlike the spherical pendulum, the planar pen-
dulum has not been used so far to treat molecules subject to
combined fields [27-32].

The spherical quantum pendulum in combined fields has been
the subject of a recent study based on supersymmetric quantum
mechanics (SUSY QM) [33, 34], which resulted in finding an
analytic solution to the problem for a particular class of states
(the stretched states) and a particular ratio of the dimension-
less parameters that characterize the strengths of the external
fields that restrict the system’s motion to to and fro pendular
librations [35, 36]. A follow-up study [37] revealed a close kin-
ship between the conditions under which an analytic solution is
obtained and the topology of the intersections of the eigenenergy
surfaces spanned by the dimensionless parameters.

In this study, we seek—and find—analytic solutions for three
sets of conditions that render the planar quantum pendulum
problem (corresponding to a planar rotor subject to com-
bined fields) analytically solvable and investigate the relationship
between these sets of conditions and the topology of the pla-
nar pendulum’s eigenenergy surfaces. We also make use of the
analytic eigenfunctions to find the observables of interest—such
as the expectation values of the angular momentum squared
and of the orientation and alignment cosines as well as of the
eigenenergy—likewise in analytic form.

The Hamiltonian of the planar quantum pendulum problem
has the general form

H=B]>+ V() (1)

B d . 2 .
where ] = —z% is the angular momentum and B = % rotational
constant with I the moment of inertia. Note that in what follows
we will assume B = 1, which is equivalent to dividing all energies

by B. In the Hamiltonian of Equation (1) the potential
V(@) =—-ncosh —¢ cos’ 6 (2)

is restricted to the lowest two Fourier terms and —7 < 6 < 7 is
a periodic coordinate. Since the cos and cos® @ terms generate,
respectively, oriented (single-arrow-like) and aligned (double-
arrow-like) states, we term the two interactions orienting and
aligning. Their strengths are characterized, respectively, by the
dimensionless parameters 7 > 0 and ¢ > 0. For n = { = 0, the
Hamiltonian of Equation (1) becomes that of a planar rotor.

This paper is organized as follows: In section 2 we present, in
turn, the cases of a purely orienting interaction, purely aligning
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interaction and of a combined orienting and aligning interac-
tion and identify a condition for the intersections—genuine or
avoided—of the eigenenergy surfaces. We find that the topology
of the intersections can be characterized by a single topologi-
cal index. In section 3, we present three sets of conditions that
lead to an analytic solution of the quantum pendulum prob-
lem and find that these conditions correspond to particular
values of the topological index. In section 4, we provide a sum-
mary of the present work and discuss its connections to related
work.

2. EIGENPROPERTIES

2.1. PURE ORIENTING INTERACTION: » > 0&¢ =0

When the planar rotor interacts with an external field solely
via the orienting interaction, the Schrédinger equation for
Hamiltonian of Equation (1), (H — E)¥ = 0, becomes isomor-
phic with the Mathieu equation [38]

&2

Ix f 4+ [A —2gqcos 2x)]Y =0 (3)
whose characteristic values A for the interaction parameter
q = —2n and coordinate x = %9 are related to the eigenener-
gies E by A =4E, cf. the classic work on the quantum pen-
dulum [1, 11] and also Friedrich et al. and Leibscher and
Schmidt [14, 19]. Then the required 27 periodicity, ¥ (6 +
2m) = ¥ (0), of the problem in the original coordinate trans-
forms into a 7 periodicity, ¥ (x + ) = ¥ (x), in the Mathieu
coordinate. Hence, the admissible solutions to the Schrodinger
equation for Hamiltonian (1) with { =0 are only the even-
order Mathieu cosine elliptic, ce,(6/2; —21n), or sine elliptic,
sexr+2(60/2; —2n), functions. Table 1 lists the Fourier represen-
tations of these states (see the Ist and 4th rows) as well as the
relationships between Mathieu functions with g positive and
negative (the latter needed here) that are obtained upon sub-
stituting x — (/2 —x) or 8 — (w —0) [4, 5, 39]. In Table 1
and in what follows the characteristic values A are referred to
as a and b for the even (ce) and odd (se) parity eigenfunctions,
respectively.

The energy levels and wavefunctions for a pure orienting inter-
action are exemplified in the left panel of Figure 1 for n = 12.5.
While the states below the barrier qualitatively resemble those of
a harmonic oscillator, the states above the barrier approach those

of a free rotor, with (nearly) degenerate pairs of states of even and
odd parity (with respect to 6 = 0).

The dependence of the eigenenergies E of the lowest 11 states
on the orienting interaction parameter 7 is shown in Figure 2.
In the field-free limit, » — 0, the wavefunctions become those
of a free planar rotor (i.e., ce;(x) — cos (rx) or se,(x) — sin (rx)
for r # 0 and cey(x) — 1/+/2); the corresponding energy lev-
els approach a quadratic energy progression. In the strong field
limit, n — o0, the eigenproperties become those of a harmonic
angular oscillator (harmonic librator), which exhibits a linear
progression of equidistant energy levels and a zero-point energy.
The asymptotic expansion of the characteristic values, Equation
(20.2.30) of Abramovitz and Stegun [4], yields the harmonic
librator eigenenergies

Em—n+<v+%>\/ﬁ (4)

where v =0, 1, 2, ... is the harmonic librator quantum number
and /27 the librator quantum.

In Figure 2 we also show the expectation values of the angu-
lar momentum squared, (J%), and the directional characteristics
of the states, the orientation cosine, {cos), and the alignment
cosine, (cos®#), as functions of the orientation parameter 7 for
¢ = 0. Except for the lowest states of each symmetry (i.e., cep and
sep), the states exhibit the Stern wrong-way orientation/alignment
effect [14]: they become first anti-oriented, (cos@) — —1, or
anti-aligned, (cos?@) — 0, at low 7, before conforming to the
direction of the orienting field at large 7.

2.2. PURE ALIGNING INTERACTION: » =0&¢ >0

Next, we consider the case when the planar rotor interacts with
the external field solely via the aligning interaction, i.e., { > 0 and
n = 0. Also in this case, the corresponding Schrédinger equation
is isomorphic with the Mathieu equation (3) but here the char-
acteristic values X for a scaled interaction parameter g = —¢ /4
and coordinate x = 6 are related to the eigenenergies E via A =
E+¢/2, see also Friedrich et al. and Leibscher and Schmidt
[14, 19]. Hence, the required 27 periodicity, ¥ (6 + 27) = ¥ (0),
is satisfied for all four classes of Mathieu functions, i.e., for
even- and odd-order Mathieu cosine-elliptic and sine-elliptic
functions: cexr(6; —¢ /4), sexr+1(0; —¢ /4), ceary1(8; —¢/4), and
sexr+2(0; —¢/4), which are ordered here according to their

Table 1 | Mathieu cosine elliptic (ce) and sine elliptic (se) functions.

Eigenvalue Function Transformation Period Parity Parity
r=0,1,... m=0,1,... (x=0) (x=m/2)
ar ceyrlx; q) = ZAZ" (g) cos 2mx ceyr(x; —q) = (— 1) cey(n/2 — x; q) T Even Even

bor 41 sepry1lx; gl =3 Bzz,;fw' sin(2m+ 1)x seyr+1(x;—q) = (—=1)"ceyr1(x/2 — x; Q) 2 Even Odd

a4 1 cezr1(x: q) = X At V(g cos (2m + 1)x cerri1x; —q) = (= 1)'sepr41(m/2 — x; Q) 27 Odd Even
bori2 sepry2(x; Q) =3 522,;122'((:] sin(2m+ 2)x sexr+2(x; —q) = (= 1)'sey42(x/2 — x; q) bid Odd Odd

The third column shows the relations between functions for positive and negative q. The last three columns list the symmetry properties that pertain to the case of

negative q. The four classes of Mathieu functions are ordered according to their ascending eigenvalues (energetic ordering). Adapted from Gutierrez-Vega et al. [39].
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0[deg]

FIGURE 1 | Eigenenergies and eigenfunctions pertaining to Hamiltonian
of Equation (1). Left panel (A): purely orienting interaction with

n = 12.5, ¢ = 0. Right panel (B): purely aligning interaction with

n =0, ¢ = 25, where the tunneling doublets can be understood as

180

0[deg]

zeroth-order intersection, ¥ = 0, see section 2.3. Wavefunctions of even and
odd parity (with respect to 8 = 0) are drawn in blue and red, respectively. In
the right panel, full versus dash-dotted curves are used to distinguish
between even and odd parity (with respect to 8 = 7 /2).

increasing eigenenergy. Tablel lists these along with their
symmetry and transformation properties for negative values of q.
The corresponding eigenenergies as a function of the parameter ¢
are displayed in Figure 3.

In the field-free limit, { — 0, the eigenfunctions become
trigonometric functions, see above, with the eigenenergies form-
ing a quadratic progression. In the harmonic librator limit,
the asymptotic expansion of the characteristic values, Equation
(20.2.30) of Abramovitz and Stegun [4], yields an equidistant
energy spectrum

Ew—;+(v+%)@ (5)

with a harmonic librator quantum +/4¢ and quantum number
v=0,1,2,...

The energy levels and wavefunctions for a purely aligning
interaction (¢ > 0 and n = 0) are exemplified in the right panel
of Figure 1 for ¢ = 25; their energies are also given in Table 2.
Below the barrier, the levels ay, / byr+1 and apr41/baryr (for
r > 0) form pairwise near-degenerate tunneling doublets in the
harmonic librator limit, split by tunneling through the equatorial
barrier. Hence the members of a given tunneling doublet cor-
relate either with the even eigenfunctions ce of odd order and
the odd eigenfunctions se of even order or with the even eigen-
functions ce of even order and the odd eigenfunctions se of odd
order. The tunneling splitting in the harmonic librator limit, as
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FIGURE 2 | Eigenproperties of the planar quantum pendulum subject to a purely orienting interaction as a function of the interaction parameter 5. The
four panels show the eigenergies and the expectation values of the squared angular momentum, (J2), orientation cosine, (cos 6), and alignment cosine, (cos? 6).

(7%)n

{cos?0),

40

20

-100
10

FIGURE 3 | Eigenproperties of the planar quantum pendulum subject
to a purely aligning interaction as a function of the interaction
parameter ¢. The three panels show the eigenenergies and the

expectation values of the squared angular momentum (J?) and
alignment cosine (cos?6). Note that the orientation cosine vanishes
identically.

obtained from Equation (20.2.31) of Abramovitz and Stegun [4],
becomes

23r+4;%+%e—2§
byy1—ay=by—ay 18 —————— (6)

!

The unbound states exhibit a free-rotor pairing of the levels ay,
! by and aze41 / byry1 (for r > 0) are pairwise degenerate in
the field free limit. Right above the maximum of the potential,
Vmax = 0, there is a single intermediate state at energy Es =
0.1931 (for the present example pertaining to ¢ = 25), which
is also listed in Table 2. We note that also the energy splittings

of pairs of states well above the barrier converge to zero for
increasing .

In Figure 3 we also show the expectation values of the angular
momentum squared, (J%), and the directional characteristic, the
alignment cosine, (cos® #), as a function of the alignment param-
eter ¢ for n = 0. Again, all states except for the lowest even and
odd states (cep and se;) exhibit the Stern effect. Note that the
orientation (cos #) vanishes identically for n = 0.

2.3. COMBINED ORIENTING AND ALIGNING INTERACTIONS: » > 0 &
>0

The potential of Hamiltonian (Equation 1) exhibits two kinds of

minima:
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(a) a global minimum for n 4+ 2¢ > 0 at 6 = 0 where the poten-
tial V(0) can be approximated by

1
VO)~ —(¢+m)+ 5 20+ (7)
yielding bound states with energy levels
1
Evoz—(§+n)+(1/o+5) VAL +2n (8)

and vibrational quanta \/4¢ + 21.

(b) a local minimum for 2¢ > n at & = & in whose vicinity the
potential can be approximated by

1
VO) ~ = —m)+ 5@ —m O —n) )
yielding bound states with energy levels
1
By, == —n+ (vn + 5) VAT =2 (10)

and vibrational quanta /4 — 2.

2
We note that the maximum, Vi = Z—{, of the potential for
the combined orienting and aligning interaction is located at

R
2¢

0 = /2 and with increasing n toward 6 = . However, in order
for that to be the case, n must not exceed 2¢, as there would be
neither a maximum nor a local minimum at 6 = 7.

One can also use Equations (8) and (10) to find a relation-
ship between the interaction parameters n and ¢ at the loci of

0= arccos[ ]; its position shifts with decreasing n toward

Table 2 | Eigenenergies for the Hamiltonian of Equation (1) with
¢ = p? = 25 and 5 = «f, as also displayed in Figure 1 (right panel) and
in Figures 7-9.

n k=0 k=1 k=2 k=3

0 —20.2670 -25 —-29.75 —34.5125
1 —20.2629 —156.5485 -19.75 -24

2 —11.4689 —15.5485 —10.8997 —14.4875
3 —11.3496 —7.3631 -10.8118 —6.1992
4 —4.5570 —7.3631 —3.8735 —6.1992
5 —3.3987 —0.9486 —2.8667 0.3568
6 0.1931 —0.9486 0.9116 0.3568
7 4.3920 5.0669 4.8582 6.1324
8 5.3588 5.0669 5.9178 6.1324
9 13.2809 13.4317 13.6472 14.1848
10 13.3948 13.4317 13.7747 14.1848

Calculated with the Fourier Grid Hamiltonian (FGH) method [40, 41] as imple-
mented in WavePacket software [42] with 512 grid points. Energies above 10000
have been truncated. Cases where analytic eigenenergies/wavefunctions are
available are printed in bold face, see also Equations (28), (35), and (41). For
k=0, then=0,12.3,...states corresponds to Mathieu's states cey, se;, cej,
sey, ... for a purely aligning interaction. We note that no other analytic solutions
were found for value of k < 10 and n < 20.

the intersection of the E,, and E,_ energy levels. For 2¢ > n the
vibrational quanta become approximately equal, and the condi-
tion, E,, = E,_, for the degeneracy of levels localized around the
global and local minima

—(;+n)+(vo+%>@=—(§—n)+<vn+%)\@

(11)
yields
_ (1Y
¢=(2) (12)
with « the difference of the quantum numbers
K=vy— Vg (13)
K
15 0 .1 .2 3
10f ¢ =25 +

10

15
n

FIGURE 4 | Eigenenergies of a planar rotor subject to the combined
orienting and aligning interactions as a function of 5 for a fixed ¢ = 25.
The dotted lines indicate (from bottom to top), respectively, the global
minimum at —(¢ + ), the local/secondary minimum at —(¢ — n), and the
maximum at Z—Z. Also shown are the values of the index x which defines
the loci of the intersections. For « even, the intersections are avoided, for «
odd they are genuine. The red circles indicate the four cases for which
analytic solutions have been found via SUSY, see section 3.
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The index « thus defines combinations of the interaction param-
eters n and ¢ at which the eigenenergy surfaces spanned by n and
¢ intersect. Figure 4 shows the eigenenergies of a planar rotor
subject to the combined orienting and aligning interactions as a
function of 5 for a fixed ¢ = 25. The dashed lines (from bottom
to top) indicate, respectively, the global minimum at —(¢ + n),
the local/secondary minimum at —(¢ — 71), and the maximum at

g of the potential of Equation 2. Also shown are the values of the
topological index «: depending on whether « is even or odd, the
corresponding intersections are found to be, respectively, avoided
or genuine. This alternating pattern of avoided and genuine
crossings follows from the symmetries of the intersecting states,
as described in section 3. Figure 5 shows the eigenenergy surfaces
spanned by the parameters 1 and ¢ pertaining to the lowest six
eigenstates of a planar rotor subject to the combined interactions.
As one can see, at { = 0 or = 0, the energy surfaces correspond
to the Mathieu cases for the purely orienting or purely aligning
interactions described above and shown in Figures 2,3. For £ > 0
and n > 0, the eigenenergy surfaces exhibit the said intersections,
which are found to occur exactly at the loci predicted by Equation
(12) for a given k. As Equation (13) is state-independent, the
number of intersections an energy surface partakes in is equal
to the label n of the corresponding eigenstate: the lowest energy
surface, with n =0, is thus not involved in any intersection;
the first excited state surface, with n = 1, is involved in a first-
order (k = 1) intersection (between nearest doublets); the second
excited state surface, with n = 2, is involved both in a first-order
(k = 1) genuine intersection (between nearest doublets) and in a
second-order (¢ = 2) avoided intersection (between second near-
est doublets), etc. Consequently, at the loci of the x-th order
intersections given by Equation (12), we find an energy level pat-
tern with « single states at the bottom, followed by all other
states which are doubly degenerate. In contrast, there are no
degeneracies arising anywhere in between these intersection loci.

The intersections of the eigenenergy surfaces are visualized in
Figure 6 which shows the energy differences (gaps) between adja-
cent eigenenergy surfaces. The dashed line at n = 2¢ marks the
boundary of the condition < 2¢ at which the potential exhibits
both a maximum, Vi, = g, and a local minimum. By substi-
tuting the condition for the intersection loci, Equation (12), we

obtain
1,

Vinax = ZK (14)

which is independent of either of the interaction parameters but
only reflects the way in which they combine at the intersections.
The full lines correspond to various values of the topological
index x and thus of Vi,x. Therefore, the dashed line crosses the
k = 1 line where the energy of the lowest doublet (states 1 and 2)
coincides with the maximum of the potential; only a single state
(state n = 0) lies below that energy. Analogously, the dashed line
crosses the k = 2 line where the energy of the lowest doublet
(states n =2 and n = 3) coincides with Vi (and two single
states, 0 and 1, lie below that energy), etc.

In the right panels of Figure 6, the zero gap (darkest blue
color) extends along the odd « lines all the way down to the
field-free limit, whereas, in the left panels, the energy gaps along

the even « lines increase slightly when approaching the field-free
limit. Thereby the even and odd lines connect, respectively, to
the genuine and avoided intersections of the planar rotor levels
in the field-free limit, cf. Figure 5. Note that the planar case dif-
fers in this respect from the spherical case where all intersections
are avoided, cf. Figure 3 of ref. [37].

3. SUPERSYMMETRY OF THE PLANAR QUANTUM
PENDULUM

Supersymmetric quantum mechanics [33, 34] is based on

the concept of superpartner Hamiltonians with corresponding

Schrédinger equations

HyV = (ATA+ o)yl = EDy (D

Hyy,? = (AAT + ey, = EPy? (15)
where the symmetry of the construction ensures that
H, (ATwr(f)) = (ATAAT + eAT)w,SZ) — E,SZ)(AW,S”)
Hyay ") =@aa'a+eny, = EVay)  (6)

which serves to establish relations between the eigenvalues,
EW E@ | and eigenfunctions, ¥V, ¢ of the superpartner
Hamiltonians Hj, H,, of Equation (15). For the usual choice of
the constant € being the H; ground state energy, € = E(()l), this
leads to

(17)

i. e., the SUSY partner Hamiltonians are isospectral, where the
intertwining operators A (or A") convert the eigenfunctions of
H; (or H,) into those of H, (or H;), at the same time lower-
ing (or raising) the respective quantum numbers by one; only the
ground state eigenfunction of H; lacks a partner state but is anni-
hilated by the intertwining operator, Awom = 0. In contrast, other
choices of € give often rise to a partial or complete breakdown
of the degeneracy of the energy levels of H; and H, [33, 34], as
encountered in some of the cases studied below.

For applications to SUSY QM in the position representation,
the standard choice of the intertwining operators is

d

d
T
Al = de+w<9) (18)

which leads to the following expressions for superpartner
Hamiltonians

d2
Hy = _W+V1(Q)
2
Hy = e 4 V,(0) (19)
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E,(n.¢)

lowest six eigenenergy surfaces,

FIGURE 5 | Views of the
n=0,1,2,3,4,5 of Hamiltonian (Equation 1) for a planar
quantum pendulum subject to combined orienting and
aligning interactions. The energy surfaces are shown as

functions  of that characterize the
strengths  of, respectively, the orienting and aligning interaction.
Panels (A) and (B) show the eigensurfaces from different
perspectives.

the parameters n and ¢

where the supersymmetric partner potentials V), and V, are
related to the superpotential W(0) via Riccati-type equations

d
V) = W) — %W(O) +e

d
Vy = W2(0) + —W(0) + ¢
do
For a nodeless ground state wavefunction, wél), this allows to
directly calculate the superpotential from a known ground state
wavefunction

(20)

d (1)

Yo
1

we

W(9) = — (21)

which can be inverted to obtain an analytic expression for the
wavefunction provided the superpotential is known

]
5 0(0) o exp (— / wcwdy)
0

While this yields non-singular superpotentials for the standard

choice of the ground state, € = E(()l)

(22)

, singularities of the superpo-
tentials are encountered when choosing an excited state, € = E,(11)
with n > 0, where the singularities arise at the zeros of the excited
state wavefunctions. As a result, the partner Hamiltonians H)
and H, are no longer isospectral [33, 34], see also our results in
sections 3.2 and 3.3.

Throughout what follows we make use of the following Ansatz

for the superpotential

W(0) = acotfd + Bsinf + y csc6 (23)

which is an extension (y term added) of the Ansatz employed
in refs. Lemeshko et al. [35, 36] for the case of the spherical
pendulum. Note that the o term alone is related to the

Rosen-Morse I superpotential whereas a combination of the «
and y terms bears similarity with the Poschl-Teller I superpoten-
tial, cf. Cooper et al. [33].

Then Equation (23) yields the following expressions for the
SUSY partner potentials

W20) FW(0) = (* + y? &) csc? 0
+ (2ay £ y)coth csch
—(+ B —2aB)cosb
—,32 cos® 6

—(a? — B* = 2By) (24)

By identifying the potential of Equation (2) for the quantum rotor
subject to the combined interactions with V| = W2 — W +e,
we obtain:

n=p8-2ap
¢ =p
e =o' — B =28y (25)

In order for the first two terms on the right-hand side of Equation
(24) to vanish, one of the following three conditions must be ful-
filled: (A) x =0and y = 0;0r (B) o = —1/2and y = +1/2; or
(C) @ = —1 and y = 0. Below, we will discuss cases A through C
in turn and show that each is connected with a particular ratio of
n to ¢ and, therefore, with a particular topology of the eigenen-
ergy surfaces, namely case A with ¥ = 1, case B with k = 2, and
case C with k = 3.

The knowledge of the superpotential W makes it pos-
sible to construct the supersymmetric partner potential
Vo, = W2 + W' 4+ ¢, which—apart from the singular terms
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FIGURE 6 | Energy differences (gaps) between adjacent eigenenergy
surfaces of Hamiltonian (Equation 1) for a planar quantum pendulum
subject to combined fields. The energy gaps are shown as functions of the
parameters n and ¢ that characterize the strengths of, respectively, the

logn

orientation and alignment interactions. White lines indicate the loci of the
k-th order intersection of adjacent surfaces, see Equation (12). The dashed
line at n = 2¢ marks the boundary above which the potential exhibits both a
maximum and a local minimum, see section 2.3.

proportional to csc—differs from V; in that the interaction
parameter n is effectively reduced by 28. This makes the
partner potential V, less asymmetric than the original
potential V7.

Furthermore, using Equation (22) one can derive an analytic
expression for the wavefunction from the superpotential W per-
taining to the energy eigenvalue € as obtained from Equation (25).
For the particular superpotential introduced by Equation (23),
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the wavefunction takes the form

Y
Ve () ox (esch)® exp(B cosh) (cot %)

0 aty 0 a—y
x (csc E) (sec E) exp(Bcos€)  (26)

We note that identifying the potential of Equation 2 with V, =
W? + W’ + € furnishes no new superpotentials and thus no new
analytic wavefunctions.

3.1. FIRST-ORDER INTERSECTIONS OR « =1

For @ = y = 0 the superpotential of Equation 23 simplifies to
W = Bsinf (27)

and Equation (25) yields the following expressions for the inter-

action parameters and the energy in terms of the parameter 8 of
Equation (23),

w3
([

= ™
0o

e=—p (28)
In this case (case A), Equation (26) yields an eigenfunction of the
original Hamiltonian H;

wg(l)(ﬁ) o exp(B cos0) (29)
which exhibits a pronounced maximum at 6 = 0, i. e., at the
global minimum of the potential, and decays quickly for larger
values of the angle 6. Since 1//6(1) is nodeless, we conclude that

it corresponds to the ground state wavefunction Wé(l) = wél)

pertaining to the ground-state energy € = E(()l).

The supersymmetric partner potentials obtained from
Equation (25) are

Vi(0) = —B cosh — /32 cos? 0

V,(0) = +Bcost — /32 cos? 0 (30)
i.e., V2(0) = V1(6 £ ), as illustrated in Figure 7. Hence, apart
from a trivial interchange of the global and local minima, the
partner potentials are identical and the ground state wavefunction
of H, becomes

wéz)(é) o exp(— B cosh) (31)
Although the SUSY partner Hamiltonians are completely isospec-
tral, see also Table 2, one should not conclude that SUSY is broken
[33] here, because the ground state wavefunctions wé”(o) and
wéz)w) pertaining to both SUSY partner Hamiltonians H; and
H, can nonetheless be annihilated by the intertwining operator A
and its adjoint AT

Ayl = AtylP =0 (32)

In contrast, there is a one-to-one pairing of all higher eigenstates,
n > 0, which we checked numerically

Ap) o @

ATy oy D (33)
where the odd parity of the intertwining operators A and A'
implies a pairing of even eigenstates of H; with odd ones of H;
and vice versa, see also Figure 7.

The relation between n and ¢ established in Equation (28)
implies that for case A, the topological index k¥ = 1. Hence the
case A Hamiltonian gives rise to one single eigenstate while all
its higher eigenstates occur as doublets. This we corroborated by
a numerical solution to the Schrédinger equation for the case
A Hamiltonian, whose results for (n, ¢) = (5, 25) are presented
in Table 2. As can also be seen in Figure 7, the n-th doublet is
comprised of a state with n nodes near the global minimum
(6 = 0) and a state with n — 1 nodes near the local minimum
(6 = ), which is in agreement with Equations (12) and (13),
thus rationalizing the occurrence of the first-order intersections
characterized by x = 1.

We note that the harmonic oscillator-like states centered at 6 =
0 and at § = 7 with quantum numbers vy and v, differing by one
are of different parity. Hence, their coupling due the potentials
V1.2, which are of even parity, has to vanish, and hence these pairs
of eigenstates are exactly degenerate. This contrasts with the case
of a purely aligning interaction (k = 0), discussed in section 2.2,
where we found a small but finite tunneling splitting.

3.2. SECOND-ORDER INTERSECTIONS OR « =2

For o = —1/2, y = £1/2 the superpotential (Equation 23)

becomes ) )
Wi:—5c0t9+ﬁsin9i5csc9 (34)

and Equation (25) yields the following expressions for the inter-

action strength parameters and for the energy in terms of 3,

n=28
=8
eizixﬂ—ﬁ (35)

From Equation (26) we obtain the case B eigenfunctions for the
original potential V;

0
1/’32(9) X €Oos 5 exp(B cos )

1//6(1_)(9) o sin % exp(B cosf) (36)

Again, ‘pe(}s-) is nodeless, corresponding to the ground state Wél)

with energy et = E(()l) which we will refer to as case B.1. However,
1)

—
excited state wf” with energy e~ = E(ll) which we will refer to as
case B.2.

exhibits a node at 6 = 0 and hence corresponds to the first
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20 T T T

20

V(6), E;, 1;(6)
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1 1 L
—180 -90 0 90 180 =90 0 90 18030
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FIGURE 7 | Superpartner potentials V; (A) and V- (B), eigenenergies (dashed lines) and eigenfunctions (full curves) of Hamiltonian (Equation 1) with
n =5, ¢ = 25, i.e., a first-order intersection with ¥ = 1, see section 3.1.

The SUSY partner potentials for cases B.I and B.2 take the vV, (0) =+ csc? 0 + cotf cscO — B2 cos? 6
form 1 P
= —csc? — — B2 cos’ O (37)
Vli(é) = —2Bcos® — B%cos’ O 2 2

V2+(9) = +csc? 0 — cotf csch —;‘}2 cos? 0 _ n . .
Note that V; (0) = V, (0 £ m) and that the orientation field (o

_ 1 sec? 0 B2 cos? 0 cos ) isabsent both in V5" and in V; . In the vicinity of & = 0, the
2 former potential can be locally approximated by 1/2 — 8% cos? 8
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which is—apart from an energy shift of 1/2—identical with our
k =0 case, i.e., the case of a pure alignment interaction dis-
cussed in section 2.2. This is also reflected by the numerical values
shown in Table 2, i. e., —19.75 — 0.5 = —20.25, which is quite
close to —20.26 or —20.27 found numerically for k = 0.

Figure 8 shows the potentials V; and V2+ along with the corre-
sponding wavefunctions. The ground and first excited states of
V1, see Equation (36), are found to be single states below the
secondary minima. Both of them are annihiliated by the respec-
tive intertwining operators, AT = d/d6 + W=, pertaining to the
superpotential W for case B.1 and W~ for case B.2,

Aty =o

AyYe)=o0 (38)
However, when AT acts on wfl), one obtains
+, (D) 0 (2) o
AT o™ o sec 5 exp(B cos ) (39)

i. e., an analytic expression for the ground state wavefunction of
the SUSY partner potential V2+ at energy €~ = i + B8 —p2 Al
higher states, n > 1, of V] occur in nearly-degenerate tunneling
pairs as long as they are bound (below the maxima of Vj). Like
in the case of a purely aligning interaction (section 2.2), these
states are followed by a single state (here at an energy of 0.9116)
near the energetic barrier at Vipax = 1, whereas all unbound states
form nearly-degenerate free-rotor-like pairs. In general, for case B
we observe that many but not all of the states of V7 with n > 1
have SUSY partner states of V, at the same energies and vice
versa. Furthermore, there are no intertwining relations, such as
Equation (33) in section 3.1, for the wavefunctions any more.
We note that, in general, the superpartner potentials (Equation
37) are not expected to yield isospectral Hamiltonians because of
the singularities in W and V,, which arise from the csc6 term.
However, it is known that in some such cases an accidental degen-
eracy between the spectra of H; and H; (at least partly) remains
due to spatial symmetry, as explained in Chapter 12 of Cooper
etal. [33].

The relation between 1 and ¢ established by Equation (35)
implies that for case B the topological index « = 2. Hence the
case B Hamiltonian gives rise to two single eigenstates while all its
higher eigenstates occur as doublets, see also the numerical data
for (n, ¢) = (10, 25) presented in Table 2 and Figure 8. It can also
be gleaned from Figure 8 that the n-th doublet is comprised of
a state with n + 1 nodes near the global minimum (6 = 0) and
another state with n — 1 nodes near the local minimum (0 = ),
in agreement with Equations (12) and (13), thereby rationalizing
the occurrence of the second-order intersections characterized by
k = 2.In contrast to case A and the concomitant first-order inter-
sections, we note that the harmonic oscillator-like states centered
até = 0and at @ = w with quantum numbers vy and v, differing
by two are of same parity. Hence, their coupling induced by the
(even-parity) potentials V;  does not necessarily vanish, and the
eigenstates occur in nearly degenerate pairs with a finite energy
splitting. However, these splittings converge to zero for increasing
parameter B as the harmonic librator limit is approached.

3.3. THIRD-ORDER INTERSECTIONS OR « =3
For @ = —1, y = 0 the superpotential (Equation 23) becomes

W = —cotf + Bsinf (40)
and so Equation (25) yields the following expressions for
the interaction parameters and the energy in terms of the
coefficient B

n=23p
=45
e=1-p° (41)

Upon substituting from Equation (41) into (26), we obtain the
case C eigenfunction (corresponding to energy €) of the original
Hamiltonian H;

lﬁe(l)(Q) o sin @ exp(p cos0) (42)

which has a node at 0 = 0, i.e., pertains to the first excited state
6(1) = wl(l) with energy € = E§l).
The corresponding supersymmetric partner potentials for case

C take the form

Vi(0) = —3B cost — B? cos* 6

Vo(0) = 2¢sc2 @ —B cosO — ﬂz cos? 0 (43)
i. e., the prefactor of the orientation field (o< cos9) is effectively
reduced from 38 in V] to B in V,. The left panel of Figure 9 dis-
plays the large difference, of 68, in the well depths at the global
and local minima of the original potential V). It accommodates
three single states below the local minima which cannot have
SUSY partner states because the wells of V, are much too shallow;
however, only the middle one of the three states is annihilated by
the intertwining operator

Ayl =0 (44)
All higher states, n > 2, of V] occur in degenerate pairs with
SUSY partner states for V, at exactly the same energies. However,
there are no intertwining relations for their wavefunctions. As
we have already noted in section 3.2, the superpartner potentials
(Equation 43) do not necessarily yield isospectral Hamiltonians
because of the singularities in W and V,. At any rate, we find that
in case C, H; and H, are isospectral, except for the lowest three
states which are absent for H,.

The relation between 1 and ¢ established by Equation (41)
implies that for case C the topological index x = 3. Hence the
case C Hamiltonian gives rise to three single eigenstates while
all its higher eigenstates occur as doublets, see also the numer-
ical data for (n, ¢) = (15, 25) presented in Table 2. As can be
also seen in Figure 9, the n-th doublet arises from a state with
n + 2 nodes near the global minimum (6 = 0) and another state
with #n — 1 nodes near the local minimum (6 = 7). This is in
agreement with Equations (12) and (13), thus rationalizing the
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V(8), Ej, ¥5(6)

n =10, ¢ = 25 for a second-order intersection, k = 2, see section 3.2.

_3 1 1 1 1 35
—-i80 90 0 90 180 -90 0 90 180
f[deg] 6[deg]

FIGURE 8 | Superpartner potentials V; (A) and Vz+ (B), eigenenergies (dashed lines) and eigenfunctions (full curves) of Hamiltonian (Equation 1) with

occurrence of the third-order intersections, x = 3. We note that
the harmonic oscillator-like states centered at @ =0 and 6 = 7
with quantum numbers vy and v, differing by three are of dif-
ferent parity. Hence, their coupling induced by the (even parity)
potentials Vj ; has to vanish, and the eigenstates occur in exactly
degenerate pairs without a tunneling splitting.

A special case of case C is the free rotor, which arises for 8 = 0.
Although its analytic eigenenergies, E,(11) = n?,and eigenfunctions
o sinnf, o cos nf are well-known, it is nevertheless instructive
to discuss the free rotor case from the SUSY point of view, see
also Cooper et al. [33].

The case C superpotential (Equation 40) reduces to

Wi = —cotf

and the wavefunction (Equation 42) simplifies to

wM(6) o sinf (46)

with a corresponding energy Egl) = 1. According to Equation

(43), the vanishing potential, V; = 0, of the free rotor has the
following SUSY partner

V2(0) = 2csc 0 (47)
which has bound states at energies Eflz) = (n+2)?%, ie., again
the three lowest states of the original (free rotor) potential with

() = 0, 1, 1 lie below the minimum, v =2,

eigenenergies Ej | , = min
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-90 0
f[deg]

90

n = 15, ¢ = 25 for a third-order intersection, « = 3, see section 3.3.

180

FIGURE 9 | Superpartner potentials V; (A) and V; (B), eigenenergies (dashed lines) and eigenfunctions (full curves) of Hamiltonian (Equation 1) with

40

1
-90 0 90 180

0ldeg]

of the partner potential which, therefore, cannot have SUSY
partner states.

The SUSY procedure can be repeated, i.e., one can find a new
superpotential such that V, = W3 — W}, + € which yields

W, = —2cotf (48)

whose partner potential, V3 = W7 + W) + ¢, evaluates to
V3(6) = 6esc? 0 (49)

This procedure can be repeated to yield the #n-th potential
Va(0) = n(n — 1) csc* 6 (50)

and the n-th superpotential

W, (0) = ncoth (51)
for the free-rotor case. The eigenenergy
P (52)

pertains to the ground state for states with n > 2 and to the
first excited state for n = 1. As a result, the corresponding
Hamiltonians H,, are isospectral, except that, starting with H,
each subsequent Hamiltonian has one level (two bound states)
less than the previous one. For Hj, as many as one state with n = 0
and two states with n = 1 are lacking, i.e., H has two levels (three
bound states) less that H;.
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We note that the free-rotor superpotential (Equation 51) is
closely related to the Rosen-Morse I superpotential of Cooper
et al. [33], which is likewise shape invariant. This accounts for
the exact solvability of the free-rotor problem.

4. CONCLUSIONS AND OUTLOOK

We undertook a mutually complementary analytic and compu-
tational study of the planar quantum rotor subject to combined
orienting and aligning interactions, characterized, respectively,
by dimensionless parameters n and ¢{. We considered a full
range of interaction strengths, which convert, jointly or sepa-
rately, the planar rotor into a planar hindered rotor or a pla-
nar quantum pendulum or a planar harmonic librator (angu-
lar harmonic oscillator), depending on the values of n and ¢.
Following upon our previous study of the corresponding prob-
lem in 3D (spherical rotor/pendulum), we were concerned with
the topology of the eigenenergy surfaces spanned by the interac-
tion parameters 1 and ¢ as well as with the supersymmetry of
the planar eigenproblem as a means for identifying its analytic
solutions.

Topology. We found that the loci of all the intersections that
arise among the eigenenergy surfaces of the planar quantum pen-
dulum are accurately rendered by a simple formula, Equation
(12). The formula is accurate despite the fact that its derivation
was based on two rather crude approximations, namely a har-
monic approximation of the combined orienting and aligning
potentials and the approximate equality of the vibrational quanta
in Equations (8) and (10) for 2¢ >> n. Furthermore, since the
equation for the loci, Equation (12), and the definition, Equation
(13), of the topological index k are independent of the eigenstate,
the energy levels exhibit a general pattern that only depends on
the values of «: for each «, there are « single states, followed,
in ascending order, by all other states which are doubly degener-
ate. This energy level pattern reflects the fact that above the local
minimum, states can be bound by both the local (F <6 < 7)
and global minima (6 = 0) whereas below the local minimum
states can only be bound by the global minimum. Since the energy
difference between the global and local minima increases lin-
early with «, the number of single states bound solely by the
global minimum increases with « as well (in fact is equal to «).
States bound by both the global and local minima that lie below
the maximum of the potential, Equation (14), occur as doublets.
Interestingly, the above eigenenergy level pattern persists even for
such values of ¥k &~ 10 (2¢ < n) where no local minima occur.
And finally, the intersections are found to be genuine for odd «
and avoided for even k. This is due to the fact that for even «, the
intersecting levels are of same parity and thus can be coupled by
the combined interactions potential which is of even parity. For
odd «, the intersecting states are of opposite parity and so cannot
be coupled by the even-parity potential.

Supersymmetry. By invoking supersymmetric quantum
mechanics (SUSY QM), we have identified three sets of condi-
tions (cases A, B and C) under which the eigenproblem for the
Hamiltonian of Equation 1 pertaining to the planar quantum
pendulum can be solved analytically. As it turns out, each of the
cases implies a certain ratio of the interaction parameters 1 and

¢ and, thereby, a certain value of the topological index «. This
made it possible to identify each case with a particular topology:
case A with k = 1, case B with x = 2, and case C with x = 3.
Whereas cases A and B.1 furnish the ground-state wavefunctions,
cases B.2 and C furnish the first excited-state wavefunctions. The
free planar rotor has been identified as a subcase of case C, one
which exhibits shape invariance and therefore analytic solvability
for all states.

By making use of the analytic wave functions, we evalu-
ated, likewise in analytic form, the observables of interest, such
as the expectation values of the angular momentum squared,
the orientation and alignment cosines, and the corresponding
eigenenergy. These are summarized in Table 3. By virtue of the
SUSY QM apparatus, we constructed for each potential V its
supersymmetric partner potential V, and for cases A and B.I
found the V, ground-state wave functions in analytic form. Apart
from the singularities introduced by the terms proportional to
csc @, the main difference between V7 and V; is that the orient-
ing field () is effectively reduced by 28, which tends to decrease
the well depth of the global minimum while increasing the well
depth of the local/secondary minimum. This reduced asymme-
try of V, compared with V] is the deeper reason why (a certain
number of) single states (which are always localized around the
global minimum) present in V; are absent in V. However, while
in standard SUSY QM (33, 34] only one state is eliminated upon
the transition from Vj to V,, our present analysis shows that the
planar pendulum problem somewhat deviates from this pattern.
In our case A (k = 1), we find strictly isospectral (no state elim-
inated) partner Hamiltonians although SUSY is not broken. In
case B (k = 2), there is one state eliminated, as expected, but
a one-on-one correspondence between higher eigenstates of V;
and V; is incomplete. In case C (¢ = 3), we find that the tran-
sition to V, eliminates no less than the lowest three states! We
came across a similar pattern when inspecting Figure 12.1 of
Cooper et al. [33] for the harmonic oscillator, where it is loosely
attributed to the spatial symmetry of the problem. It is therefore
likely that our findings about the planar quantum pendulum are
related to the symmetry (parity) of the problem and the result-
ing degeneracy patterns as well. Clearly, more work needs to be
done here, with the ultimate goal of developing a theory that
combines supersymmetry and spatial symmetry, SUSY + SY =
SUSYSY.

Last but not least, we note that it has not escaped our notice
that our cases A, B, and C are equivalent to the spherical pendu-
lum problem studied in Lemeshko et al. [36] form = — %, m=0,
and m = %, respectively. However, despite this similarity, there is
an important difference: in the 3D, spherical case, the polar angle
is only defined on a half-circle (0 < 6 < &), with repercussions
for symmetry (e.g., all crossings of the eigenenergy surfaces in 3D
are avoided). In our forthcoming paper, we revisit the spherical
pendulum case.
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