
MINI REVIEW ARTICLE
published: 19 August 2014

doi: 10.3389/fphy.2014.00050

On the liouville intergrability of Lotka-Volterra systems
Pantelis A. Damianou1* and Fani Petalidou2

1 Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus
2 Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Edited by:

Oleg N. Kirillov, Helmholtz-Zentrum
Dresden-Rossendorf, Germany

Reviewed by:

Petre Birtea, West University of
Timisoara, Romania
Mark Levi, Pennsylvania State
University, USA
Igor Mencattini, Universidade de
São Paulo, Brazil

*Correspondence:

Pantelis A. Damianou, Department
of Mathematics and Statistics,
University of Cyprus, PO Box 20537,
Nicosia 1678, Cyprus
e-mail: damianou@ucy.ac.cy

This paper is a review on some recent works on the Liouville integrability of a large class
of Lotka-Volterra systems.

Keywords: Lotka-Volterra equations, integrable systems, poisson geometry, integrable models, hamiltonian

systems.

1. INTRODUCTION
The Lotka-Volterra equations were discovered independently by
Alfred Lotka and Vito Volterra around 1925. Volterra was try-
ing to make sense of the fact that the predator fish increased in
numbers after WWI. This question was posed to him by his son-
in-law Umberto D’Ancona a marine biologist who collected data
of fish catches in the Adriatic for the years during and after the
war. Volterra proposed the following simple system to model the
interaction between predator and prey fish

ẋ = x(a − by)

ẏ = y( − c + dx)

where a, b, c, d > 0. This system and its generalizations to n
dimensions is one of the most basic models in population dynam-
ics. The variable x denotes the density of prey fish while y is the
density of predator fish. Note that if there are no predators (y = 0)
then x grows at a constant rate ẋ = ax, the so called Malthusian
law of population. Volterra made the assumption that the inter-
action between predator and prey fish depends on both x and y,
hence the Malthusian law is modified by subtracting a term bxy.
Note that he did not take into account a possible death of prey
fish due to other causes. Similarly, the density of the predator fish
increases at a rate proportional to both x and y, i.e., a factor dxy.
Assuming that they die at the rate ẏ = −cy we get the second
equation. The same model was also derived by Lotka [1] in the
context of chemical reaction theory.

Note that the vector field vanishes at the origin (0, 0) and at the
point ( c

d , a
b ). The origin is saddle point while the second point is a

center, i.e., it corresponds to a periodic solution. It is not difficult
to produce a constant of motion. We multiply the first equation

by c−dx
x and the second by a−by

y and then we add the result. We

obtain

ẋ

x
(c − dx) + ẏ

y
(a − by) = 0 .

This equation is equivalent to

d

dt

(
c ln x − dx + a ln y − by

) = 0 .

Therefore the function

H(x, y) = c ln x + a ln y − dx − by

is a constant of motion. The function H is actually a Hamiltonian.
By defining the Poisson bracket on R

2 by {x, y} = xy we produce
the following Hamiltonian formulation

ẋ = {x, H} = x(a − by)

ẏ = {y, H} = y( − c + dx).

The Lotka-Volterra equations generalize from two to n species.
The most general form of the equations is

ẋi = εixi +
n∑

j = 1

aijxixj, i = 1, 2, . . . , n, (1)

where xi denotes the density of the ith species, εi is its intrin-
sic growth (or decay) rate and the matrix A = (aij) is called the
interaction matrix. We consider Lotka-Volterra equations with-
out linear terms (εi = 0), i.e., the population of the ith species
stays constant if there is no interraction with other species. We
also assume that the matrix of interaction coefficients A = (aij)
is skew-symmetric. This assumption places the problem in the
context of the so called conservative Lotka-Volterra systems.
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These systems can be written in Hamiltonian form using the
Hamiltonian function

H = x1 + x2 + · · · + xn .

Hamilton’s equations take the form ẋi = {xi, H} = ∑n
j = 1 πij with

quadratic functions

πij = {xi, xj} = aijxixj, i, j = 1, 2, . . . , n. (2)

From the skew symmetry of the matrix A = (aij) it follows that
the Schouten-Nijenhuis bracket [π, π ] vanishes identically:

[π, π ]ijk = 2
(
aij{xixj, xk} + ajk{xjxk, xi} + aki{xkxi, xj}

)
= 2

(
aij(ajk + aik) + ajk(aki + aji) + aki(aij + akj)

)
xixjxk

= 0 .

The bivector field π is an example of a diagonal Poisson structure.
The Poisson tensor (2) is Poisson isomorphic to the constant

Poisson structure defined by the constant matrix A, see [2]. If k =
(k1, k2 · · · , kn) is a vector in the kernel of A then the function

f = xk1
1 xk2

2 · · · xkn
n

is a Casimir of π . Indeed for an arbitrary function g the Poisson
bracket {f , g} is

{f , g} =
n∑

i,j = 1

{xi, xj} ∂f

∂xi

∂g

∂xj
=

n∑
j = 1

(
n∑

i = 1

aijki

)
xjf

∂g

∂xj
= 0 .

If the matrix A has rank r then there are n − r functionally inde-
pendent Casimirs. This type of integral can be traced back to
Volterra [3]; see also [2, 4, 5].

The most famous special case of Lotka-Volterra system is the
KM system (also known as the Volterra system) defined by

ẋi = xi(xi + 1 − xi − 1) i = 1, 2, . . . , n, (3)

where x0 = xn + 1 = 0. It was first solved by Kac and van-
Moerbeke [6], using a discrete version of inverse scattering due
to Flaschka [7]. In Moser [8] Moser gave a solution of the system
using the method of continued fractions, and in the process he
constructed action-angle coordinates. Lax pairs of the system can
be found in Moser [8], Damianou [9]. Equations (3) can be con-
sidered as a finite-dimensional approximation of the Korteweg-de
Vries (KdV) equation. This system has a close connection with the
Toda lattice,

ȧi = ai(bi + 1 − bi) i = 1, . . . , n − 1

ḃi = 2(a2
i − a2

i − 1) i = 1, . . . , n.

In fact, a transformation of Hénon connects the two systems:

ai = −1

2

√
x2ix2i − 1 i = 1, . . . , n − 1

bi = 1

2
(x2i − 1 + x2i − 2) i = 1, . . . , n.

The Lotka-Volterra system forms the basis for many models
used today in the analysis of population dynamics. It has other
applications in Physics, e.g., laser Physics, plasma Physics (as
an approximation to the Vlasov-Poisson equation), and neural
networks. It appears also in computer science, e.g., communica-
tion networks, see [10]. Lotka-Volterra systems have been studied
extensively, see e.g., [4, 11–14]. The Darboux method of find-
ing integrals of finite dimensional vector fields and especially for
various types of Lotka-Volterra systems has been used by several
authors, e.g., [15–20].

2. HAMILTONIAN STRUCTURE
There is a symplectic realization of the Lotka-Volterra system
which goes back to Volterra. For simplicity we write the equations
in the form

ẋj =
n∑

k = 1

ajkxjxk, for j = 1, 2, . . . , n, (4)

where the matrix A = (ajk) is a fixed skew-symmetric matrix.
In Fernandes and Oliva [21] the Hamiltonian formulation is
obtained based on Volterra’s work using a symplectic realization
from R2n �→ Rn. Volterra defined the variables

qi(t) =
∫ t

0
xi(s)ds

(which he called quantity of life) and

pi(t) = ln (q̇i) − 1

2

n∑
k = 1

aikqk,

for i = 1, 2, . . . , n. Now, the variables are doubled and the
Volterra’s transformation is:

R2n �→ Rn

(q1, . . . , qn, p1, . . . , pi) �→ (x1, . . . , xn),
(5)

where

xi = epi + 1
2

∑n
k = 1 aikqk , for i = 1, 2, . . . , n.

The Hamiltonian in these (q, p) coordinates becomes

H =
n∑

i = 1

xi =
n∑

i = 1

q̇i =
n∑

i = 1

epi + 1
2

∑n
k = 1 aikqk .

The vector field (4) can be written as

q̇i = ∂H

∂pi
= {qi, H},

ṗi = −∂H

∂qi
= {pi, H},

(6)
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for i = 1, 2, . . . , n, where the bracket {·, ·} is the standard sym-
plectic on R

2n, that is:

{qi, pj} = δij =
{

1, if i = j
0, if i �= j

, for i, j = 1, 2, . . . , n.

All others are equal to zero. This system has n integrals given by

Ij(qj, pj) = pj − 1

2

n∑
k = 1

ajkqk .

One checks that indeed

İj = {Ij, H} = 0 .

Moreover, {Ij, Jk} = ajk. The corresponding Poisson bracket pro-
duced by the transformation (5) in the x coordinates is

{xi, xj} = aijxixj, for i, j = 1, 2, . . . , n.

This observation gives a another proof that the bracket (2) is
indeed Poisson.

3. BOGOYAVLENSKY-VOLTERRA SYSTEMS
We now describe the construction of the generalized Volterra sys-
tems of Bogoyavlensky (see [22, 23]). In this first construction
the matrix A is not skew-symmetric but we include the details for
completeness.

Let g be a simple Lie algebra, with dim g = n, and let � =
{ω1, ω2, . . . , ωn} be a Cartan-Weyl basis for the simple roots in
g. There exist unique positive integers ki such that

k0ω0 + k1ω1 + · · · + knωn = 0,

where k0 = 1 and ω0 is the minimal negative root. We consider
the Lax pair:

L̇ = [B, L] ,

where

L(t) =
n∑

i = 1

bi(t)eωi + eω0 +
∑

1 ≤ i < j ≤ n

[eωi , eωj ],

B(t) =
n∑

i = 1

ki

bi(t)
e − ωi + e − ω0 .

Let h ⊂ g be the Cartan subalgebra. For every root ωa ∈ h∗ there
is a unique Hωa ∈ h such that ω(h) = β

(
Hωa , h

)
, for all h ∈ h,

where β denotes the Killing form. Also, β induces an inner prod-
uct on h∗ by setting 〈ωa, ωb〉 = β

(
Hωa , Hωb

)
, and we define

cij =
⎧⎨
⎩

1 if
〈
ωi, ωj

〉 �= 0 and i < j,
0 if

〈
ωi, ωj

〉 = 0 or i = j,
−1 if

〈
ωi, ωj

〉 �= 0 and i > j .

With these choices, the Lax pair above is equivalent to the system
of o.d.e.’s

ḃi = −
n∑

j = 1

kjcij

bj
. (7)

To obtain a Lotka-Volterra type system one introduces a new set
of variables by

xij = cijb
−1
i b−1

j ,

xji = −xij,

xjj = 0.

Note that xij �= 0 iff there exists an edge in the Dynkin diagram
for the Lie algebra g connecting the vertices ωi and ωj. System
(7), in the variables xij, takes the form

ẋij = xij

n∑
s = 1

ks
(
xis + xjs

)
, (8)

which is a Lotka-Volterra type system.
For example the following system is an open version of a Bn

system:
ẋ1 = x1x2, ẋ2 = x2(x3 − x1),

ẋ3 = x3(x4 − x2), ẋ4 = −x4(x3 + x4) .
(9)

The Hamiltonian formulation of these systems, Lax pairs and
master symmetries were considered by Kouzaris [24]. There is
also a Lax pair in Damianou and Fernandes [25]. The system in
our example has two integrals of motion, one of degree 2 and one
of degree 4. The quadratic integral is

F1 = x2
1 + x2

2 + x2
3 + 2x1x2 + 2x2x3 + 2x3x4.

The fourth degree invariant is

F2 = x4
1 + x4

2 + x4
3 + 4x2

1x2x3 + 6x2
1x2

2 + 4x1x2x3x4 + 4x2
3x2

4

+ 4x3x4x2
2 + 4x1x3

2 + 4x3
3x4 + 4x3

1x2 + 8x2
3x2x4

+ 8x1x3x2
2 + 4x1x2x2

3 + 4x3
2x3 + 4x2x3

3 + 6x2
2x2

3.

4. MORE BOGOYAVLENSKY’S TYPE SYSTEMS
Bogoyavlensky in [22, 23] and [5] has generalized the KM-system
in the following way,

ẋi = xi

⎛
⎝ p∑

j = 1

xi + j −
p∑

j = 1

xi − j

⎞
⎠ (10)

with periodic condition xn + i = xi. We will denote this system
with B(n, p). All the results in this section, except the bihamil-
tonian pair follow [5]. The system has a Lax pair of the form

L̇ = [L, A],
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where L = X + λM and A = b − λMp + 1. The matrix X has the
form xi,i − p = xi for p + 1 ≤ i ≤ n and xi,i + n − p = xi for 1 ≤ i ≤
p. The matrix M is defined by mi,i + 1 = mn,1 = 1. The matrix b
is diagonal with entries bii = −(xi + xi + 1 + · · · + xi + p).

Example 1. Let us consider the system B(6, 2), i.e., n = 6, p = 2.
The equations of motion become

ẋ1 = x1(x2 + x3 − x5 − x6)
ẋ2 = x2(x3 + x4 − x1 − x6)
ẋ3 = x3(x4 + x5 − x2 − x1)
ẋ4 = x4(x5 + x6 − x3 − x2)
ẋ5 = x5(x6 + x1 − x4 − x3)
ẋ6 = x6(x1 + x2 − x5 − x4) .

(11)

We have

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 x1 0
0 0 0 0 0 x2

x3 0 0 0 0 0
0 x4 0 0 0 0
0 0 x5 0 0 0
0 0 0 x6 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 λ 0 0 x1 0
0 0 λ 0 0 x2

x3 0 0 λ 0 0
0 x4 0 0 λ 0
0 0 x5 0 0 λ

λ 0 0 x6 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let p(x) = det(L − xI) be the characteristic polynomial of L. Then
the coefficient of x3 is of the form Hλ2 + F2, where H = x1 +
x2 + x3 + x4 + x5 + x6 is the Hamiltonian and F2 = x1x3x5 +
x2x4x6. On the other hand the constant term of p(x) has the
form F3λ

2 + F4, where F3 = x1x2x4x5 + x1x3x4x6 + x2x3x5x6 and
F4 = x1x2x3x4x5x6.

By examining the eigenvectors of the coefficient matrix of (11) we
can see that the functions C1 = x2x5, C2 = x1x4, C3 = x2x4x6 and
C4 = x1x3x5 are all Casimirs of the corresponding quadratic Poisson
structure. Therefore we have a rank 2 Poisson bracket and the system
is clearly integrable. It is easy to see that the functions F2, F3, F4 can
be expressed as functions of C1, C2, C3, C4.

Now restrict this system on the invariant submanifold
x5 = x6 = 0. We obtain the system

ẋ1 = x1(x2 + x3)
ẋ2 = x2(x3 + x4 − x1)
ẋ3 = x3(x4 − x2 − x1)

ẋ4 = x4( − x3 − x2) . (12)

This system is integrable. It has two Casimirs F1 = x1x4 = C2 and
F2 = x1x3

x2
= C4

C1
.

Example 2. Similarly, the quadratic Poisson structure π2 associated
to the system B(5, 2), i.e.,

π2 =

⎛
⎜⎜⎜⎜⎜⎝

0 x1x2 x1x3 −x1x4 −x1x5

−x1x2 0 x2x3 x2x4 −x2x5

−x1x3 −x2x3 0 x3x4 x3x5

x1x4 −x2x4 −x3x4 0 x4x5

x1x5 x2x5 −x3x5 −x4x5 0

⎞
⎟⎟⎟⎟⎟⎠ ,

has a single Casimir x1x2x3x4x5. The system is Hamiltonian with
Hamiltonian function

H = x1 + x2 + x3 + x4 + x5

and it has as additional first integral the function

F = x1x2x4 + x1x3x4 + x1x3x5 + x2x3x5 + x2x4x5 .

Define the Poisson tensor π0 as follows:

π0 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1 1 0
0 0 0 −1 1
1 0 0 0 −1

−1 1 0 0 0
0 −1 1 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

It is easy to check that π0 is compatible with π2 and that we have a
bihamiltonian pair

π2dH = π0dF .

The function H is the Casimir of bracket π0.
More generally, if n = 2p + 1, then we can define a (skew-

symmetric) tensor field π0 with non-zero entries π0[i, i + n − p −
1] = −1 for 1 ≤ i ≤ p + 1 and π0[i, i + n − p] = 1 for 1 ≤ i ≤ p.
The associated quadratic Poisson structure π2 to the system (10) and
π0 are compatible and they form a bihamiltonian pair.

Restricting on the submanifold x5 = 0 we obtain the system

ẋ1 = x1(x2 + x3 − x4)
ẋ2 = x2(x3 + x4 − x1)
ẋ3 = x3(x4 − x2 − x1)
ẋ4 = x4(x1 − x3 − x2) .

(13)

This system is integrable with second integral given by x1x4(x2 +
x3), i.e., the restriction of F on the submanifold.

Example 3. Restricting the B(7, 2) on the submanifold x4 = x6 =
x7 = 0 and renaming x5 → x4 results in the following system
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ẋ1 = x1(x2 + x3)
ẋ2 = x2(x3 − x1)
ẋ3 = x3(x4 − x2 − x1)
ẋ4 = −x4x3 .

(14)

The additional integral is F = x4(x1 + x2).

Example 4. Restricting the B(7, 3) on the submanifold x5 = x6 =
x7 = 0 results in the following system

ẋ1 = x1(x2 + x3 + x4)
ẋ2 = x2(x3 + x4 − x1)
ẋ3 = x3(x4 − x2 − x1)
ẋ4 = x4( − x1 − x2 − x3) .

(15)

The Poisson matrix in this example is symplectic. The system is
integrable since it has two constants of motion F1 = (x1 + x2)x4

x3
and

F2 = (x3 + x4)x1
x2

. Note that

F3 = (x1 + x2 + x3)(x2 + x3 + x4)

x2 + x3

is also a first integral.

5. GENERALIZED VOLTERRA SYSTEMS
We recall the following procedure from Damianou [26]. Let g be
any simple Lie algebra equipped with its Killing form 〈· | ·〉. One
chooses a Cartan subalgebra h of g and a basis � of simple roots
for the root system 
 of h in g. The corresponding set of positive
roots is denoted by 
+. To each positive root α one can associate
a triple (Xα, X−α, Hα) of vectors in g which generate a Lie subal-
gebra isomorphic to sl2(C). The set (Xα, X−α)α∈
+ ∪ (Hα)α∈�

is a basis of g, called a root basis. Let � = {α1, . . . , α�} and let
Xα1 , . . . , Xα�

be the corresponding root vectors in g. Define

L =
∑
αi∈�

ai(Xαi + X−αi ).

To find the matrix B we use the following procedure. For each

i, j form the vectors
[

Xαi , Xαj

]
. If αi + αj is a root then include

a term of the form aiaj

[
Xαi , Xαj

]
in B. We make B skew-

symmetric by including the corresponding negative root vectors
aiaj[X−αi , X−αj ]. Finally, we define the system using the Lax equa-

tion L̇ = [L, B]. For a root system of type An we obtain the KM
system.

If a system is of type ADE we can define the system in the fol-
lowing alternative way. Consider the Dynkin diagram of g and
define a Lotka–Volterra system by the equations

ẋi = xi

�∑
j = 1

mijxj,

where the skew-symmetric matrix mij for i < j is defined to be
mij = 1 if vertex i is connected with vertex j and 0 otherwise. For

i > j the term mij is defined by skew-symmetry. Note that if we
replace one of the mij for i < j from +1 to −1 we may end up
with an inequivalent system. In our definition, the upper part of
the matrix (mij) consists only of 0 and 1. However, it is possible
to define for each connected graph 2m systems, where m is the
number of edges, by assigning the ±1 sign to each edge. Of course,
some of these systems will be isomorphic. One more observation:
there are several inequivalent ways to label a graph and therefore
the association between graphs and Lotka–Volterra systems is not
always a bijection. The number of distinct labellings of a given
unlabeled simple graph G on n vertices is known to be

n!
|aut (G)| .

Example 5. (D4 system) By examining the Dynkin diagram of the
simple Lie algebra of type D4 we obtain the system

ẋ1 = x1x2, ẋ2 = −x1x2 + x2x3 + x2x4,

ẋ3 = −x2x3, ẋ4 = −x2x4.
(16)

One can obtain the same equations in the following way. Define the
matrix L using the root vectors of a Lie algebra of type D4

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
x1 0 1 0 0 0 0 0
0 x2 0 1 1 0 0 0
0 0 x3 0 0 1 0 0
0 0 x4 0 0 −1 0 0
0 0 0 x4 −x3 0 −1 0
0 0 0 0 0 −x2 0 −1
0 0 0 0 0 0 −x1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

x1x2 0 0 0 0 0 0 0
0 x2x3 0 0 0 0 0 0
0 x2x4 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 x2x4 −x2x3 0 0 0
0 0 0 0 0 −x1x2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the Lax equation L̇ = [L, B] is equivalent to (18). We note that

Hk = 1

k
tr Lk, k = 1, 2, . . .

are integrals of motion for the system. In fact

4H2 = x1 + x2 + x3 + x4,

4H4 = tr L4 = x2
1 + x2

2 + x2
3 + x2

4 + 2x1x2

+ 2x2x3 + 2x2x4 + 2x3x4.
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Also, the associated quadratic Poisson structure to the system
(18) has two Casimirs F1 = x1x4 and F2 = x1x3. It turns out that
det (L) = (F1 + F2)2.
We have

H2
2 − 4H4 = 8(x1x3 + x1x4) = 8(F1 + F2).

We can find the Casimirs by computing the kernel of the matrix

A =

⎛
⎜⎜⎝

0 1 0 0
−1 0 1 1
0 −1 0 0
0 −1 0 0

⎞
⎟⎟⎠ .

The two eigenvectors with eigenvalue 0 are (1, 0, 0, 1) and
(1, 0, 1, 0). We obtain the two Casimirs F1 = x1

1x0
2x0

3x1
4 = x1x4 and

F2 = x1
1x0

2x1
3x0

4 = x1x3.

In Charalambides et al. [27] the algorithm was generalized as
follows. Consider a subset 
 of 
+ such that � ⊂ 
 ⊂ 
+. The
Lax matrix is easy to construct

L =
∑
αi∈


ai(Xαi + X−αi ) .

Here we use the following enumeration of 
 which we assume to
have m elements. The variables aj correspond to the simple roots
αj for j = 1, 2, . . . , �. We assign the variables aj for j = � + 1, � +
2, . . . , m to the remaining roots in 
. To construct the matrix B
we use the following algorithm. Consider the set 
 ∪ 
− which
consists of all the roots in 
 together with their negatives and let
� = {

α + β | α, β ∈ 
 ∪ 
−, α + β ∈ 
+}
. Define

B =
∑

cijaiaj(Xαi + αj − X−αi − αj ) (17)

where cij = ±1 if αi + αj ∈ � with αi, αj ∈ 
 ∪ 
− and 0 oth-
erwise. In all eight cases in A3 we are able to make the proper
choices of the sign of the cij so that we can produce a Lax pair.
This method produces a Lax pair in all but five out of sixty four
cases in A4. However, when we allow the cij to take the complex
values ±i we are able to produce a Lax pair in all 64 cases. By using
Maple we were able to check that all these examples in A3 and A4

are in fact Liouville integrable. We will not attempt to prove the
integrability of these systems in general due to the complexity of
their definition.

This algorithm for certain subsets 
 recovers well known inte-
grable systems. For example for 
 = �, the simple roots of the
root system An, and ci,i+1 = 1 for i = 1, 2, . . . , n − 1 we obtain
the KM system while for 
 = � ∪ {αn + 1}, the simple roots
and the highest root, the choice of the signs ci,i+1 = 1 for i =
1, 2, . . . , n − 1 and c1,n+1 = cn,n+1 = −1 produces the periodic
KM system.

Example 6. For the root system of type A3 if we take 
 =
{α1, α2, α3, α1 + α2} then

� = {α1, α2, α1 + α2, α2 + α3, α1 + α2 + α3}.

In this example the variables ai for i = 1, 2, 3 correspond to the three
simple roots α1, α2, α3 and the variable a4 to the root α1 + α2. We
obtain the following Lax pair:

L =

⎛
⎜⎜⎝

0 a1 a4 0
a1 0 a2 0
a4 a2 0 a3

0 0 a3 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0 −a4a2 a1a2 −a4a3

a4a2 0 −a1a4 a2a3

−a1a2 a1a4 0 0
a4a3 −a2a3 0 0

⎞
⎟⎟⎠ .

Using the substitution xi = 2a2
i , the system defined by the Lax

equation L̇ = [L, B] is transformed to the following Lotka-Volterra
system.

ẋ1 = x1x2 − x1x4, ẋ2 = −x2x1 + x2x3 + x2x4,

ẋ3 = −x3x2 + x3x4, ẋ4 = x4x1 − x4x2 − x4x3 .

This system is integrable. There exist two functionally indepen-
dent Casimir functions F1 = x1x3 = det L and F2 = x1x2x4. The
standard quadratic Poisson bracket (2) is defined by the relations
{xi, xj} = ri,jxixj where r1,2 = r2,3 = r3,4 = r2,4 = −r1,4 = 1 and
r1,3 = 0. One can find the Casimirs by computing the kernel of the
skew symmetric matrix A = (ri,j)1 ≤ i,j ≤ 4. The additional integral
is the Hamiltonian H = x1 + x2 + x3 + x4 = tr L2.

Example 7. Let 
 = {α1, α2, α3, α1 + α2, α2 + α3}. Its associated
Lax equation L̇ = [B, L] with

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a1 a4 0

a1 0 a2 a5

a4 a2 0 a3

0 a5 a3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −a4a2 a1a2 −a1a5 − a4a3

a4a2 0 −a1a4 − a5a3 a2a3

−a1a2 a1a4 + a5a3 0 −a2a5

a1a5 + a4a3 −a2a3 a2a5 0

⎞
⎟⎟⎟⎟⎟⎟⎠

is equivalent to the following equations of motion

ȧ1 = a1a2
2 − a1a2

5 − a1a2
4 − 2a3a4a5,

ȧ2 = a2a2
4 + a2a2

3 − a2a2
1 − a2a2

5,

ȧ3 = a3a2
5 + a3a2

4 − a3a2
2 + 2a1a4a5,

ȧ4 = a4a2
1 − a4a2

2 − a4a2
3,

ȧ5 = a5a2
1 − a5a2

3 + a5a2
2.
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Note that the system is not Lotka-Volterra. It is Hamiltonian with
Hamiltonian function H = 1

2

(
a2

1 + a2
2 + a2

3 + a2
4 + a2

5

)
. The sys-

tem has Poisson matrix

π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1a2 −2 a4a5 −a1a4 −a1a5

−a1a2 0 a2a3 a2a4 −a2a5

2 a4a5 −a2a3 0 a3a4 a3a5

a1a4 −a2a4 −a3a4 0 0

a1a5 a2a5 −a3a5 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

of rank 4 . The determinant C = (a1a3 − a4a5)2 of L is the Casimir
of the system. The trace of L3 gives the additional constant of motion

F = 1

6
tr

(
L3) = a1a2a4 + a2a3a5 .

Since the three constants of motion are evidently independent, the
system is Liouville integrable.

6. SUBSETS � GIVING RISE TO LOTKA VOLTERRA SYSTEMS
In Evripidou [28] Evripidou classified all subsets of the posi-
tive roots containing the simple roots which give rise to Lotka
Volterra systems via the transformation xi = 2a2

i . He also explic-
itly described each system associated with this subsets.

Theorem 1. The only choices for the subset 
 of 
+ so that
the corresponding generalized Volterra systems, under the substitu-
tion xi = 2a2

i , are transformed into Lotka-Volterra systems are the
following five.

(1) 
 = �,

(2) 
 = � ∪ {α2 + α3 + · · · + αn−1},
(3) 
 = � ∪ {α1 + α2 + · · · + αn−1},
(4) 
 = � ∪ {α2 + α3 + · · · + αn},
(5) 
 = � ∪ {α1 + α2 + · · · + αn}.

We outline the proof of this theorem. First one proves the theorem
for the special case where 
 is the subset of the positive roots
containing the simple roots and only one extra root. This is done
by explicitly writing down the matrix [B, L] and setting equal to
zero the coefficients of the root vectors corresponding to roots
not appearing in 
. We end up with a linear system of the signs
ci,j, which in order to have a solution, the extra root αn + 1 ∈ 


must be of the form αn + 1 = αk + αk + 1 + . . . + αm with k ≤ 2
and m ≥ n − 1. Since subsystems of Lotka-Volterra systems are
also Lotka-Volterra systems, the proof of theorem 1 is a case by
case verification of all of the 16 possible subsets 
 containing the
simple roots and roots in

{αk + αk + 1 + . . . + αm : k ≤ 2 and m ≥ n − 1}.

Below we describe the corresponding Lotka-Volterra systems.
Case (1) gives rise to the KM system while case (5) gives rise to

the periodic KM system.

Case (2) corresponds to the Lax equation L̇ = [L, B] with L
matrix

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 0 · · · 0 0 0 0
a1 0 a2 0 0 an + 1 0

0 a2 0 a3
. . . 0 0

... 0 a3
. . .

. . . 0

0
. . .

. . . 0 an − 2 0
...

0 0 an − 2 0 an − 1 0
0 an + 1 0 0 an − 1 0 an

0 0 0 0 · · · 0 an 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The skew symmetric matrix B is defined using the method
described in the previous section.

After substituting xi = 2a2
i for i = 1, . . . , n + 1, the Lax pair

L, B becomes equivalent to the following equations of motion:

ẋ1 = x1(x2 − xn + 1),

ẋ2 = x2(x3 − x1 − xn + 1),

ẋi = xi(xi + 1 − xi − 1), i = 3, 4, . . . , n − 2, n

ẋn − 1 = xn − 1(xn − xn − 2 + xn + 1),

ẋn + 1 = xn + 1(x1 + x2 − xn − 1 − xn).

It is easily verified that for n even, the rank of the corresponding
Poisson matrix is n and the function f = x2x3 · · · xn − 1xn + 1 is the
Casimir of the system, while for n odd, the rank of the Poisson
matrix is n − 1 and the functions f1 = x1x3 · · · xn = √

det L and
f2 = x2x3 · · · xn − 1xn + 1 are the Casimirs.

Case (3) corresponds to the Lax pair whose Lax matrix L is
given by

L =
n + 1∑
i = 1

ai
(
Xαi + X−αi

)

with an + 1 = α1 + . . . + αn−1. The upper triangular part of the
skewsymmetric matrix B is

n−1∑
i = 1

aiai + 1Xαi + αi + 1 − an − 1an + 1Xαn + 1−αn − 1

−a1an + 1Xαn + 1−α1 − anan + 1Xαn + 1+ αn .

After substituting xi = 2a2
i for i = 1, . . . , n + 1, we obtain the

following equivalent equations of motion:

ẋ1 = x1(x2 − xn + 1)

ẋi = xi(xi + 1 − xi − 1), i = 2, 3, 4, . . . , n − 2, n

ẋn − 1 = xn − 1(xn − xn − 2 + xn + 1)

ẋn + 1 = xn + 1(x1 − xn − xn − 1).

For n even, the rank of the Poisson matrix is n and the function
f = x1x2 · · · xn − 1xn + 1 is the Casimir, while for n odd, the rank of
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the Poisson matrix is n − 1 and the functions f1 = x1x3x5 · · · xn =√
det L and f2 = x1x2 · · · xn − 1xn + 1 are Casimirs.
The system obtained in case (4) turns out to be isomorphic to

the one in case (3). In fact, the change of variables un + 1−i = −xi

for i = 1, 2, . . . , n and un + 1 = −xn + 1 in case (3) gives the
corresponding system of case (4).

7. POISSON BRACKETS WITH PRESCRIBED CASIMIRS
In Damianou and Petalidou [29] by constructing the Poisson
brackets for the periodic Toda starting from the well-known
Casimirs we observed the surprising appearance of the Volterra
system. We first review the basic construction in Damianou and
Petalidou [29].

Suppose dim M = 2n. Let f1, . . . , f2n−2k be smooth functions
on M, functionally independent on a dense open set. Let ω0 be
an almost symplectic form on M such that the associate bivector
field �0 satisfies:

f =
〈

df1 ∧ . . . ∧ df2n − 2k,
�n− k

0

(n − k)!

〉

=
〈

ωn − k
0

(n − k)! , Xf1 ∧ . . . ∧ Xf2n − 2k

〉
�= 0,

where Xfi = �#
0(dfi). Note that f is the Pfaffian of

({fi, fj}0
)
.

Consider the (2n − 2)-form


 = −1

f

(
σ + g

k − 1
ω0

)
∧ ωk − 2

0

(k − 2)! ∧ df1 ∧ . . . ∧ df2n − 2k,

where σ is a 2-form on M satisfying:

(i) 2σ ∧ δ(σ ) = δ(σ ∧ σ ) . (18)

The operator δ is defined by δ = ∗ d ∗, where ∗ is the standard
star operator.
(ii) The 2-form σ is a section of

∧2 D◦ of maximal rank where
D◦ is the annihilator of the distribution D generated by the vector
fields of Xf1 , . . . , Xf2n − 2k .

Finally, g = i�0σ . Then 
 corresponds to a Poisson tensor
field � on M with orbits of dimension at most 2k for which
f1, . . . , f2n − 2k are Casimir functions. Precisely, � = �#

0(σ ) and
the associated bracket of � on C∞(M) is given, for any h1, h2 ∈
C∞(M), by

{h1, h2}� = −1

f
dh1 ∧ dh2 ∧

(
σ + g

k − 1
ω0

)
∧ ωk − 2

0

(k − 2)!
∧df1 ∧ . . . ∧ df2n − 2k. (19)

Conversely, if � is a Poisson tensor on (M, ω0) of rank at most
2k on an open and dense subset U of M, then there are 2n − 2k
functionally independent smooth functions f1, . . . , f2n −2k on U
and a suitable 2-form σ on M such that �� = −i�� and {·, ·} is
of the form (19).

Similar results hold when M is an odd-dimensional man-
ifold. One may establish a similar formula for the Poisson
brackets on C∞(M) with the prescribed properties. For this
construction, we assume that M is equipped with a suitable
almost cosymplectic structure (ϑ0,�0) and with the volume

form � = ϑ0 ∧ �n
0

n! . In Damianou and Petalidou [29] we showed

how one obtains the An Volterra bracket starting from the
An Lie Poisson bracket of the periodic Toda lattice. The algo-
rithm can of course be generalized to any complex simple Lie
algebra.

8. FROM AN -PERIODIC TODA TO VOLTERRA LATTICE
In this section we describe the An-Toda to An-Volterra case. We
begin with the linear Poisson structure �T associated with the
periodic Toda lattice of n particles. This Poisson structure has two
well-known Casimir functions. Using formula (19) we construct
another Poisson structure having the same Casimir invariants
with �T . It turns out that this structure decomposes as a direct
sum of two Poisson tensors one of which (involving only the
a variables in Flaschka’s coordinates) is the quadratic Poisson
bracket of the Volterra lattice.

The periodic Toda lattice of n particles (n ≥ 2) is the system
of ordinary differential equations on R

2n which in Flaschka’s [7]
coordinates (a1, . . . , an, b1, . . . , bn) takes the form

ȧi = ai(bi + 1 − bi) and ḃi = 2(a2
i − a2

i − 1)

(i ∈ Z and (ai + n, bi + n) = (ai, bi)).

This system is Hamiltonian with respect to the nonstandard Lie-
Poisson structure

�T =
n∑

i = 1

ai
∂

∂ai
∧

(
∂

∂bi
− ∂

∂bi + 1

)

on R
2n and it has as Hamiltonian the function H = ∑n

i = 1 (a2
i +

1

2
b2

i ). �T is of rank 2n − 2 on U = {(a1, . . . , an, b1, . . . , bn) ∈
R

2n /
∑n

i = 1 a1 . . . ai − 1ai + 1 . . . an �= 0} and it admits two
Casimir functions:

C1 = b1 + b2 + . . . + bn and C2 = a1a2 . . . an.

We consider on R
2n the standard symplectic form

ω0 = ∑n
i = 1 dai ∧ dbi, its associated Poisson tensor

�0 = ∑n
i = 1

∂

∂ai
∧ ∂

∂bi
, and the corresponding volume ele-

ment � = ωn
0

n! = da1 ∧ db1 ∧ . . . ∧ dan ∧ dbn. The Hamiltonian

vector fields of C1 and C2 with respect to �0 are

XC1
= −

n∑
i = 1

∂

∂ai
and XC2

=
n∑

i = 1

a1 . . . ai − 1ai + 1 . . . an
∂

∂bi
.
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So, D = 〈XC1
, XC2

〉 and

D◦ =
{

n∑
i = 1

(αidai + βidbi) ∈ �1(R2n) /

n∑
i = 1

αi = 0 and

n∑
i = 1

a1 . . . ai − 1βiai + 1 . . . an = 0

}
.

The family of 1-forms (σ1, . . . , σn − 1, σ
′
1, . . . , σ

′
n − 1),

σj = daj − daj + 1 and σ ′
j = ajdbj − aj + 1dbj + 1,

j = 1, . . . , n − 1,

provides, at every point (a, b) ∈ U , a basis of D◦
(a,b). The section

of maximal rank σT of
∧2 D◦ → U , which corresponds to �T ,

via the isomorphism �#
0, and verifies (18), is written, in this basis,

as

σT =
n − 1∑
j = 1

σj ∧
⎛
⎝n − 1∑

l = j

σ ′
l

⎞
⎠ .

Now, we consider on R
2n the 2-form

σ =
n − 2∑
j = 1

σj ∧
⎛
⎝ n − 1∑

l = j + 1

σl

⎞
⎠ +

n − 2∑
j = 1

σ ′
j ∧ ( n − 1∑

l = j + 1

σ ′
l

)

=
n−2∑
j = 1

[
(daj − daj + 1) ∧ (daj + 1 − dan)

+(ajdbj − aj + 1dbj + 1) ∧ (aj + 1dbj + 1 − andbn)
]

=
n∑

j = 1

(
daj ∧ daj + 1 + ajaj + 1dbj ∧ dbj + 1

)
.

It is a section of
∧2 D◦ whose rank depends on the parity of n;

if n is odd, its rank is 2n − 2 on U , while, if n is even, its rank is
2n − 4 almost everywhere on R

2n. Also, after a long computation,
we can confirm that it satisfies (18). Thus, its image via �#

0, i.e.,
the bivector field

� =
n∑

j = 1

(
ajaj + 1

∂

∂aj
∧ ∂

∂aj + 1
+ ∂

∂bj
∧ ∂

∂bj + 1

)
, (20)

defines a Poisson structure on R
2n with symplectic leaves of

dimension at most 2n − 2, when n is odd, that has C1 and C2

as Casimir functions. (When n is even, � has two more Casimir
functions.) We remark that (R2n, �) can be viewed as the product

of Poisson manifolds (Rn, �V ) × (Rn,�′), where

�V =
n∑

j = 1

ajaj + 1
∂

∂aj
∧ ∂

∂aj + 1
and

�′ =
n∑

j = 1

∂

∂bj
∧ ∂

∂bj + 1
.

The Poisson tensor �V is the quadratic Poisson structure associ-
ated to the periodic Volterra lattice

ȧi = ai(ai + 1 − ai − 1), i = 1, . . . , n, with an + i = ai, (21)

on R
n and it has C2 as unique Casimir function, when n = 2k + 1

is odd.
It is well known that (21) is a completely integrable system that

admits a bihamiltonian formulation, [30–32], and a Lax pair rep-
resentation [8, 9, 33]. �V is compatible with the cubic Poisson
tensor field Q on R

n whose components are the functions

Qij = aiaj(ai + aj)(δi + 1,j − δj+1,i) + aiai + 1ai + 2δi + 2,j

− aiai − 1ai − 2δi − 2,j,

and we have that

�#
V

(dH) = Q#(d ln C2).

Also, (21) can be written in the form L̇ = [B, L], where

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

a1 0 . . . 0
√

an

√
a1 0

√
a2

. . . 0

0
. . .

√
a2

. . .
. . .

...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . 0
√

an−1√
an 0 . . . 0

√
an −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
√

a1a2 0 . . . . . . −√
an − 1an 0

0 0 0
√

a2a3 −√
a1an

−√
a1a2 0 0 0

. . .
.
.
.

0 −√
a2a3 0 0

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . .

. . . 0

.

.

.
. . .

. . . 0 0
√

an − 2an − 1

√
an −1an

. . .
. . . 0 0 0

0
√

a1an . . . . . . 0 −√
an − 2an − 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The functions det L = 2C1/2
2 and TrL2k are first integrals of (21).
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Some other An-type Lotka-Volterra systems: We remark
that to each 2-form σ ′ which is a linear combination of 2-
forms of type σ ′

i ∧ σ ′
j corresponds, via �#

0, a diagonal quadratic
Poisson structure whose a Casimir is the function C2 and whose
Hamiltonian system associated to H = a1 + . . . + an is of the
form (4). For example, if n = 5 and σ ′ = 3σ ′

1 ∧ σ ′
2 + σ ′

1 ∧ σ ′
3 +

σ ′
1 ∧ σ ′

4 − 2σ ′
2 ∧ σ ′

4 + σ ′
3 ∧ σ ′

4,

� = �#
0(σ ′) =

⎛
⎜⎜⎜⎜⎜⎝

0 3a1a2 −2a1a3 0 −a1a5

−3a1a2 0 2a2a3 −2a2a4 3a2a5

2a1a3 −2a2a3 0 3a3a4 −3a3a5

0 2a2a4 −3a3a4 0 a4a5

a1a5 −3a2a5 3a3a5 −a4a5 0

⎞
⎟⎟⎟⎟⎟⎠

and the Hamiltonian vector field �#(dH) corresponds to the
system

ȧ1 = a1(3a2 − 2a3 − a5)

ȧ2 = a2( − 3a1 + 2a3 − 2a4 + 3a5)

ȧ3 = a3(2a1 − 2a2 + 3a4 − 3a5)

ȧ4 = a4(2a2 − 3a3 + a5)

ȧ5 = a5(a1 − 3a2 + 3a3 − a4).

The integrability of the Lotka-Volterra systems obtained by the
above procedure is an open problem.

We close with the following observation. Beginning with the
standard Poisson bracket for the periodic Toda lattice corre-
sponding to a complex simple Lie algebra g and by repeating the
procedure of this section we produce new Lotka-Volterra systems
associated with g. Establishing the integrability of these systems is
also an open problem.
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