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The drag and momentum fluxes produced by gravity waves generated in flow over
orography are reviewed, focusing on adiabatic conditions without phase transitions or
radiation effects, and steady mean incoming flow. The orographic gravity wave drag
is first introduced in its simplest possible form, for inviscid, linearized, non-rotating
flow with the Boussinesq and hydrostatic approximations, and constant wind and static
stability. Subsequently, the contributions made by previous authors (primarily using
theory and numerical simulations) to elucidate how the drag is affected by additional
physical processes are surveyed. These include the effect of orography anisotropy,
vertical wind shear, total and partial critical levels, vertical wave reflection and resonance,
non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and
boundary layer effects are also briefly mentioned. A better understanding of all of these
aspects is important for guiding the improvement of drag parametrization schemes.
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1. INTRODUCTION
The atmosphere above the boundary layer is almost invariably
characterized by positive static stability, supporting the propa-
gation of internal gravity waves, where buoyancy is the main
restoring force. Related waves exist over a wide range of hori-
zontal scales, from ≈1 km, where the waves are non-hydrostatic,
to ≈10 km, where they are approximately hydrostatic, through
to ≈100 km, where rotation of the Earth becomes important
(inertia-gravity waves), up to ≈1000 km, where the variation of
the Coriolis parameter with latitude must be taken into account
(Rossby-gravity waves) [1]. One of the key permanent sources
for these waves is the Earth’s orography, although other tran-
sient sources exist, for example, thermal contrasts between the
continents and oceans, or atmospheric convection [2].

If these orographically generated waves (hereafter called
mountain waves, for simplicity, although the term is often
reserved for mesoscale waves) are able to propagate energy away
from their sources (i.e., they are not evanescent), they exert a drag
force on the mountains that generate them. In turn, by Newton’s
3rd law, those mountains must exert an equal and opposite force
on the atmosphere. However, while drag on the orography must
obviously be exerted at the surface, the reaction force on the
atmosphere may be distributed in space, and often acts at high
altitudes. For mountain waves whose energy propagates verti-
cally, the levels where the reaction force is exerted are given
by Eliassen-Palm’s theorem [3], or its extension to 3D flow by
Broad [4].

Since the horizontal scales of the shortest mountain waves
(primarily those unaffected by rotation) are smaller than current
grid spacings in global weather and climate prediction mod-
els, these waves cannot be represented explicitly and so must
be parametrized, because they affect the resolved flow [5, 6].
Perceived overestimations in the intensity of westerly winds in

mid-latitudes were initially alleviated by adopting a so-called
“envelope orography” [7, 8], whereby the surface elevation in
mountainous areas is artificially increased by a certain amount.
But a mountain wave drag parametrization was recognized by
Palmer et al. [9] as a more physically satisfactory way of correcting
this bias. Since then, increasingly sophisticated drag parametriza-
tions have been developed and incorporated in large-scale models
[10–19].

Drag not only decelerates the global atmospheric circulation,
but, via thermal wind balance, it also has an impact on tem-
peratures in the stratosphere at high latitudes. The formation of
polar stratospheric clouds, which have an important role in ozone
depletion, is very sensitive to those temperatures [20], and there-
fore to the drag representation. Additionally, it has been shown
recently that the Brewer-Dobson circulation in the stratosphere,
which ascends at the tropics and descends at the poles, con-
tributing to the transport of ozone and other chemical species, is
partially driven by mountain waves, although its primary forcing
is believed to be non-orographic gravity waves [21].

On the other hand, mountain wave drag integrated globally
determines the torque exerted on the Earth by the atmosphere
and vice-versa, which affects the angular momentum budget of
the atmosphere [22, 23]. This budget may be evaluated inde-
pendently using series of the duration of day [24, 25]. There
are known imbalances in the global angular momentum bud-
get as simulated by numerical models, and this may be caused
by errors in drag parametrizations [26–28]. The total terrain-
induced drag may be split into three components: 1. drag asso-
ciated with mountain waves, 2. drag associated with low-level
blocking caused by stratification effects, and 3. turbulent form
drag. There is the possibility, not only that the total drag is
incorrectly estimated, but also that errors in each of these 3
components partially compensate.
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For all these reasons, a fundamental understanding of moun-
tain wave drag is of the utmost importance for the reliability of
the models used to forecast the weather, reproduce the present
climate, and especially predict future climate scenarios, on which
important political decisions are based.

Several field campaigns to investigate flow over mountains
have taken place over the last decades, for example: ALPEX
[29, 30], PYREX [31], MAP [32, 33] and T-REX [34, 35]. These
campaigns were generally carried out by large consortia, an excep-
tion being the smaller-scale campaign in the island of Madeira
reported by Miranda et al. [36]. While they contributed deci-
sively to advance our knowledge about orographic flows, and
included pressure measurements that allowed obtaining rough
estimates of mountain wave drag, their success in this respect was
limited, because of the limited available data sampling and com-
plexity of real-world conditions (see also [37]). This hampered
a more detailed comparison with theory, numerical simulations
and lab experiments, which tend to assume much more idealized
conditions.

There have been numerous reviews about flow over moun-
tains [38–45], some on mountain wave drag parametrization
[46–48], and also a few on the dependence of the resolved drag
on numerical model resolution [33, 49], but none focused specif-
ically on how the drag is affected by different physical processes.
The present contribution aims to fill that gap, trying to show
how accumulated knowledge, primarily from theory and numer-
ical simulations, helps us understand the behavior of mountain
wave drag.

Despite having grown rapidly only over the last 30 years,
the subject has become too vast to cover entirely in a single
review paper. Therefore, I decided to omit here studies focused
on the effects of moisture, phase transitions and precipitation,
radiation, and mean flow unsteadiness. Numerical aspects of
mountain wave simulations, such as resolution dependence, and
aspects directly linked with parametrization, are also, to a large
extent, overlooked. I apologize in advance for failing to acknowl-
edge several excellent investigations, even in the research areas
that are covered here, and also for my probable bias toward
theory.

The remainder of this paper comprises: an introduction to
mountain wave drag in its simplest form in section 2, followed by
an overview of the impact on the drag of various physical effects.
Section 3 deals with orography anisotropy, section 4 addresses
vertical wind shear, and in sections 5 and 6 the effects of total
and partial critical levels are reviewed. Section 7 deals with partial
wave reflection and resonance in layered atmospheres, in section 8
non-hydrostatic effects and trapped lee waves are mentioned, fol-
lowed by rotation in section 9, and specifically nonlinear effects
in section 10. To conclude, section 11 presents a brief overview of
boundary layer effects. The paper ends with a summary of some
open questions and possible future directions in the field.

2. GENERAL FRAMEWORK FOR LINEARIZED MOUNTAIN
WAVES

To understand how different physical processes affect moun-
tain wave drag it is useful to formulate first the mountain wave
problem in its most basic form. Consider the inviscid, adiabatic,

non-rotating, steady, linearized equations of motion with the
Boussinesq approximation:
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Here (U,V) is the mean incoming wind velocity (which is
assumed to depend only on height z), (u, v,w) is the velocity
perturbation associated with the waves, p is the pressure per-
turbation, ρ0 is a reference constant density, b0 = gθ/θ0 is the
buoyancy (where g is the acceleration of gravity, θ is a potential
temperature perturbation and θ0 is a reference constant poten-
tial temperature), and N2 = (g/θ0)d�/dz is the static stability
(where � is the mean potential temperature, assumed to depend
only on z). These five equations for the five unknowns u, v, w, p
and b0 may be combined into a single equation for w,(
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which must be solved subject to appropriate boundary
conditions.

If the waves are forced by an isolated mountain, w (and all
other perturbation variables) must decay to zero as x → ±∞ and
y → ±∞. Additionally, the flow must follow the terrain elevation
at the surface, i.e., in the linearized approximation

w(z = 0) = U0
∂h

∂x
+ V0

∂h

∂y
, (7)

where h(x, y) is the surface elevation and (U0,V0) = (U,V)(z=0)
is the mean incoming wind velocity at the surface. The waves
must also either decay to zero as z → +∞, or their energy must
propagate upward (the so-called radiation boundary condition).

Differentiating (1) with respect to x and (2) with respect to y,
adding the two equations and using also (5) to eliminate u and v,
an equation for p expressed in terms of w is obtained:
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In the linearized approximation, the pressure drag force exerted
on the mountain is given in general by:
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∫ +∞
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where Dx and Dy are the drag components along the x and y direc-
tion, respectively. An important related quantity is the vertical
flux of horizontal momentum associated with the waves,

(Mx,My) = ρ0

∫ +∞

−∞

∫ +∞

−∞
(u, v)w dxdy. (10)

It can be shown using (1, 2, 7), integrating by parts and using also
the horizontal boundary conditions at x, y → ±∞ that:

(Mx,My)(z = 0) = −(Dx,Dy), (11)

which basically expresses Newton’s 3rd law.
If the mountain is isolated and the flow perturbations decay

to zero horizontally away from it, h, w and p may be expressed as
Fourier integrals, viz.
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where ĥ, ŵ and p̂ are the corresponding Fourier transforms, i =√−1, and (k, l) is the horizontal wavenumber vector. When (13)
is inserted into (6), that equation becomes:
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which is sometimes called the Taylor-Goldstein equation. The
lower boundary condition (7) can then be written as:

ŵ(z = 0) = i(U0k + V0l)ĥ. (16)

From (8, 13, 14), it can be shown that:
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On the other hand, using (12) and (14), it is possible to express
(9) in wavenumber space,

(Dx,Dy) = 4π2i
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and also (10) as:
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∫ +∞

−∞

∫ +∞

−∞
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where the asterisk denotes complex conjugate. Treating the wave
problem using Fourier analysis is particularly convenient, because

the criteria determining whether the waves are vertically propa-
gating of evanescent must be specified in wavenumber space.

2.1. DRAG FOR HYDROSTATIC FLOW WITH CONSTANT WIND AND
STATIC STABILITY

If the flow is hydrostatic and both N and (U,V) = (U0,V0) are
constant, all terms within square brackets in (15) vanish except
the first one, which becomes constant. The analytical solution to
that equation is then

ŵ = i(Uk + Vl)ĥeimz, (20)

where

m = N
(
k2 + l2

)1/2

Uk + Vl
(21)

is the vertical wavenumber of the waves and it has been assumed
that N2 > 0, hence N > 0 is real. Note that, for hydrostatic flow
m is always real, which means that all waves propagate vertically.
Equation (21) already implies that the wave energy propagates
upward, since the condition for the vertical component of the
group velocity to be positive is that m and Uk + Vl have the same
sign [50].

If the solution (20) is inserted into (17) and that equation is
used in (18), then
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)1/2
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∣∣∣ĥ∣∣∣2

dkdl, (22)

where (21) has also been employed. If, additionally, the orogra-
phy h(x, y) is assumed to have a height of O(h0) and a width of
O(a) (see Figure 1), (k, l) may be made dimensionless using a as

(k′, l′) = (ak, al), and ĥ using both a and h0 as ĥ′ = ĥ/(h0a2), in
terms of which (22) becomes:

(Dx,Dy) = 4π2ρ0NUah2
0
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) ∣∣∣ĥ′
∣∣∣2
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where U = (U2 + V2)1/2 is the magnitude of the incoming wind
velocity and ψ is the angle it makes with the x direction,
defined by:

U = U cosψ, V = U sinψ. (24)

In (23) the integral is dimensionless, and its numerical value
depends only on the wind direction and shape of the orography.
The drag therefore scales as ρ0NUah2

0 as is well known [51]. In
the case of a circular bell-shaped mountain,

h(x, y) = h0[
1 + (x/a)2 + (y/a)2

]3/2
⇒ ĥ′ = 1

2π
e−(k′2 + l′2)1/2

,(25)
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FIGURE 1 | Schematic diagram of mountain waves for a flow with

ψ = 0. a and b are the mountain half-widths along x and y (for an
axisymmetric mountain b = a) and h0 is the mountain height. Marked in
the figure are flow streamlines (thick black lines), the boundary layer

top (dashed blue line) and rotors (curved green arrows, see section 8).
Note that throughout most of this paper, except in section 11, the
boundary layer is neglected and a free-slip boundary condition is
assumed at the surface.

the value of the drag in any direction is the same, and from
(23), taking ψ = 0 without any loss of generality, the value of the
integral is evaluated to be 1/(16π), so the drag is given by:

D0x = π

4
ρ0NUah2

0, (26)

as found by Smith [52, 53].
It should be noted that, for vertically propagating waves, the

horizontal wavelength and amplitude of the dominant waves can
be estimated from the corresponding orography width a and
height h0, respectively. This implies that ã = Na/U quantifies
non-hydrostatic effects (the flow is highly non-hydrostatic when
ã ≤ O(1) and is hydrostatic when ã � 1), while h̃ = Nh0/U
quantifies flow nonlinearity (conditions are approximately linear
for h̃ � 1 and nonlinear when h̃ is of O(1) or larger). The effects
of rotation can also be estimated in a similar way: if fa/U � 1
(where f is the Coriolis parameter) then rotation is negligible,
while for fa/U of O(1) or larger, it substantially affects the waves.
In the present section it was assumed from the outset that h̃ �
1 and fa/U � 1, and in this subsection in particular also that
ã � 1. These assumptions will be relaxed in the following
sections.

3. OROGRAPHY ANISOTROPY
In general, the orography that generates mountain waves is not
axisymmetric. A useful limit, representative of elongated moun-
tain ranges, is that of 2D orography (say, aligned in the y

direction), where (1–8), (15–17) and (20, 21) in the preceding
section remain valid, provided that ∂n( . . . )/∂yn = 0 (for any
n = 1, 2, 3, . . .) and l = 0 are imposed on them, since the flow is
now independent of y. In that case, the Fourier transforms should
be understood as being 1D (only taken along x) instead of 2D. The
drag, on the other hand, must be defined per unit length along y,
and is given by:

D =
∫ +∞

−∞
p(z = 0)

∂h

∂x
dx, (27)

or

D = 2π i

∫ +∞

−∞
kp̂∗(z = 0)ĥ dk, (28)

as an integral in physical or in wavenumber space, respectively.
Following a procedure similar to that used in the preceding sec-
tion, it can be shown that this drag scales as ρ0NUh2

0 and, for a
bell-shaped mountain ridge,

h = h0

1 + (x/a)2
⇒ ĥ′ = 1

2
e−|k′| (29)

(where now ĥ′ = ĥ/(h0a)), the drag takes the form

D0 = π

4
ρ0NUh2

0, (30)

as is well known [1, 39].
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While the drag on an axisymmetric mountain is aligned with
the incoming wind, the drag on a 2D ridge is always perpendicu-
lar to the ridge (and only depends on the wind in that direction,
as shown by (30)). The considerably more realistic case of flow
over a mountain with an elliptical horizontal cross-section, with
a generic form h(x, y) = h[(x/a)2 + (y/b)2], was considered by
Phillips [51], where b is the width of the mountain along y (see
Figure 1). This kind of geometry is relevant, because it can be
used to represent more accurately the anisotropy of real orog-
raphy. This approach is adopted in each model grid box in the
drag parametrizations of weather forecast models at the European
Centre for Medium-Range Weather Forecasts (ECMWF) [15]
and UK Meteorological Office [17]. Using (23) it can be shown
that, for this geometry, the two components of the drag take
the form

D0x = ρ0NUbh2
0GB(γ ), D0y = ρ0NVbh2

0GC(γ ), (31)

where

G = 16π2
∫ +∞

0
κ2|ĥ′(κ)|2dκ, (32)

B =
∫ π/2

0

cos2 θ(
cos2 θ + γ 2 sin2 θ

)1/2
dθ, (33)

C = γ 2
∫ π/2

0

sin2 θ(
cos2 θ + γ 2 sin2 θ

)1/2
dθ. (34)

γ = a/b is the aspect ratio of the mountain and ĥ is now nor-
malized as ĥ′ = ĥ/(h0ab). G is a coefficient that describes the
variation of the surface elevation in the radial direction.

In (31) the drag components are aligned with the main axes of
the elliptical mountain. The components aligned with the mean
incoming wind and perpendicular to it are [51]

D = ρ0NUbh2
0G

(
B cos2 ψ + C sin2 ψ

)
, (35)

T = ρ0NUbh2
0G(B − C) cosψ sinψ. (36)

Graphs of these two quantities normalized by ρ0NUbh2
0 (D3 and

T3, respectively) are presented in Figure 2 as functions of γ and
ψ . Clearly, the only situations with γ 
= 1 where the drag is
aligned with the incoming wind are when this wind is aligned
with the principal axes of the mountain (ψ = 0o or ψ = 90o).
Otherwise, the drag is oblique to both the incoming wind and the
principal axes of the mountain.

Hines [54] showed that the contribution to the drag given
by wavenumbers within a small angular range surrounding the
direction perpendicular to the mountain is overwhelmingly dom-
inant for elongated mountains with aspect ratios γ < 1/3. For
that reason, he suggested that the drag be approximated as per-
pendicular to the major axis of the mountain in those cases,
and as receiving contributions from two wavenumber directions
symmetrical with respect to the incoming wind otherwise. This
allowed the derivation of analytical drag expressions (involving
an explicit evaluation of approximated forms for (33,34)). These

FIGURE 2 | Normalized drag components parallel (D3) and

perpendicular (T3) to the incoming wind as a function of ψ and γ (see

curve labels for details). Reproduced from Figure 8 of Phillips [51].
© American Meteorological Society. Used with permission.

ideas were used by Scinocca and McFarlane [55] to develop a
General Circulation Model (GCM) drag parametrization.

Bauer et al. [56] and Wells et al. [57] studied the interaction of
orography anisotropy with flow nonlinearity also assuming ellip-
tical mountains, concluding that flow perpendicular to the major
axis of the mountain is substantially more nonlinear than flow
parallel to that axis. Wells et al. [57], in particular, found that
the dependence of the drag on flow direction is quite well cap-
tured by linear theory, but its value is typically underestimated for
flow across the mountain (and overestimated for flow along it).
Wells et al. [57] additionally explored the effect of weak rotation
(fa/U ≈ 0.1), which was shown to introduce a lateral asymmetry
in flow over symmetric mountains, but otherwise did not affect
much the pressure distribution or the drag. Epifanio and Durran
[58] further investigated the joint effects of orography anisotropy
and nonlinearity, showing that in flow across an elongated 3D
mountain the drag may only be approximated accurately by the
drag in flow across an infinite 2D ridge for relatively weak nonlin-
earity, whereas finite anisotropy becomes much more important
for strongly nonlinear flow.

4. INCOMING WIND SHEAR
Blumen and McGregor [59]’s pioneering study used linear theory
to calculate the drag over a 2D and an approximately axisym-
metric mountain, both for an incoming flow with horizontal
shear and for a two-layer atmosphere with positive vertical wind
shear and lower static stability in the bottom layer, and no shear
and higher stability in the top layer. They found that the drag
increased relative to its constant-wind and constant-stability ref-
erence value due to horizontal shear, was higher for flow over a 2D
mountain than for flow over a 3D mountain, and was an oscillat-
ing function of the lower layer height. Blumen and McGregor [59]
interpreted this as due to interference between waves transmitted
and reflected at the interface between the two layers (see section
7 below), but did not systematically explore the behavior of the
drag with the flow parameters.

An important measure of the wind shear in the incoming wind
profile is the Richardson number

Ri = N2

(dU/dz)2 + (dV/dz)2
, (37)
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which quantifies the opposing effects of shear and stratifica-
tion in destabilizing and stabilizing the flow, respectively. In the
cases addressed next Ri > 1/4, which corresponds to dynamically
stable (i.e., non-turbulent) flow.

Smith [52] developed a linear model for lee cyclogenesis,
where he assumed a unidirectional wind profile with constant
negative shear,

U = U0 + αz, V = 0, (38)

where U0 > 0 and α < 0 are constants, and as a by-product calcu-
lated mountain wave drag for hydrostatic, non-rotating flow over
a 2D bell-shaped ridge (29), yielding

D

D0
=

(
1 − 1

4Ri

)1/2

, (39)

where, from (38), Ri = N2/α2, and the drag is normalized here
by the corresponding unsheared reference value (30). Equation
(39) shows that the drag decreases from its unsheared value as
Ri decreases, until it vanishes at Ri = 1/4, where the flow is
expected to become dynamically unstable. Grisogono [60] used
linear theory conjugated with a WKB approximation [61] to cal-
culate additional wind profile effects on the surface drag exerted
by flow over a 2D ridge, finding that the drag increases for a
wind profile with negative curvature at the surface, but decreases
instead for positive curvature.

Grubišić and Smolarkiewicz [62] developed linear and numer-
ical calculations of hydrostatic unidirectional negatively sheared
flow (38) over an axisymmetric mountain that extended those
of Smith [52] to 3D orography. They obtained a semi-analytical
formula for the surface drag,

Dx

D0x
= 1

π

∫ 2π

0
cos2 θ

(
1 − 1

4Ri
cos2 θ

)1/2

dθ (40)

(normalized by (26)), which predicts that the drag is independent
of the sign of the shear rate (a property that actually also applies

to (39)) and that the drag at Ri = 1/4 is non-zero (reducing to
Dx/D0x = 4/(3π)), in contrast with the 2D case. Figure 3 (left
panel) shows the variation of the drag with Ri from (40) and
from numerical simulations by Grubišić and Smolarkiewicz [62]
and Teixeira et al. [50]. The agreement is good down to quite
low values of Ri. Grubišić and Smolarkiewicz [62] also found that
nonlinear effects become important at progressively lower values
of the dimensionless mountain height h̃ as Ri decreases.

For the same kind of wind profile (38), but for flow over a
2D ridge, Wang and Lin [63] investigated the interaction between
shear and nonlinear effects for various flow quantities, using high
values of Ri. They found that the drag could exceed by a large
amount the linear estimate (39), taking normalized values larger
than 2 or 3. For h̃ = O(1) and Ri > 300, negative shear was found
to enhance the drag more than positive shear, but for higher h̃ this
relation was reversed. Curiously, Wang and Lin [63] found that, in
contrast with Grubis̆ić and Smolarkiewicz [62], nonlinear effects
become important at lower values of h̃ as Ri increases. But the
range of Ri and h̃ they considered was much higher: Ri > 20 and
h̃ > 0.8, while in Grubišić and Smolarkiewicz [62] Ri ≤ 9 and
h̃ ≤ 0.3, which perhaps explains the difference.

Teixeira et al. [50] developed a linear, hydrostatic model based
on the WKB approximation to evaluate effects on the surface drag
of generic, relatively slowly-varying wind profiles. They aimed to
explain why in flow with constant shear over a 3D mountain the
drag decreases with Ri (as in [52] or [62]), whereas for a direc-
tional shear flow where the wind turns with height at a constant
rate keeping a constant magnitude, expressed as:

U = U0 cos (βz), V = U0 sin (βz) (41)

(where β is a constant), the drag increases instead as Ri decreases,
as originally shown by Miranda [64] and confirmed by Valente
[65]. Teixeira et al. [50] found that only a 2nd-order WKB
approximation is able to capture shear corrections to the surface
pressure that are asymmetric with respect to the obstacle, and
thus that modify the drag. Figure 3 shows the drag for hydrostatic
flow over an axisymmetric mountain for the wind profiles (38)

FIGURE 3 | Normalized drag as a function of Ri . Left: drag for
wind profile (38) as given by (42) (solid line), from (40) (dotted line),
and from numerical simulations (symbols). Right: drag for wind
profile (41) as given by (43) (solid line), from Grisogono [60] (dashed

line), from the corresponding high-Ri asymptotic limit (dotted line),
and from numerical simulations (symbols). Reproduced from Figures
1, 7 of Teixeira et al. [50]. © American Meteorological Society. Used
with permission.

Frontiers in Physics | Atmospheric Science July 2014 | Volume 2 | Article 43 | 6

http://www.frontiersin.org/Atmospheric_Science
http://www.frontiersin.org/Atmospheric_Science
http://www.frontiersin.org/Atmospheric_Science/archive


Teixeira Orographic gravity wave drag

and (41), respectively, which is given by WKB theory [50] as:

Dx

D0x
= 1 − 3

32Ri
,

Dy

D0x
= 0, (42)

Dx

D0x
= 1 + 5

32Ri
,

Dy

D0x
= 0, (43)

respectively. Although in (41) the wind turns with height, and so
does the drag in numerical simulations for sufficiently low Ri, this
is not captured by (43). However, the behavior of the drag com-
ponent aligned with the surface wind (Dx) is reproduced quite
accurately. It is easy to show that (40) asymptotically approaches
(42) as Ri → ∞.

Teixeira and Miranda [66] addressed the simpler case of flow
over a 2D ridge, where for the linear wind profile (38) the drag
was found to vary with Ri as:

D

D0
= 1 − 1

8Ri
, (44)

which is clearly the asymptotic limit of (39) as Ri → ∞. For
wind profiles with curvature, Teixeira and Miranda [66] obtained
results qualitatively in agreement with those of Grisogono [60].

Teixeira and Miranda [67] extended these calculations to flow
over mountains with an elliptical horizontal cross section, such as
assumed by Phillips [51], obtaining corrections to the drag due to
wind profile effects that are in a form suitable to be implemented
in the ECMWF drag parametrization [15]. These corrections, like
those in Teixeira et al. [50] and Teixeira and Miranda [66], do not
depend on the detailed shape of the orography, a property that
relies on the hydrostatic assumption. The impact of these correc-
tions on the drag at the global scale and on the integrated torque
exerted by mountains on the atmosphere was evaluated using
reanalysis meteorological data and orography representative of
the real mountain ranges around the world by Miranda et al. [68].
They found that positive corrections to the drag may be impor-
tant in localized regions such as Antarctica, perhaps contributing

to a slight alleviation of the westerly bias exhibited by the drag
torque.

More recently, Tang et al. [69] extended the model of Teixeira
et al. [50] to a non-Boussinesq atmosphere. They showed using
hydrostatic linear theory with a 2nd order WKB approximation
that, for constant-shear flow over an axisymmetric mountain, the
drag behavior depends on the sign of the shear. Figure 4 repro-
duces their results, for the linear wind profile with directional
shear

U = U0 + αz, V = U0, (45)

showing that the drag, which in the Boussinesq approximation is
given by:

Dx

D0x
= 1 − 3

32Ri
,

Dy

D0y
= 1 − 1

32Ri
(46)

(as shown originally by Teixeira et al. [50]), decreases more slowly
with Ri when the shear is negative and faster when the shear is
positive.

5. TOTAL CRITICAL LEVELS
A total critical level (also sometimes called 2D or unidirec-
tional critical level) may be defined as a level in the atmosphere
where the Taylor-Goldstein Equation (15) has a singularity for all
wavenumbers in the mountain wave spectrum at the same time.
This can occur when either (U,V) = 0 in flow over 3D orogra-
phy, or when U = 0 in a flow which may have directional shear
over 2D orography for which l = 0. Eliassen and Palm [3] have
shown that for low-amplitude 2D mountain waves that propagate
vertically, the vertical flux of horizontal momentum only varies at
these critical levels, where the reaction force to the drag exerted
on the mountain acts on the atmosphere. Eliassen-Palm’s theo-
rem does not, however, specify in which way this momentum flux
varies, or the value of that force.

Booker and Bretherton [70] were the first to undertake that
task. They found that, for linear flow, the momentum flux is

FIGURE 4 | Normalized x (left) and y (right) components of the drag

as a function of Ri for the wind profile (45). The solid and dash-dotted
lines correspond to non-Boussinesq calculations (with different signs of α –

see legend), and the dotted line is the original Boussinesq result (46).
Reproduced from Figure 1 of Tang et al. [69] with kind permission from
Springer Science and Business Media.
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always absorbed by critical levels, being attenuated by the factor

exp

[
−2π

(
Ric − 1

4

)1/2
]
, (47)

where Ric is Ri at the critical level zc. This means that, unless Ric
is of O(1), there will be total absorption of the wave momentum
flux, by a process which does not depend on viscosity and can be
captured in an inviscid framework.

Booker and Bretherton’s results were for low-amplitude waves.
In the case of larger-amplitude, nonlinear mountain waves,
Breeding [71] showed that total critical levels behave in a sim-
ilar way to that predicted from linear theory (i.e., leading to
nearly total momentum flux absorption) for Ric ≥ 5, but reflect
a substantial amount of wave energy when 0.25 < Ri < 1. They
estimated the amount of reflection as 35% for Ric = 0.53 and 7%
for Ric = 2.12, but were unable to establish a relation between the
reflection coefficient and the wave amplitude (i.e., nonlinearity).

As a mountain wave, or an internal gravity wave in general,
propagates toward a critical level, the magnitude of the associ-
ated horizontal velocity fluctuations increases indefinitely in the
inviscid linear approximation [70]. This would necessarily lead
to dynamical instability. Through linearized calculations includ-
ing viscosity, Fritts and Geller [72] derived criteria for the viscous
stabilization of critical levels, whereby this kind of instability is
prevented. They concluded that the flow is stabilized if the vis-
cous length scale associated with the critical levels is somewhat
larger than the depth of the layer that becomes unstable in inviscid
conditions. From this general criterion, they inferred that inter-
nal gravity waves should be stabilized by viscosity only at heights
above 130 km. They pointed out, however, that if the atmosphere
is turbulent, an eddy viscosity replaces the molecular viscosity in
the definition of the viscous length scale, and so waves in the tro-
posphere become typically stable at critical levels. Figure 5 shows
the variation of the wave momentum flux at a critical level from
viscous and inviscid theory.

Clark and Peltier [73] and Scinocca and Peltier [74] used the
concept of wave reflection at a total critical level to explain the
occurrence of downslope windstorms and high-drag states in 2D
mountain waves. Scinocca and Peltier focused particularly on the
effect of the Richardson number at the critical level Ric. (see
section 7).

McFarlane [11] developed a drag parametrization based on
results from linear theory, where the effect of wave saturation
was taken into account in flows with directional shear. The dis-
tribution of stress with height was calculated by prescribing that
the wave amplitude be limited due to wave breaking associated
with the decay of density with height, or critical levels, which they
defined as the levels where the wind becomes zero in the direc-
tion of the surface wind. This definition, which is independent of
the orography orientation and thus not strictly consistent, nev-
ertheless allows directional shear flows to be treated using the
conceptual framework of total critical levels.

Grubišić and Smolarkiewicz [62] extended the work of Booker
and Bretherton [70] by camputing the wave momentum flux
absorption at a critical level for waves generated by a 3D moun-
tain. For a mean incoming flow with the form (38), they obtained

FIGURE 5 | Profile of the momentum flux in a region containing a total

critical level (at ζ = 0, where ζ = (k|α|/ν)1/3z is height scaled by the

viscous length scale, with ν being viscosity) for high Ric . Solid line:
Viscous theory, dashed line: inviscid theory. Reproduced from Figure 4 of
Fritts and Geller [72]. © American Meteorological Society. Used with
permission.

the following attenuation factor

exp

[
−2π

(
Ric

k2 + l2

k2
− 1

4

)1/2
]
, (48)

where the difference from (47) results from the factor (k2 +
l2)/k2. This implies that waves with a wavenumber vector perpen-
dicular to the mean flow (k = 0 and l 
= 0) are totally absorbed,
no matter how low Ric is, whereas the attenuation of waves with
wavenumber vectors parallel to the mean flow (l = 0) is similar
to that of 2D waves.

Following Lindzen and Tung [75], but carrying out a more
systematic exploration of parameter space, [76, 77] used linear
theory to address wave ducting, and its implications for downs-
lope windstorms, in flow over 2D mountains. They treated cases
where both Ric > 0.25, and thus the critical level absorbs upward
propagating waves in accordance with (47), and cases where Ric <
0.25, where the waves are unattenuated, but instead amplified by
the critical level, in what has been termed “overreflection” [75].

Lott [78] addressed trapped lee wave absorption at the crit-
ical level that exists at the surface due to the no-slip boundary
condition. Using a linear model including viscosity, he concluded
that absorption of wave momentum at the surface is insignificant
for Ric < 0.25 at high Reynolds number Re, leading to long-
lived trapped lee waves, whereas it becomes progressively higher
as Ric increases for Ric > 0.25. Lott [78] also found that wave
absorption for Ric > 0.25 is always smaller than predicted by both
inviscid critical-level theory and simplified models that represent
friction as a Rayleigh damping (e.g., [49]).
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6. PARTIAL CRITICAL LEVELS IN FLOW OVER 3D
MOUNTAINS

Partial critical levels (also called 3D or directional critical lev-
els) are levels in flow with directional shear over 3D mountains
where the Taylor-Goldstein Equation (15) becomes singular, but
not for all wavenumbers in the wave spectrum simultaneously.
Mathematically, they are defined by the condition

Uk + Vl = 0, (49)

implying that the mean incoming wind (U,V) and the horizon-
tal wavenumber of the waves (k, l) are perpendicular. Unlike total
critical levels, which affect the whole wave spectrum at a single
well-defined height, the height of partial critical levels depends
on the azimuthal angle of the wavenumber. For this reason,
these critical levels only exist for 3D orography, which contains
wavenumbers with a range of orientations.

Using linear theory, Grimshaw [79] derived for the first time
an expression for the momentum flux absorption at partial criti-
cal levels. The attenuation of the momentum flux in the absence
of rotation for a linear wind profile expressed by:

U = U0 + αz, V = V0 + βz, (50)

where V0 and β are constants, was given by:

exp

{
−2π

[
N2(k2 + l2)

(αk + βl)2
− 1/4

]1/2
}
. (51)

Equation (48) can be viewed as a particular case of (51) when the
flow is unidirectional (V0 = β = 0).

Shutts [80] noted that most drag parametrizations assume that
the wave momentum flux is associated with a single monochro-
matic wave, following [11]. He tried to improve that situation
by calculating the wave momentum flux in flows with direc-
tional shear over 3D mountains using hydrostatic linear theory.
He developed a practical approach to compute the momentum
flux over anisotropic orography, described in the spectral domain,
including a selective critical-level absorption effect. Shutts [80]
and Shutts and Gadian [81] supported this approach by cal-
culating the momentum flux for idealized flow with constant
directional shear over an axisymmetric mountain (a particular
case of (50)) and also for a wind that turns with height, (41).
They assumed that Ric � 1, and thus that all momentum flux
is totally absorbed at critical levels (see also [82]). Shutts and
Gadian [81] also carried out numerical simulations that showed
that the momentum flux (and the drag) can be substantially
underestimated by linear theory, and can exit laterally from the
domain at high levels due to spreading of the wave pattern away
from its source (see Figure 6), even for hydrostatic flow. This has
implications for drag parametrizations, which typically adopt a
single-column approach.

Concurrently, Broad [4] used linear theory to generalize the
Eliassen-Palm theorem [3] to flows with directional shear over
3D orography. The extended theorem states that:

U(z)
dMx

dz
+ V(z)

dMy

dz
= 0. (52)

FIGURE 6 | Normalized momentum fluxes as a function of height for

the wind profile (41) at very high Ri . Dashed line: infinite-area linear
solution, dash- dotted line: linear solution taking into account the finite

domain extent, solid line: numerical simulations. Reproduced from
Figure 12 of Shutts and Gadian [81]. Copyright © 1999 Royal
Meteorological Society.
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This implies that the momentum flux divergence d(Mx,My)/dz,
which corresponds to the drag exerted on the atmosphere, is per-
pendicular to the wind at each height, and that the momentum
flux (Mx,My) will not change unless the wind turns. This result
places a strong constraint on the momentum flux profiles, which
is of key importance for including directional shear effects in
drag parametrizations. Broad [83] also considered the question of
whether gravity waves in a directionally sheared flow break or not.
This question was prompted by the fact that, before they reach a
unidirectional critical level, finite-amplitude waves always over-
turn, since their amplitude tends to grow without bound before
being dissipated. In directionally sheared flows, due to the nature
of partial critical levels, this effect would be expected to be weaker.
Using linear theory conjugated with ray tracing to clarify this
issue, Broad [83] concluded that wave breaking always occurs.
This depletes the momentum flux above wave breaking zones,
qualitatively in the same way as critical level absorption in the
linear analysis of Shutts and Gadian [81]. However, Broad’s flow
overturning condition was formulated in Fourier space, which
seems questionable.

Doyle and Jiang [84] reported observations of mountain waves
over the south-western French Alps during the MAP campaign.
These waves were of relatively small amplitude, and were embed-
ded in a large-scale flow with substantial directional shear. They
observed that the amplitude of the waves decreased rapidly with
height (by about 50%) in a layer with directional shear where the
wind turned by about 90o. This provided the first experimen-
tal support for the prediction by linear theory (e.g., [80, 81]) of
momentum flux absorption by partial critical levels in flow with
directional shear, highlighting the importance of representing this
effect in drag parametrizations.

Using hydrostatic linear theory conjugated with a 3rd-
order WKB approximation, Teixeira and Miranda [85] devel-
oped calculations of the momentum fluxes associated with
mountain waves for generic (albeit slowly-varying) wind pro-
files over axisymmetric mountains, at values of Ri of O(1).
Unlike Shutts [82] and Shutts and Gadian [81] (for Ric � 1),
Teixeira and Miranda [85] found that wave absorption at crit-
ical levels at low Ri is not total, but rather the attenuation
factor is:

exp

{
−2π

N(k2 + l2)1/2

|(dU/dz)ck + (dV/dz)cl|

×
[

1 − 1

8

((dU/dz)ck + (dV/dz)cl)2

N2(k2 + l2)

]}
, (53)

where the subscript c denotes values taken at the critical level.
This further generalizes (51) to generic wind profiles with rel-
atively high Ri (although actually it has good accuracy down
to Ri ≥ 0.5). For the wind profile (50), (53) is the asymp-
totic limit of (51) for Ri → ∞. Figure 7 shows the normalized
momentum flux for the wind profile (41), given by Teixeira and
Miranda [85] as:

Mx(βz/π = 1)

D0x
= −

(
1 + 5

32Ri

)
exp

[
−2πRi1/2

(
1 − 1

8Ri

)]
, (54)

FIGURE 7 | Normalized momentum flux at the height βz/π = 1 as a

function of Ri for the wind profile (41). Solid line: (54), dashed line:
Ri � 1 limit (total absorption), symbols: numerical simulations for different
values of h̃: circles: 0.01, squares: 0.1, triangles: 0.2, diamonds: 0.5.
Reproduced from Figure 5 Teixeira and Miranda of [85]. © American
Meteorological Society. Used with permission.

at a height where the wind has turned by an angle of 180o, and
therefore the momentum flux has been filtered for the whole of
the wave spectrum. Teixeira and Miranda [85] found that the
momentum fluxes normalized by the surface drag in the absence
of shear, like the surface drag, do not depend on the detailed shape
of the orography, and may be expressed as 1D integrals, while the
momentum flux divergence, which corresponds to the drag acting
on the atmosphere, has a closed analytical form for generic wind
profiles.

Xu et al. [86] used linear theory, conjugated with linear wind
profiles and orography similar to those considered by Teixeira and
Miranda [85] to show that the wave momentum flux turns with
height in the same direction as the mean incoming wind, but by a
smaller angle, and the vertical divergence of the momentum flux
always vanishes at the surface, pointing perpendicularly to the left
(right) of a mean flow that backs (veers) with height. This diver-
gence was found to attain a maximum at a height proportional
to the wind speed at the surface and inversely proportional to
the shear intensity, of higher magnitude for large wind turning
angles and low Ri. These findings are consistent with the results
of Teixeira and Miranda [85], but had not been explicitly stated by
them. Using nonlinear numerical simulations of the same flow for
h̃=0.0125, 0.625, 1.25 and 2.5, [87] showed that, when h̃ = 0.625
the momentum fluxes are enhanced by nonlinear effects. For h̃ =
1.25, low- and high-drag states are produced for different wind-
turning angles, depending on whether flow over the mountain or
flow around the mountain (with lee vortices) are preferred.

Very recently, Teixeira and Yu [88] extended the model of
Teixeira and Miranda [85] to mountains with an elliptical hor-
izontal cross-section, bringing it one step closer to a concrete
parametrization proposal. They also developed the necessary the-
ory for the situation where the wind turns non-monotonically
with height or by an angle larger than 180o, where there is more
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than one critical level per wavenumber of the wave spectrum. It
is then necessary to split the atmosphere into various layers, and
express either the momentum flux or its divergence as a function
of the momentum flux at the bottom of each layer.

7. PARTIAL WAVE REFLECTION AND RESONANCE
Since their first systematic recordings [89], downslope wind-
storms are known to be associated with high-drag states, where
the drag is several times larger than expected from linear theory.
High-drag states are thought to be caused by resonance associ-
ated with vertical wave reflection with constructive interference
at sharp variations in atmospheric parameters.

Peltier and Clark [90] found that, for constant wind profiles,
high-drag states can be explained by processes incorporated in
Long’s nonlinear wave model of flow over 2D mountains (see
section 10). Other nonlinear effects, intrinsically related to the
wind variation with height, could only be reproduced by numer-
ical simulations (e.g., highly nonlinear trapped lee waves). Peltier
and Clark [90] introduced the concept of wave amplification by
reflection at self-induced (wave-overturning) critical levels, sug-
gesting it as the key mechanism behind high-drag states. In order
to investigate this issue further, Clark and Peltier [73] carried out
numerical simulations with an incoming flow of the form

U = U0 tanh [(z − zc)/d] , (55)

where d is the depth of the shear layer surrounding the crit-
ical level. In these simulations, where the Richardson number
Ric = N2d2/U2

0 was kept above 0.25, resonant drag enhancement
corresponding to constructive interference between upward and
downward propagating waves below zc was observed for:

zc =
(

3

4
+ n

)
λz, (56)

where n is an integer number and λz = 2πU0/N is the hydrostatic
vertical wavelength of internal gravity waves in the constant-wind
layer near the surface. Figure 8 displays the variation of the drag
with zc/λz, clearly showing the spacing of λz between maxima,
which is twice the value expected from linear resonance theory
(see below).

Smith [91] developed a different “hydraulic” approach, using
a hydrostatic version of Long’s equation to simulate flow over a
2D mountain for a constant upstream wind profile, with a “dead
layer” downstream of the mountain, where the flow is turbulent,
well-mixed (and therefore unstratified), and approximately qui-
escent on average. This model was able to predict the altitude
of the well-mixed layer, the strength of the winds at the sur-
face beneath that layer, and the mountain wave drag, which is
given by:

D = ρ0N2

6
(H0 − H1)

3 , (57)

where H0 denotes the height of the streamline upstream of the
mountain that will divide to contain the well-mixed layer down-
stream of the mountain, and H1 is the depth of the accelerated
layer beneath the well-mixed layer.

FIGURE 8 | Drag obtained from numerical simulations as a function of

zc/λz (denoted here by zi/λz ). Reproduced from Figure 5 of Clark and
Peltier [73]. © American Meteorological Society. Used with permission.

Bacmeister and Pierrehumbert [92] evaluated the merits of
the theories of Clark and Peltier [73] and of Smith [91] through
a number of numerical experiments of nonlinear flow over 2D
mountains also with the wind profile (55), reaching the conclu-
sion that Smith’s hydraulic theory works better than the theory of
Clark and Peltier. They criticized this latter theory for not jus-
tifying the phase of the reflected wave that leads to resonance,
and found that the height of the critical level for which high-drag
states occur depends on h̃, in agreement with Smith’s theory (in
what was termed “resonance shift”). They additionally showed
that high-drag states are possible for low values of h̃, but take a
long time to stabilize.

Although Smith’s theory is believed to be the most satisfac-
tory to date, other possible explanations for high-drag states have
been explored. Durran [93], Wang and Lin [63], and Leutbecher
[94] investigated the role played by static stability discontinuities
in the establishment of high-drag states and downslope wind-
storms through wave ducting, and tested the accuracy of their
representation by linear theory. Wang and Lin [63] for flow over
2D mountains and Leutbecher [94] for flow over an axisymmet-
ric mountain showed that, when N is higher in the bottom layer
and lower in the top layer, drag maxima (as well as wind intensity
maxima) exist for:

z1 =
(

1

4
+ n

2

)
λz, (58)

where n is an integer and z1 is the height of the disconti-
nuity in N, while for the opposite distribution of N maxima
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occur instead for z1 = (n/2)λz. Durran [95] showed that large
drag amplification, and more severe underestimation of it by
linear theory (by a factor of 3 or 4), occurs when the static
stability is higher in the bottom layer than in the top one.
He concluded that in such multi-layer configurations nonlinear
effects may become relevant for h̃ ≥ 0.3, which is substantially
lower than for an atmosphere with constant parameters. For
h̃ = 0.67, 0.83, and 1, Wang and Lin [63] confirmed that the
location of the drag maxima as a function of z1 is roughly
unchanged, but their magnitude increases and the detailed vari-
ation of the drag with z1 is modified. In 3D flow, Leutbecher
[94] found that the drag maxima become less pronounced,
especially for high values of z1, because of directional wave
dispersion.

Scinocca and Peltier [74] assessed the importance of the
Richardson number at the critical level Ric in the establishment of
high-drag states for the wind profile (55). They found that high-
drag states take longer to achieve as Ric decreases, and may even be
prevented for low Ric > 1/4, if h̃ is small enough. They also found
that the steady-state high-drag states become insensitive to Ric for
0.625 ≤ h̃ ≤ 0.85, and attributed resonance shift to the different
values of Ric used by previous authors, rather than to nonlinear
effects.

Using a piecewise-linear wind profile qualitatively similar to
(55), Wang and Lin [76, 77] studied the implications of wave
ducting for downslope windstorms and high-drag states. They
found that, at least in the linear regime, wave reflections at the
shear discontinuities existing below and above the critical level
(whose intensity is controlled by Ric) rather than at the critical
level itself determine the wave response, with wind and drag max-
ima at the surface attained when (58) is fulfilled, where now z1 is
the height of the lowest shear discontinuity. They explained some
of the discrepancies observed between previous studies on high-
drag states (namely [73] and [92]) by the use of zc instead of z1 as
a key flow parameter. Wang and Lin [77] also showed how non-
linear high-drag states (with a spacing of λz rather than λz/2 as a
function of z1) are selected from the linear ducted wave modes
through modification of the static stability profile by the wave
flow perturbations.

Miranda and Valente [97] treated the same kind of situation,
but for flow over an axisymmetric mountain. concluding that
the drag amplification is much more modest than for 2D moun-
tains, and the spacing of high-drag states as a function of the
critical level height is consistent with linear theory, rather than
with Smith’s theory, being (1/2)λz. The occurrence of resonance
shift was also seen to be much reduced. As in Leutbecher [94],
these effects are attributable to directional wave dispersion. Using
linear theory and for the same wind profile over both 2D and
axisymmetric mountains, Teixeira et al. [96] derived analytical
expressions for the drag, the former of which can be written as:

D

D0
=

(
1 − 1

4Ric

)1/2

1 − 1
2 Ri−1/2

c sin
(

2N
U0

z1

) , (59)

with drag maxima occurring for (58), and being enhanced as Ric
decreases. In weakly-nonlinear flow (h̃ = 0.5), high drag-states
were found to become much less sensitive to Ric (in agreement
with [74]), and to occur for higher values of z1 (consistently
with [94]) (see Figure 9). While in flow over an axisymmet-
ric mountain, the locations of drag maxima were found to be
accurately predicted by linear theory, in 2D flow intermediate
maxima tended to disappear, confirming the results of Miranda
and Valente [97]. For the same 2D flow as considered by Teixeira
et al. [96], Teixeira and Miranda [98] showed that wave break-
ing for Rec < 9/4 behaves differently from wave breaking in
an atmosphere with constant parameters, occurring not directly
over the mountain, but in regions displaced both vertically and
horizontally upstream and downstream.

Teixeira et al. [100] showed that differences in the drag behav-
ior for wind profiles where the wind varies linearly near the
surface and is constant aloft depend (in hydrostatic conditions)
on whether critical levels exist, and are located above or below
the shear discontinuity. When a large fraction of the wave spec-
trum has a critical level below the shear discontinuity, the drag
behaves relatively similarly as if the lower layer extended indefi-
nitely. Otherwise, the drag undergoes oscillations due to resonant
constructive and destructive interference of reflected waves.

FIGURE 9 | Drag normalized by (30) as a function of Nz1/(πU0). Left:

linear flow. Lines: linear theory, symbols: numerical simulations. Solid line
and squares: Ric = 2, dotted line and diamonds: Ric = 1, dashed line and

circles: Ric = 0.5. Right: Numerical simulations for h̃ = 0.5. Squares: Ric = 2,
circles: Ric = 1, triangles: Ric = 0.5. Reproduced from Figures 1, 5 of Teixeira
et al. [96]. Copyright © 2005 Royal Meteorological Society.
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Wells and Vosper [99] identified a wave and drag amplifica-
tion mechanism by parametric resonance, when the profile of the
Scorer parameter

l0 =
(

N2

U2
− 1

U

d2U

dz2

)1/2

, (60)

varies sinusoidally with a wavelength of half the basic vertical
hydrostatic wavelength. For flow over a 2D ridge, they showed
that this could lead to an underestimation of the drag by linear
theory by a factor of about 2.5 (see Figure 10). Teixeira et al. [101]
developed a perturbation model to explain this drag amplifica-
tion, showing that the drag behavior at resonance depends on the
phase of the oscillation of the Scorer parameter, and also crucially
on the representation of dissipative processes.

8. NON-HYDROSTATIC EFFECTS AND TRAPPED LEE WAVES
Non-hydrostatic effects (which occur when ã � O(1)) lead to
mountain wave dispersion, which tends to weaken the drag in a
flow with constant wind and static stability [1]. However, when in
a unidirectional flow the Scorer parameter decreases with height,
non-hydrostatic effects promote the propagation of trapped lee
waves near the surface, which may increase the drag.

Following Wurtele et al. [102], Keller [103] used linear the-
ory to evaluate the accuracy of the hydrostatic approximation in
flow over a 2D ridge with a linearly increasing incoming wind
velocity (i.e., (38) with α > 0) either extending indefinitely, or
in a layer with lower static stability, topped by a semi-infinite
layer with no shear and higher static stability. He concluded that
the momentum flux is substantially reduced by non-hydrostatic
effects and its contributions are shifted downstream from the
mountain due to wave trapping near the surface. The momen-
tum flux was shown to depend on the lower layer height and
Ri within it (as [100] would confirm later for hydrostatic flow).

FIGURE 10 | Drag normalized by its reference value for constant l0 as a

function of λz/λs , where λs is the wavelength of the vertical oscillation

of the Scorer parameter. See legend for details. Reproduced from Figure
9 of Wells and Vosper [99]. © Crown Copyright 2010. Published by John
Wiley & Sons, Ltd.

Sharman and Wurtele [104] treated essentially the same situation,
but for flow with positive or negative shear extending indefi-
nitely over 3D mountains of varying aspect ratio. They found
that the drag over elongated mountains perpendicular to the flow
does not change much for γ < 1/3. The drag also tended to
become lower as the flow became more non-hydrostatic for neg-
ative shear while for positive shear and the same ã the drag was
higher, a behavior they attributed to the existence of trapped lee
waves.

Lott [105] calculated the drag associated with trapped lee
waves using a 2D numerical linear model. Despite the intrin-
sic non-hydrostaticity of these waves, their associated drag was
shown to be reasonably estimated using the hydrostatic reference
value. However, Lott also found that the momentum flux profile
was very different from that associated with vertically propagat-
ing waves, decaying with altitude in the absence of dissipation,
because the assumptions behind Eliassen-Palm’s theorem are not
satisfied, and a substantial fraction of the wave momentum exits
the computational domain through the leeward boundary. Broad
[106] explained this variation with height of the momentum flux,
showing that it is associated with a decrease of the dynamic pres-
sure across the mountain because of the downstream wave train.
He proposed an expression to replace the Eliassen-Palm theorem
in those circumstances,

∂

∂z

∫ +∞

−∞
ρ0uw dx = ρ0

W2(z)

2
, (61)

where W is the amplitude of the trapped lee waves far down-
stream of the obstacle.

In a pioneering study, Bretherton [107] systematically ana-
lyzed the drag produced by trapped lee waves, departing from
Bernoulli’s equation, but he assumed a rigid-lid upper boundary
condition, which is not very realistic in the atmosphere. This lim-
itation was removed by Smith [108] who generalized the trapped
lee wave drag expression derived by Bretherton to an unbounded
atmosphere, yielding

DL = 2π2ρ0U2
∑

j

|ĥ(kj)|2
∂ŵ
∂z (kj, z = 0)|2∫ +∞

0 |ŵ(kj, z)|2dz
, (62)

where the index of the sum j is over all trapped lee wave modes
and kj (j = 1, 2, ..) are the corresponding resonant wavenumbers.
This expression is quite powerful, as it does not assume any spe-
cific form for the atmospheric profiles, other than that the integral
in (62) must converge.

For practical applications, it is useful to explore the drag
behavior for more specific atmospheric profiles. Tutiś [109] cal-
culated trapped lee wave solutions in an atmosphere where the
Scorer parameter l0 follows a hyperbolic-secant profile. She con-
cluded that linear theory gives good predictions for the wave-
length and drag associated with those waves, but the wave
amplitude is underestimated. Unfortunately, Tutis used a rigid-
lid upper boundary condition in her calculations, which is not
very realistic. Adopting a two-layer model with higher Scorer
parameter in a lower layer and lower Scorer parameter aloft
(following [110]), Teixeira et al. [111] explicitly evaluated the
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drag associated with waves trapped in the lower layer and waves
propagating in the upper layer, obtaining the following expres-
sion for the former drag component when the wind velocity is
constant:

DL = 4π2ρ0U2
∑

j

|ĥ(kj)|2 m2
1(kj)n2(kj)

1 + n2(kj)H
, (63)

where m1 = (l21 − k2)1/2, n2 = (k2 − l22)1/2, l1 and l2 are the
Scorer parameters in the lower and upper layers, respectively, and
H is the height of the lower layer. DL normalized by (30), is plotted
in Figure 11 (left). Teixeira et al. [112] considered a similar prob-
lem, but for the two-layer atmosphere of Vosper [113] instead,
where the lower layer is neutral (l1 = 0), and there is a tempera-
ture inversion between the two layers, represented by a jump in
potential temperature, which is quantified by a Froude number
Fr. They found that in that case the trapped lee wave drag is due
to interfacial waves propagating at the inversion, which have only
one mode, being given by:

DL =
4π2ρ0U2k2

L|ĥ(kL)|2
{[

n2(kL)H − Fr−2
]2 − (kLH)2

}
H

{
(kLH)2

[
1 + (n2(kL)H)−1

] + (
Fr−2 − n2(kL)H

)
× (

1 − Fr−2 + n2(kL)H
)} ,(64)

where kL is the resonant wavenumber of the trapped lee waves.
Figure 11 (right) presents (64) normalized by (30) using the static
stability of the upper layer.

Interesting effects occur when trapped lee waves generated by
more than one mountain interact. Vosper [114] studied grav-
ity wave drag on two consecutive 3D mountains using a lin-
ear numerical model. He concluded that, when non-hydrostatic
effects are unimportant, the drag behaves qualitatively as pre-
dicted by Grisogono et al. [115] for flow over 2D ridges (see
section 9). When the atmospheric profiles permit the prop-
agation of trapped lee waves, the drag is strongly enhanced
when the waves from an upstream mountain interfere construc-
tively with those from a downstream one. Drag extrema can

then be produced even when the mountains are quite far apart.
Grubišić and Stiperski [116] pursued a similar kind of investi-
gation on lee wave interference and resoance, but for pairs of
2D ridges, and using numerical simulations. They found that the
appearance of constructive or destructive interference between
trapped lee waves generated by each mountain depends both
on the separation between them and the ratio of their heights.
As expected, constructive and destructive interference lead to
high- and low-drag states, respectively. Stiperski and Grubišić
[117] added surface friction to the problem addressed by Grubišić
and Stiperski [116], finding that the important parameter to
quantify the drag modulation with distance between the two
mountains is the ratio of valley width to the wavelength of
the trapped lee waves. However, in contrast with inviscid sim-
ulations, the wavelength of the velocity perturbation associated
with the waves is shorter than the wavelength associated with
the pressure perturbation, which is the one that controls drag
behavior.

An important phenomenon associated with trapped lee waves
is rotors, which are vortices with their axes of rotation aligned
with the mountains, where the flow reverses direction at the
surface (see Figure 1). These structures were investigated by
Doyle and Durran [118] using 2D high-resolution numer-
ical simulations. They found that increasing the roughness
length in their model decreased the drag, because it tended
to shift the point of boundary-layer separation upstream, and
therfore reduce the extent of the lee-side (negative) pressure
anomaly. A significant correlation between trapped lee wave
drag, as given by linear theory, and the occurrence of rotors,
as described in the regime diagram of Vosper [113], was
found by Teixeira et al. [112]. That link deserves more detailed
investigation.

9. EFFECTS OF ROTATION
9.1. f -PLANE APPROXIMATION
For orography with larger width, fa/U = O(1), and the effects of
the Earth’s rotation may influence mountain waves. The extension
of (15) to an atmosphere with an f −plane approximation is:

FIGURE 11 | Left: trapped lee wave drag (here denoted by D2) normalized by
(30) as a function of l1H/π . Solid line: l1a = 10, dashed line: l1a = 5, dotted
line: l1a = 2. Reproduced from Figure 6 of Teixeira et al. [111]. Copyright ©
2012 Royal Meteorological Society. Right: Drag normalized by (30) as a

function of Fr for l2H = 0.5 and l2a = 1. Solid line: total drag, dotted line:
internal gravity wave drag, dashed line: trapped lee wave drag, all from
theory; symbols: numerical simulations. Reproduced from Figure 9 of Teixeira
et al. [112]. © American Meteorological Society. Used with permission.
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[
1 − f 2

(Uk + Vl)2

]
∂2ŵ

∂z2
+ 2f 2

(Uk + Vl)2

×
[

1

Uk + Vl

(
dU

dz
k + dV

dz
l

)
− i

f

(
dU

dz
l − dV

dz
k

)]
∂ŵ

∂z

+
{

N2(k2 + l2)

(Uk + Vl)2
− (k2 + l2) + if
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[
2

(Uk + Vl)2

×
(

dU

dz
l − dV

dz
k

) (
dU

dz
k + dV

dz
l

)]}
ŵ = 0. (65)

Note that (65) assumes d2U/dz2 = d2V/dz2 = 0, since this is the
only choice consistent with steady-state flow. In a rotating atmo-
sphere, thermal-wind balance implies that vertical shear necessar-
ily corresponds to a mean horizontal temperature gradient, so the
potential temperature is no longer steady, because of temperature
advection, unless the flow is unidirectional. Consequently, it can
be shown (see [119]) that it is only consistent to assume that N
is independent of time and of horizontal position if d2U/dz2 =
d2V/dz2 = 0.

Jones [120] used an equation equivalent to (65) for unidi-
rectional flow (V = 0) to investigate the interaction of inertia-
gravity waves with critical levels. He noted that two types of
critical levels, where (65) becomes singular, exist: similar to those
in non-rotating flow, where U = 0 (or in general Uk + Vl =
0), and inertial critical levels, where Uk = ±f (or in general
Uk + Vl = ±f ). Jones found that in rotating flow it is the wave
angular momentum, rather than the linear momentum, that is
conserved in the vertical away from critical levels. He also con-
cluded that absorption of momentum by critical levels differs only
slightly between cases with and without rotation. This result was
confirmed by Grimshaw [79], provided that f /N � 1 (which is
typically satisfied in the atmosphere). Broad [4]’s generalization
of the Eliassen-Palm theorem to 3D flow mentioned in section 6
substantiated these ideas further. The expression valid for rotating
flow is still given by (52), but with Mx and My redefined as:

Mx = ρ0

∫ +∞

−∞

∫ +∞

−∞
w(u − f ζ ) dxdy, (66)

My = ρ0

∫ +∞

−∞

∫ +∞

−∞
w(v + f δ) dxdy, (67)

where δ and ζ are the fluid parcel (or streamline) displacements
along x and y associated with the waves (an analogous result had
been derived previously for 2D rotating flow by Eliassen [121]).

Wurtele et al. [122, 123] revisited the problem addressed by
Jones [120] using numerical simulations of flow over 2D moun-
tains. They found that while linear theory predicts absorption
of a monochromatic wave at levels where |Uk| = f , in nonlin-
ear flow there is also partial reflection. They further showed that
both the horizontal and vertical velocity perturbations diverge at
these inertial critical levels, making the momentum flux diverge
as well. However, for waves with a continuous spectrum, this
singular behavior is avoided because each wavenumber has a dif-
ferent inertial critical level, and so momentum absorption is well
predicted by linear theory. Wurtele et al. [123] also found that,

for positively sheared flow, the drag and wave momentum flux
produced by a monochromatic wave may oscillate in time, with
no steady state attained. Shutts [124] explored further a similar
problem using linear theory, but for flow over an axisymmetric
mountain, finding that, for a monochromatic wave, only the u
and v velocity perturbations diverge at the inertial critical level,
while w does not (in contrast with [122]).

Another relevant aspect of rotation is how it affects the surface
drag. Using linear theory and considering unsheared hydrostatic
flow over a 2D bell-shaped ridge, Smith [125] found that moun-
tain wave drag decreases as fa/U increases, being reduced to half
of its non-rotating value for fa/U = 0.63 (see Figure 12). While
Smith’s drag formula can only be expressed analytically in terms
of Bessel functions, Miranda and James [126] obtained a closed
expression for the drag in entirely similar conditions, but for flow
over an axisymmetric bell-shaped mountain (25), namely

D

D0x
=

(
1 + 2fa

U

)
exp

(
−2fa

U

)
(68)

which shows that the drag decreases exponentially for large fa/U .
On the other hand, Grisogono et al. [115] used linear theory to
examine the effects of rotation in flow over a double bell-shaped
mountain. They derived an expression for the drag as a function
of the mountain separation and fa/U , where a is the width of the
first mountain, noting that, when f 
= 0, the drag displays slight
oscillations as the ridge spacing varies, with a wavelength that
decreases as fa/U increases, due to wave interference. In the same
vein, Teixeira et al. [127] derived asymptotic formulae, expressed
in terms of elementary functions, for the mountain wave drag in
flow over 2D mountains, when non-hydrostatic effects and rota-
tion are important, but treated as relatively weak. They showed
that these approximations are especially accurate for the full
range of ã and fa/U when there is a well-defined hydrostatic and
non-rotating limit (i.e., f /N � 1), which is typically the case.

Using hydrostatic numerical simulations of flow with uniform
N and U over elliptical mountains, Ólafsson and Bougeault [128]

FIGURE 12 | Drag normalized by (30) as a function of fa/U for flow over

a bell-shaped ridge. Reproduced from Figure 1 of Smith [125]. © American
Meteorological Society. Used with permission.
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and Ólafsson [129] separately analyzed the effects of rotation and
surface friction on orographic drag. They found that for low h̃
the drag is reduced as fa/U increases but for h̃ > 1.4 (blocked
flow regime), rotation instead increases the drag, which means
that rotation may extend the range of usefulness of linear the-
ory. Additionally they showed that in the non-blocked regime
(h̃ = O(1)), the mountain exerts a cyclonic couple on the flow,
and the drag oscillates in time (due to wave breaking), whereas
in the blocked regime (large h̃) it exerts an anti-cyclonic cou-
ple instead. Petersen et al. [130] investigated how upstream wind
direction influences the flow across a large meridionally-oriented
elliptical mountain (representative of Greenland), finding that the
drag force and the wake pressure deficit are larger when the flow
is from the southwest than when it is from the northwest. For
a similar situation, Doyle et al. [131] examined the sensitivity
of wave breaking to terrain slope. They confirmed the result of
Ólafsson and Bougeault [128] that the drag is reduced by rotation
for h̃ = 0.5, but instead increased by rotation for h̃ = 1.5.

The interaction of rotation with shear also has consequences
for the surface drag. In his theory of lee cyclogenesis, Smith [52]
showed that quasi-geostrophic flow with constant negative shear
and a critical level ((38) with U0 > 0 and α < 0) generates a baro-
clinic standing wave train on the lee of a 2D ridge. He evaluated
the drag exerted by this kind of lee wave as:

D = 4π2 ρ0f 2

zc
|ĥ(k∗)|2, (69)

where k∗ = f /(Nzc) is the corresponding resonant wavenumber.
Following a similar approach, Martin and Lott [132] addressed
the synoptic response to mountain waves generated by the pas-
sage of fronts over orography, and the corresponding absorption
of wave momentum flux by directional critical levels. They con-
cluded that the drag exerted by the orography on the flow acts to
the left of the wind in a cold front case and to the right of the wind
in a warm front case, extending the results of Xu et al. [86] (see
section 6) to rotating flow.

9.2. BETA-PLANE APPROXIMATION
When the horizontal scale of the mountains is even larger, the
variation of the Coriolis parameter with latitude becomes impor-
tant in the dynamics of orographic waves, which are now Rossby-
gravity waves, or simply Rossby waves when the stratification
becomes of secondary importance. While the effect of rotation in
its simplest form decreases the drag (as was seen in the preceding
subsection), the beta effect increases it again.

Janowitz [133] calculated the drag produced by barotropic
Rossby waves in a single-layer flow with a rigid-lid upper bound-
ary condition over a generic isolated mountain. He noted that
the drag increases with increasing β = df /dy, and also that the
effects of stratification are negligible for this upper boundary con-
dition, because for typical values of the atmospheric parameters
no internal (trapped) wave modes are excited.

McCartney [134] studied inertial Taylor columns on a beta
plane, using a two-layer model of flow over a cylindrical moun-
tain. He noted that for eastward flow there was an extensive mean-
dering wake downstream of the mountain, composed of a train

of Rossby-gravity waves, and explicitly calculated the associated
drag. Bannon [135] did essentially the same, but for single-layer
flow over a Gaussian axisymmetric mountain. Thompson and
Flierl [136] revisited the problem of one-layer flow over a cylin-
drical mountain, finding that for eastward flow the barotropic
Rossby wave drag can be much larger than predicted by quasi-
geostrophic theory, being given by:

D

D00
= 2π

(
f0R

U

) (
βR2

U

)−1/2 (
h0

H

)2

J2
1

[(
βR2

U

)1/2
]
, (70)

where D00 = ρ0f0UR2H, f0 is a constant reference Coriolis
parameter, R is the radius of the mountain, H is the height of the
fluid layer and J1 is the Bessel function of the first kind of order 1.

Teixeira and Grisogono [137] calculated the drag associated
with internal Rossby-gravity waves, by considering a continu-
ously stratified atmosphere flowing over an elliptical mountain.
They showed that this drag is especially important for mountains
that are aligned meridionally, much larger than the drag given by
models where f is constant, substantially larger the the drag pro-
duced by internal gravity waves (see Figure 13), and comparable
to the barotropic Rossby wave drag calculated by Thompson and
Flierl [136], (70). A more explicit link between these two types of
drag is currently missing.

10. NONLINEAR EFFECTS
Nonlinear effects in mountain waves become important roughly
when h̃ � O(1). Linear theory, as expressed by (15) or (65), is
then not valid anymore, and an alternative method of solution
(generally, numerical simulations) must be adopted. There are
cases where further progress is possible analytically, however.

Long [138] derived an equation for stratified flow over a 2D
obstacle in non-rotating conditions, which is valid for waves of
arbitrary amplitude (if the flow remains steady):

FIGURE 13 | Drag normalized by (31) as a function of the mountain

width in the zonal direction for γ = 0.25 and latitudes (φ) between 30o

and 90o (see legend for details). Reproduced from Figure 3 of Teixeira
and Grisogono [137]. Copyright © 2008 Royal Meteorological Society.
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∇2δ + N2

U2
δ + 1

2

d

dz0

[
ln (U2ρ)

] [
(∇δ)2 + 2

∂δ

∂z

]
= 0, (71)

where δ = z − z0 is the vertical displacement of a streamline
relative to its upstream undisturbed position z0. When U2ρ is
constant to a good approximation, (71) reduces to:

∇2δ + N2

U2
δ = 0. (72)

Equation (72) is remarkable because, while describing nonlin-
ear waves, it is linear (and with constant coefficients if N/U is
also constant). Long [138] applied (71) and (72) to cases of fluid
bounded above by a rigid lid. Huppert and Miles [139] and Miles
and Huppert [140] implemented a radiation boundary condition
at the upper and downstream limits of the domain, obtaining
solutions to (72) for waves generated by mountains with a semi-
elliptical vertical cross-section, and arbitrary shape but relatively
small amplitude. Miles and Huppert [140] calculated the drag for
a number of orography forms, including a bell-shaped ridge (29),
yielding

D

D0
= 1 + 7

16
h̃2, (73)

correct up to second order in h̃, showing that the drag is underes-
timated by linear theory. They also found that, even in hydrostatic
conditions, the drag is not invariant to flow reversal for asymmet-
ric mountains.

Lilly and Klemp [141] investigated further the effects of ter-
rain shape and asymmetry using a hydrostatic version of Long’s
equation, namely

∂2δ

∂z2
+ N2

U2
δ = 0. (74)

They found that the nonlinear lower and upper (radiative)
boundary conditions have a strong influence on the wave struc-
ture at large amplitudes, and the drag is significantly enhanced
for mountains with a gentle windward slope and a steep lee-
ward slope. Miller and Durran [142] assessed the sensitivity of
downslope windstorms to orography asymmetry using numerical
simulations for various atmospheric profiles, finding it to be more
important in the case of two-layer flow without a critical level or
wave breaking than for flows beneath a critical level or beneath
breaking waves. Miller and Durran [142] also calculated the drag
in a single-layer atmosphere using Long’s equation, showing that
although the drag is super-linear when the mountain is symmet-
ric or has a steep lee slope, it is sub-linear when the upstream
slope is the steepest one.

The use of numerical simulations proved to be particularly
valuable for exploring the highly nonlinear flow regimes where
wave breaking and flow blocking or splitting occur (and thus
Long’s equation is not valid anymore). Clark and Peltier [143]
performed pioneering numerical simulations of flow over a 2D
ridge with constant upstream U and N. They found that while
for low h̃ the wave drag and momentum flux profile agree with

the predictions of linear theory, above a certain h̃ threshold there
is convective instability, the drag is dramatically enhanced, and
the momentum flux profile is strongly divergent (in contrast with
what is expected from the Eliassen-Palm theorem), due to wave
breaking. In simulations of high-drag states using a hydrostatic
primitive equation model, Stein [144] found that the dimensional
drag exerted on a 2D ridge varies proportionally to h̃2 in the
quasi-linear regime, proportionally to a power of h̃ larger than 2
in the high-drag regime coinciding with wave breaking, and pro-
portionally to h̃1.3 in the blocked flow regime. Using a similar
model setup to address transient upstream flow effects, Garner
[145] showed that, while the upstream wind weakens gradu-
ally as h̃ increases, there is a sudden increase in the downslope
wind speed at the onset of wave breaking, accompanied by drag
enhancement, despite the fact that upstream changes in the flow
only become important for much higher h̃. Garner [145] addi-
tionally improved Smith [91]’s formula for the drag in high-drag
states, obtaining

D

ρ0U2
0 h0

= 1

6

(
α + h̃

)3
h̃−1, (75)

where α = 2.2, or

D

ρ0U2
0 h0

= 1

6

(
α + h̃

)3 (
1 + βh̃

)
h̃−1, (76)

where β = 1/8, when upstream effects become important.
While trying to clarify whether breaking mountain waves

decelerate the local mean flow, Durran [146] showed that zones of
flow deceleration in the vicinity of the mountain are compensated
by zones of flow acceleration. Thus he suggested that information
both about the horizontal and vertical flux of wave momentum
need to be parametrized, and the momentum fluxes associated
with trapped lee waves should be considered a potentially impor-
tant source of low-level drag (as was seen in section 8). Mayr and
Gohm [147] revisited the problem of flow over two successive 2D
mountains, for h̃ = 0.05, 0.51, 1.01, and 1.52, showing that the
differing steepness of the upwind and downwind slopes caused by
the separating valley strengthens nonlinear effects, and for wide
enough valleys two wave breaking regions can form above both
peaks, which causes a sharp increase of the drag (by more than a
factor of 3 above the linear estimate).

Highly nonlinear flow over 3D mountains (where no equiv-
alent to Long’s equation has been derived) was also simulated
numerically by various authors. Smolarkiewicz and Rotunno
[148] noted that the conditions for flow reversal on the windward
side of a 3D obstacle in inviscid non-rotating flow for h̃ ≈ 1 are
predicted with some accuracy by linear theory [149] in the case of
axisymmetric mountain, but less so for mountains with different
horizontal aspect ratios. Smolarkiewicz and Rotunno [148] also
calculated the drag for an axisymmetric mountain, showing that
a maximum several times higher than the linear estimate occurs
at h̃ ≈ 2. Miranda and James [126] studied more systematically
the drag dependence on h̃ (Figure 14, left), finding that the flow
is well described by linear theory for h̃ < 0.5, for 1 < h̃ < 2 it
enters the wave-breaking regime, with quasi-periodic oscillations
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of the drag and an average maximum attained for h̃ ≈ 1.3, and for
2 < h̃ < 5 it is characterized by streamline splitting around the
mountain, a vortex pair on its lee side, and decreasing drag. They
concluded that the use of 2D drag estimates may severely overes-
timate the drag when the flow is in this last regime. Ólafsson and
Bougeault [150] carried out analogous simulations of flow over
an elliptical mountain of aspect ratio 5 for 0.500 < h̃ < 6.818,
showing that for low h̃ the linear predictions of flow stagnation
aloft (leading to wave breaking) and of stagnation at the surface
(leading to flow splitting) [149] are accurate, but for higher h̃ wave
breaking occurs mostly at the edges of the mountain, not over its
axis of symmetry. Using an essentially similar setup, Bauer et al.
[56] explored more systematically the dependence of the flow on
the horizontal aspect ratio of the mountain, finding that, when
γ decreases, the h̃ threshold for the onset of wave breaking, vor-
tex formation and windward stagnation decreases. The interval of
h̃ where high-drag states occur, which is centered around h̃ ≈ 1,
was seen to widen as γ decreases (see Figure 14, right). For a
similar flow, Doyle et al. [131] examined the sensitivity of wave
breaking to terrain slope, concluding that that the normalized
drag shows a stronger dependence on terrain slope for h̃ = 0.5
than for h̃ = 1.5, and becomes saturated beyond h̃ = 1.5, prob-
ably because this dimensionless mountain height is sufficiently
high to produce wave breaking regardless of the slope.

For flows in the splitting regime, the laboratory experiments
of strongly stratified flow past axisymmetric obstacles of Vosper
et al. [151] revealed that the wave amplitude decreases, while the
drag coefficient increases as h̃ increases, reaching values between
2.8 and 5.4 times larger than in the neutral flow limit (depend-
ing on obstacle shape) when h̃ > 4. A major contribution to the
total drag (about 25%) resulted from a separated wake with vortex
shedding, rather than from gravity waves.

Eckermann et al. [152] evaluated the dependence of the
momentum fluxes on h̃ for flow over 3D obstacles, essentially
confirming the findings of Ólafsson and Bougeault [150] and
Bauer et al. [56] for the surface drag. They additionally showed
that the drag vacillates for flow across an elongated obstacle in
the 0.7 ≤ h̃ < 3 range, due to cyclical buildup and breakdown of
wave activity, with the amplitude of these vacillations decreasing
as h̃ increases. At h̃ > 2 − 3, Eckermann et al. [152] noted that
the drag decreased smoothly proportionally to h̃−1/3 to values
lower than 1, and the dimensional drag approached a constant
value at high h̃, a constraint they suggested implementing in drag
parametrizations.

Concerning the variation of the wave momentum flux with
height due to wave breaking, Lindzen [153] formulated the con-
cept of supersaturation of vertically propagating internal gravity
waves, which has proved influential in drag parametrization
schemes [46]. The underlying idea is that gravity waves, includ-
ing mountain waves, tend to increase their amplitude as they
propagate upward in the atmosphere, due to the decrease of
density with height (a non-Boussinesq effect). In practice, when
waves reach a saturated state which corresponds to the onset
of wave breaking, their amplitude must be limited. This deter-
mines the wave momentum flux distribution (and consequently
the drag force on the atmosphere) for finite-amplitude waves.
Unfortunately, Lindzen’s treatment was limited to monochro-
matic waves. Kim and Mahrt [154] reported measurements of
the momentum flux associated with mountain waves in wave
breaking regions from the ALPEX campaign. They attributed the
momentum flux divergence in one of the observations to direc-
tional wind shear. Using ideas from [11], they then generalized
the wave saturation theory of Lindzen [153] to vertically vary-
ing mean flows, finding that the wave momentum fluxes from the

FIGURE 14 | Left: drag in flow over an axisymmetric bell-shaped mountain
normalized by its linear hydrostatic value (solid line) and by its linear
non-hydrostatic value (dashed line) as a function of h̃−1. Reproduced from
Figure 1 of Miranda and James [126]. Copyright © 1992 Royal Meteorological

Society. Right: normalized drag in flow over an elliptical Gaussian mountain
for different β = 1/γ (see legend) as a function of h̃ (here denoted by Hm).
Reproduced from Figure 15 of Bauer et al. [56]. © American Meteorological
Society. Used with permission.
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extended model show good agreement with observations from
ALPEX.

11. BOUNDARY LAYER EFFECTS
Most of the results described above (except essentially those on
lee wave rotors in section 8) assumed frictionless flow and a free-
slip boundary condition at the surface. A few studies specifically
addressing boundary layer effects are mentioned next.

Richard et al. [155] investigated the effect of friction in
downslope windstorms over 2D orography using a hydrostatic
numerical model with a turbulent kinetic energy parametriza-
tion, finding that it delays the onset of strong surface winds and
prevents the downstream propagation of the zone of maximum
wind speed. The drag in the corresponding high-states was seen
to be established over a longer time interval, with a somewhat
lower steady value than in inviscid flow (see Figure 15). Ólafsson
and Bougeault [128] similarly found that in flow over 3D elliptical
mountains the drag is substantially reduced by surface friction for
h̃ < 3, with a suppression of wave breaking and high-drag states
(as Jiang et al. [156] corroborated later). Peng and Thompson
[157] further investigated this effect using a non-hydrostatic
numerical model. They hypothesized that the observed reduc-
tion in the mountain wave amplitude is due to reduction in the
slope of the boundary layer top, and that flow over the mountain
outside the boundary layer, including its wave drag, may be repro-
duced by replacing the terrain elevation with the boundary layer
elevation. They found that this effect becomes less pronounced
for high h̃ because the boundary layer depth occupies then a lower
fraction of the relevant flow depth. This was later confirmed by
Jiang et al. [156].

Belcher and Wood [158] and Athanassiadou [159] investigated
the relation between form and wave drag in stably stratified flow
over 2D hills, using the linear model of Hunt et al. [160] with
the added effect of stable stratification. They showed that the
form drag first increases with stability due to increased shear in

FIGURE 15 | Time evolution of the drag for simulations of flow over 2D

orography using free-slip and no-slip lower boundary conditions (see

curve labels details). Reproduced from Figure 4 of Richard et al. [155].
© American Meteorological Society. Used with permission.

the boundary layer, but for higher stability it decreases due to
boundary layer thinning. The wave drag, which for weak stratifi-
cation is smaller than the form drag, increases with stratification,
eventually becoming dominant. Belcher and Wood [158] con-
cluded that the reduction of the wave drag relative to its inviscid
value is due to the downstream shift that turbulence in the
boundary layer imposes on the pressure distribution outside the
boundary layer.

Vosper and Brown [161] investigated the effect of small-scale
hills on orographic gravity wave drag and flow blocking pro-
duced by 2D and 3D mountains using numerical simulations.
They found that corrugations can significantly reduce the ampli-
tude of the mountain waves generated by the broader mountain,
and suppress the unsteadiness of the wake. This was seen to be
associated with a significant reduction of the total drag compared
to the sum of the contributions from the two orography scales, by
a factor of more than 30%. Steeneveld et al. [162] showed that a
(realistic) parametrization of drag produced by small-scale orog-
raphy as partly gravity wave drag instead of drag entirely due to
turbulence improved various performance indicators in a forecast
model, namely: cyclone filling rates and boundary layer depths,
particularly in quite stable conditions.

Nappo and Chimonas [163] used linear theory to study
momentum flux absorption at a critical level within a stably
stratified boundary layer, comparing it to frictional drag. They
found that gravity wave drag could be comparable, or even larger
than frictional drag, and hence should be taken into account in
boundary layer drag parametrizations. Grisogono [60] used lin-
ear theory conjugated with a WKB approximation to evaluate the
dissipative effect of turbulence in the boundary layer (represented
through a constant eddy diffusivity) on the momentum flux pro-
file. He found that the momentum flux decreases exponentially
with height due to this effect.

Jiang et al. [164] investigated the absorption of trapped lee
waves due to boundary layers, using linear theory and numerical
simulations, finding that they decay exponentially with down-
stream distance. This decay rate was seen to increase with surface
roughness (higher momentum flux), but to decrease as the heat
flux increases. Trapped lee wave absorption was therefore found
to be maximized for stable boundary layers (in accordance with
[78]). Smith [165] developed a hydrostatic 3D linear model to
represent the absorption of mountain waves by boundary layers,
using a bulk approach including a Rayleigh damping coefficient
to represent friction. He showed that variations in the boundary
layer thickness reduce the mountain wave amplitude (in agree-
ment with [157]), the pressure drag, and even more severely the
wave momentum flux, confirming that part of the pressure drag
is due to boundary layer friction.

Using a mesoscale model with boundary layer parametriza-
tions and analytical models, Jiang et al. [156] showed that the
boundary layer tends to reduce the wave drag by up to 60% and
the momentum flux above the boundary layer by up to 80%, and
slightly delay the onset of wave breaking. They further showed
that these effects are stronger over rougher surfaces and for slower
boundary layer flow. Jiang and Doyle [166] found that mountain
waves, and in particular the wave drag, exhibit substantial diur-
nal variation in response to changes in boundary layer depth and
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stability. During daytime, a convective boundary layer weakens
the mountain waves and reduces the surface drag by up to 90%,
whereas during nighttime, when the boundary layer is shallow,
the drag may increase to several times its free-slip value. This lat-
ter phenomenon, which might be due to waves propagating in
thin inversion layers existing near the surface (cf. [111, 112]), still
awaits a deeper understanding.

12. CONCLUDING REMARKS
As was seen in this review, the physical processes affecting moun-
tain wave drag are so numerous, varied and complex, that it
is hopeless to include all of them in drag parametrizations.
However, it is still useful to study these processes in order to better
understand them fundamentally, assess their practical relevance
and also the feasibility of parametrizing them. The following list
of open questions is by no means exhaustive, being largely dic-
tated by personal preference. It is geared toward a fundamental
understanding of mountain wave drag, and the development of
simple models useful for parametrization.

Concerning the effect of wind profile shear on the surface drag,
results obtained using the WKB approximation [50, 66, 67] have
the limitation that they are expressed locally in terms of deriva-
tives of the wind velocity at the surface. The drag behavior is quite
sensitive to the particular height where these derivatives are eval-
uated (which must lie outside the boundary layer, since the theory
on which they are based is inviscid). It would be useful to develop
an approach where the drag was instead expressed in terms of
some integral property of the wind profile, and also where faster
variations of the atmospheric parameters, which lead to wave
reflections and other non-local effects, could be accommodated.

Critical levels, both total and partial, still need to be better
understood, namely the circumstances under which they change
from absorbing to reflecting. Perhaps this could be clarified, at
least for flow over 2D orography, through the use of weakly-
nonlinear theory, more specifically adopting Long’s equation
including de effect of wind shear. This approach would proba-
bly also be able to shed some light on the behavior of nonlinear
downslope windstorms, in particular the weakening of interme-
diate drag maxima in 2D flows with critical levels [73]. Although
weakly nonlinear theory has already been applied to 3D prob-
lems [58], it would be interesting to develop a model similar to
that of Smith [91] for downslope windstorms over 3D mountains,
something that has not been done until now.

Although a generic expression for trapped lee wave drag anal-
ogous to (62) has been derived by Gregory et al. [16], the
dependence of trapped lee wave drag on input flow parameters
for simple atmospheric profiles, as investigated by Teixeira et al.
[111], [112] for 2D moutains, has not been extended to 3D oro-
grapy, but that is necessary since in real mountains 3D effects
are important. It would also be useful to extend the calculations
of trapped lee wave drag to more realistic atmospheric profiles,
where the windspeed and static stability are not limited to be
piecewise constant, as in Teixeira et al. [111, 112] but are, for
example, linear, as in Keller [103] or Shutts [80], or even more
general.

Despite the fact that the drag produced by mountain waves
affected by the Earth’s rotation is not as relevant for drag

parametrization (because it is fully resolved), the predictions of
this drag from simple models that account for barotropic Rossby
waves [136] or internal Rossby-gravity waves [137] have not been
verified against numerical simulations. A connection between the
first approach (where the drag does not depend on stratifica-
tion) and the second one (which is an extension of the theory
of smaller-scale mountain waves to a beta-plane) needs to be
established. It would be useful to know how accurately these two
disparate approaches represent the drag in realistic flows.

Finally, there is still much to learn about intrinsically nonlin-
ear effects, such as wave breaking in directionally sheared flows.
While the linear analysis of Broad [83] has shed some light
on this issue, further clarification about when and how wave
energy is dissipated in such flows over 3D mountains of realis-
tic height is crucial for the improvement of drag parametrization
schemes. Currently, the representation of the momentum flux
depletion with height that forces the deceleration of the large-
scale atmospheric circulation is based on a monochromatic wave
formulation (which does not represent the effects of critical level
filtering by directional wind shear). An approach akin those sug-
gested by Shutts and Gadian [81], Teixeira and Miranda [85] and
Teixeira and Yu [88], or an extension of it to higher wave ampli-
tudes, would improve consistency with current treatments of the
surface drag in parameterizations (e.g., [15]).
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