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We review Fourier methods used in the disciplines of electromagnetism and signal
processing, with a view to reconciling differences in approach. In particular, Fourier
methods well known in signal processing are applied to three-dimensional wave
propagation problems. The Fourier transform of the Green function, when written explicitly
in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous
components. Both parts are necessary to result in a pure out-going wave that satisfies
causality. The homogeneous component consists only of propagating waves, but the
inhomogeneous component contains both evanescent and propagating terms. Thus,
we make a distinction between inhomogeneous waves and evanescent waves. The
evanescent component is completely contained in the region of the inhomogeneous
component outside the k-space sphere. Further, propagating waves in the Weyl expansion
contain both homogeneous and inhomogeneous components. The connection between
the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric
Fourier transforms is given.
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INTRODUCTION
In a recent paper, Schmalz et al. presented a rigorous deriva-
tion of the general Green function of the Helmholtz equation
based on three-dimensional (3D) Fourier transformation, and
then found a unique solution for the case of a source [1]. Their
approach is based on the use of generalized functions and the
causal nature of the out-going Green function. It gives a differ-
ent result for the Fourier transform of the Green function from
that in most standard works in theoretical physics and electro-
magnetic theory, which we call the standard method. Actually,
the basic principle behind their method was described many
years ago by Dirac [2] (see also [3], p. 71 and [4], p. 224),
but has not been widely adopted, despite its advantages. The
present paper presents some of the important implications of
this approach. An aim of the present paper is to reconcile the
different approaches used in the theoretical physics and signal
processing disciplines, respectively. We discuss the physical impli-
cations with respect to the distinctions between homogeneous
and inhomogeneous waves, evanescent and propagating waves,
in-going and out-going waves, and forward and backward propa-
gating waves. In particular, in our terminology inhomogeneous
waves and evanescent waves are different concepts. Some self-
consistent spherically symmetric Fourier transforms pairs are
listed.

A simple source, equivalent to the Green function, impulse
response, or point-spread function, is of fundamental importance
in diffraction, wave propagation, optical signal processing, and
so on, and has a Fourier transform that can be recognized as a
transfer function. Recently, we have shown that in three dimen-
sions there is some advantage, from the point of view of both

computational utility and conceptual understanding, in introduc-
ing the 3D transform of the Green function [5–8]. Thus, unlike
many other works we are particularly interested in the properties
and significance of the 3D transform in its own right, rather than
just as a step toward developing the real space Green function. In
the standard method, the 3D transform is only an intermediate
step, and the correct result for the Green function is developed by
choice of an appropriate contour for integration in the complex
plane. For our developments in Lin et al. [5, 6], Sheppard et al.
[7] and Kou et al. [8] it is important to obtain a correct causal
form for the 3D transform, as otherwise the introduction of for-
ward and backward propagating waves does not follow in a logical
fashion. In particular, it is found that the forward propagating
component includes contributions from both homogenous and
inhomogeneous waves.

The paper is arranged as follows. Section The Green-function
Transform is a discussion of different aspects of the 3D trans-
form of the Green function. In Section Homogeneous and
Inhomogeneous Solutions we introduce the concepts of homo-
geneous and inhomogeneous solutions of the wave equation,
and the relationship with sources and sinks. This includes, in
Section The McCutchen Sphere and the Ewald Sphere, a discus-
sion of the McCutchen sphere and the Ewald sphere concepts
in optical focusing and X-ray diffraction, respectively. In Section
Out-going and In-going Waves we discuss the significance of
out-going and in-going waves, including in Section On-shell
and Off-shell, and Bragg Diffraction on-shell and off-shell con-
ditions in quantum field theory, and in Section Regularization
the connection with regularization and renormalization. In
Section Homogeneous and Inhomogeneous Waves, vs. Traveling and
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Evanescent Waves we discuss the distinction between traveling and
evanescent waves. In Section Forward and Backward Propagating
Waves we discuss the significance of forward- and backward-
propagating waves. In Section Combining the Whittaker and
Weyl Expansions we compare the Whittaker and Weyl expan-
sions for waves. Section A List of Spherically-symmetric Fourier
Transforms gives a list of relevant 3D transforms, some of which
are not usually given in tables, and some of which differ from
those in many tables. A final discussion follows in Section
Summary.

THE GREEN-FUNCTION TRANSFORM
HOMOGENEOUS AND INHOMOGENEOUS SOLUTIONS
The homogeneous solution
We start by considering the homogeneous, scalar, time-
independent Helmholtz equation in 3D empty, free space:

(∇2 + k2
0)U(r) = 0, (1)

where k0 is the magnitude of the wave vector, k0 = 2π/λ. As we
all know, the general solution is

U(r) = A
sin k0r

r
+ B

cos k0r

r
, (2)

where A, B are arbitrary constants, in general complex. The sec-
ond term exhibits a singularity at r = 0, which is not an appropri-
ate physical solution in free space, so we select the homogeneous
solution given by

U(r) = A
sin k0r

r
= A

exp (ik0r)

2ir
− A

exp (−ik0r)

2ir
. (3)

The homogeneous solution thus represents a combination of a
source (corresponding to an out-going wave) and a sink (also
called a drain or outlet [9], and corresponding to an in-going
wave) in antiphase, respectively.

The inhomogeneous solution
The standard method of deriving the Green function, given
in many physics or electromagnetic theory texts [10–12], is to
Fourier transform the inhomogeneous Helmholtz equation, with
a forcing term −4πδ(r − r0),

(∇2 + k2
0)U(r) = −4πδ(r − r0), (4)

to give

(−k2 + k2
0)Ũ(k) = −4πe−ik·r0 , (5)

so that

Ũ(k) = 4πe−ik·r0

(k2 − k2
0)

. (6)

Then, inverse Fourier transforming using an appropriate contour
integration, we can obtain different solutions:

4πe−ik·r0

(k2 − k2
0)

⇒ exp[ik0(r − r0)]
r

,

4πe−ik·r0

(k2 − k2
0)

⇒ exp[−ik0(r − r0)]
r

. (7)

By choice of the correct contour we can thus generate either an
out-going or in-going wave. In many works, it is then claimed
that as a consequence of the Sommerfeld radiation condition
(Ausstrahlungsbedingung) [13, 14], sinks do not occur naturally
and thus we can select the source as giving the correct solution.
After putting r0 = 0, we thus have (according to many references
[10–12], and also Mathematica),

4π

(k2 − k2
0)

⇔ exp (ik0r)

r
. (8)

The Hankel transform is thus calculated using integration in the
complex plane. While it is recognized that contour integration
is a powerful method that can give an analytic solution leading
to many useful results, it should be appreciated that integration
along different paths will lead to different results in the presence
of singularities, and so interpretation of a result for a particular
path as being the Hankel transform may not always be appro-
priate. An alternative view is based on the use of generalized
functions, as usually done in the signal processing discipline.
This approach can be put on a rigorous footing using distribu-
tion theory or generalized derivatives [15, 16] as discussed by
Schmalz et al. [1]. Further, we can take advantage of the fact
that Hankel transforms constitute a reciprocal, unique transform
pair.

We can identify two issues with the standard treatment. First,
it is not clear why the delta forcing term in Equation 4 should rep-
resent a source rather than a sink, or a source/sink combination.
Second, we note that dividing by k2 − k2

0 to obtain Equation 6 is
valid only for k2 �= k2

0, so we should write [1, 2, 16], adding an
arbitrary multiple of the homogeneous solution which does not
affect Equation 5,

4π

(k2 − k2
0)

+ C δ(k2 − k2
0) ⇒ cos k0r

r
+ i

sin k0r

r
,

4π

(k2 − k2
0)

+ D δ(k2 − k2
0) ⇒ cos k0r

r
− i

sin k0r

r
. (9)

where C, D are different constants, in general complex. Thus, we
see that the choice of the arbitrary multiple can give the solu-
tion for either a source or a sink, or a source/sink combination.
Subtracting the two Equations 9,

E δ(k2 − k2
0) ⇒ sin k0r

r
, (10)
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where E = i(D − C)/2 must be real, as the term on the right is
purely real. This then implies, from Equation 9, that

4π

(k2 − k2
0)

⇒ cos k0r

r
, (11)

which represents the inhomogeneous solution, rather than the
relationship given in Equation 8. Thus, the delta function in
the inhomogeneous differential equation, Equation 4, can be
regarded as representing a combination of a source and a sink,
cos (k0r)/r.

The spherically symmetric Fourier transform
In this paper we will use the definition of Fourier transform
with no premultiplying constants [17], called in Mathematica the
signal processing convention, so that the components of spatial
frequency q ∈ R

3 are (qx, qy, qz), and q = (q2
x + q2

y + q2
z )1/2, the

spatial frequency in the radial direction, is given by q = k/2π.
This then corresponds to reciprocal space, as extensively used in
diffraction crystallography, while k-space is obtained by a sim-
ple geometric scaling. Using this definition results in a symmetric
transform pair, and this symmetry can be usefully exploited in
derivation of some transforms.

For the 3D case,

F(q) = 2

q

∫ ∞

0
f (r) sin (2πqr)r dr, q > 0, (12)

with r = |r| = (
x2 + y2 + z2

)1/2
, r ∈ R

3, where it is expressed
in terms of a single-sided sine transform of [rf (r)]. The inverse
transform is of identical form:

f (r) = 2

r

∫ ∞

0
F(q) sin (2πqr)q dq, r > 0. (13)

The name for this transform is not universal, but it has been called
the spherically symmetric Fourier transform (here we abbrevi-
ate to SSFT) or the spherical Hankel transform. The kernel is
real. The integration is along the positive real axis. The integral
always delivers an even result. If f (r) is an even function, the inte-
gral is one half of that from −∞ to ∞. It will be observed from
Equations 1, 2 that the SSFT does not depend on the form of
f (r), F(q) for negative r, q. Hence functions with different nega-
tive extensions give the same SSFT. In order to make the transform
pair unique, we use an even extension for negative values of r, q,
equivalent to replacing r, q with |r| , ∣∣q∣∣, which is consistent with
our definition of the transform pair in Equations 12, 13. The stan-
dard tables of single-sided sine transforms are those of Erdelyi
[18]. Bracewell gives a table of only a few SSFTs [17]. Other tables
include [19, 20]. Tables also exist on the web [21, 22]. Many trans-
forms can also be obtained from standard integral tables [23, 24].
However, as none of these sources give a complete list of the trans-
forms relevant to wave propagation, we give a list of relevant
transforms in Table 1 where those denoted ∗ require care when
using Mathematica. We continue by calculating the SSFTs of two
important functions.

Table 1 | Spherically-symmetric Fourier transform pairs in 3D.

f (r) = 2

r

∫∞
0 F(q) sin (2πqr)q dq, F(q) = 2

q

∫∞
0 f (r) sin (2πqr)r dr,

r > 0 q > 0

1
1

πr

1

π2q2

2
1

π2r2

1

πq

3
exp (−2πq0r)

r

1

π(q2 + q2
0)

4
2f1(2πq0r)

πr

1

πq(q + q0)

5
2π cos (2πq0r) − 2f1(2πq0r)

πr

1

πq(q − q0)

6
1 − 2πar f1(2πq0r)

2π2q0r2

1 − 2πq0r f1(2πq0r)

2π2q0r2

7
1 + 2π2q0r cos (2πq0r) − 2πq0r f1(2πq0r)

2π2q0r2

1

2πq0(q − q0)

8*
sin (2πq0r)

r

1

2q0

δ(q − q0)

9*
cos (2πq0r)

r

1

π(q2 − q2
0)

10*
exp (i2πq0r)

r

1

π(q2 − q2
0)

+ i

2q0

δ(q − q0)

11*
exp (−i2πq0r)

r

1

π(q2 − q2
0)

− i

2q0

δ(q − q0)

12*
1 + π2q0r cos (2πq0r) − 2πq0r f1(2πq0r)

2π2q0r2

q

2πq0(q2 − q2
0)

13*
π cos (2πq0r) − 2f1(2πq0r)

πr

q0

πq(q2 − q2
0)

14*
cos (2πq0r) − exp (−2πq0r)

r

2q2
0

π(q4 − q4
0)

*Signifies that these transforms require care when using Mathematica.

The first is fH(r) = sin (2πq0r)/r. Then

FH(q) = 2

q

∫ ∞

0
sin (2πq0r) sin (2πqr) dr

= 1

q

∫ ∞

−∞
sin (2πq0r) sin (2πqr) dr, (14)

as the integrand is an even function. Introducing the complex
forms for the trigonometric functions, we obtain

sin (2πq0r)

r
⇔ 1

4q

∫ ∞

−∞
{

exp
[
i2π(q − q0)r

]
+ exp

[−i2π(q − q0)r
]− exp

[
i2π(q + q0)r

]
− exp

[−i2π(q + q0)r
]}

dr

= 1

2q
[δ(q − q0) − δ(q + q0)] = δ(q2 − q2

0), (15)

using the properties of the Dirac delta function δ( · )[2]. As q
is positive definite, δ(q + 1/λ) vanishes upon integration over
positive q, so effectively
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sin (2πq0r)

r
⇔ 1

2q0

δ(q − q0). (16)

The inverse transform follows directly from substituting the delta
function into Equation 13. This transform, which corresponds
to our homogeneous solution in Equation 3, does not appear
in many of the standard tables, nor does Mathematica incorpo-
rate it. But it is frequently used to describe propagating waves in
diffraction crystallography [25], grating theory [26, 27], diffrac-
tion and imaging theory [28, 29], holographic reconstruction
[30], and tomography [31, 32]. It has been very successful in
calculation of focused fields, analysis of imaging systems, and in
tomographic reconstruction. Then δ(q − 1/λ) describes the sur-
face of a sphere in reciprocal space or k-space, that represents
the property that the magnitude of the wave vector is fixed at
a real value k = k0, where k0 = 2π/λ = 2πq0, as illustrated in
Figure 1A.

The McCutchen sphere and the Ewald sphere
In optics, McCutchen introduced the generalized pupil, which is
a cap of a sphere of radius equal to the focal length of a lens
[28]. Then in the Debye approximation the amplitude in the focal
region of the lens, when illuminated by a plane wave, is given by
the 3D Fourier transform of the generalized pupil. The fact that
the coherent transfer function (CTF) (in spatial frequency space)
is a scaled version of the pupil is well known in 2D Fourier optics
[33]; so analogously in 3D, the 3D CTF is a scaled version of the
3D (generalized) pupil. A related concept is the Ewald sphere of
diffraction crystallography, but more accurately the Ewald sphere
represents the scattering vector rather than the wave vector, and
so as a result the sphere is shifted so that it passes through the ori-
gin of reciprocal space rather than having its center at the origin.
The McCutchen construction has the advantage over the Fresnel
approximation that it is by nature non-paraxial. It has been shown
that the concept of the generalized pupil can be extended to the

finite Fresnel number case [5, 7, 8], to electromagnetic focusing
[6, 34], and to pulsed waves [35, 36].

The term in Equation 15 is a solution of the homogeneous
Helmholtz equation (Equation 3) and for this reason we call it
the homogeneous component of the Green function. It is made
up of only propagating plane waves (which we define to include
combinations that give standing waves), and contains no evanes-
cent part. It is divergence-free. For the complete spherical shell
δ(q − 1/λ), the propagating waves combine to give a pure stand-
ing wave structure. This is the simple physical example of focusing
of a complete spherical in-going wave, which in free space subse-
quently expands to form an out-going wave [37, 38]. Physically,
we can recognize that a point in q space represents a propagat-
ing plane wave, which propagates inwards from infinity, before
passing the origin and then propagating outwards toward infin-
ity. This is not the same as an out-going wave. Two points in q
space, diametrically opposite each other with respect to the ori-
gin, add together to produce a standing wave fringe pattern, and
then integrating over such fringe patterns with different orienta-
tions gives a focused spot. At the focal point all the plane waves
add in phase to produce a maximum in amplitude. This case
corresponds to a source in conjunction with a sink. A sink we
usually assume cannot exist alone in the real world (unless pro-
duced as a result of a drain, or an outlet [9]). A few recent papers
seem to have missed the point that isolated sinks do not physi-
cally occur in free space [39]. Note that although the transform
is represented as an integral of a real function along the posi-
tive real axis, the result, if an analytic function, can be continued
analytically to complex frequencies, or in the case of the inverse
transform to complex positions. In complex source-point the-
ory, due account needs to be taken of branch cuts, appropriate
choice of which can produce beam-like or source-like solutions
[40, 41]. A source-sink pair is the basis of a version of a complex
source point model of Gaussian beams that avoids non-physical
singularities [42, 43].

FIGURE 1 | (A) The homogeneous part of the Green function transform
(Equation 16) resides on a spherical shell of radius q0 in q space, and
is imaginary in value. The radius qr is positive. (B) The inhomogeneous

part of the Green function transform (Equation 20) is positive outside
of the sphere radius q0 , zero on the sphere, and negative inside the
sphere.
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The inhomogeneous solution, continued
Our second important example of a function is fI(r) =
cos (2πq0r)/r. Then we have

FI(q) = 2

q

∫ ∞

0
cos (2πq0r) sin (2πqr) dr. (17)

This integral can be evaluated in several different ways. One such
way is to use the properties of the Heaviside step function and
the signum function, sgn( · )[17]. Then, introducing the complex
forms for the trigonometric functions,

FI(q) = 1

i4πq

∫ ∞

−∞
sgn(r)

{
exp

[
i2π(q − q0)r

]
− exp

[−i2π(q − q0)r
]+ exp

[
i2π(q + q0)r

]
− exp

[−i2π(q + q0)r
]}

dr, (18)

and, using the Fourier transform of the signum function and the
shift theorem, we obtain

FI(q) = 1

2πq

(
1

q + q0

+ 1

q − q0

)
= 1

π
(
q2 − q2

0

) . (19)

The inverse transform can be obtained rigorously as shown by
Lighthill [16], giving the transform pair,

cos (2πq0r)

r
⇔ 1

π
(
q2 − q2

0

) . (20)

Again this transform is not in some standard tables. (But it is in
[18], [20], and [19]). In fact it differs from the standard (com-
plex) result for the inverse transform, obtained using contour
integration by assuming q2

0 has a small positive imaginary part.
As the solution in Equation 19 is obtained by Fourier trans-
formation of the inhomogeneous Helmholtz equation we call
it the inhomogeneous part of the Green function (Figure 1B).
Note that this terminology is different from a usual connotation
of inhomogeneous waves, as being synonymous with evanescent
waves. In the SSFT the kernel is real, so we would expect the
transform of a real function to also be real. Further, the func-
tions on both sides of Equation 20 are spherically symmetric
in 3D space, and hence their projections on to the r, q axes
are even functions. By the projection-slice theorem of Fourier
transforms, neither function should give rise to a complex trans-
form. Thus, the homogeneous and inhomogeneous parts of the
Green function transform are as illustrated in Figures 1A,B,
respectively.

OUT-GOING AND IN-GOING WAVES
The out-going wave and causality
We can combine the results of Equations 15 and 19 to give the
transform pair

exp (i2πq0r)

r
⇔ 1

π
(
q2 − q2

0

) + iδ
(
q2 − q2

0

)
. (21)

With q0 = 1/λ, this represents an outgoing spherical wave, or
source, equivalent to the Green function or impulse response.
Dirac showed [2], that an out-going wave (or particle) must have
a Fourier transform of this form in order to satisfy causality
[17]. Causality requires that the real and imaginary parts satisfy a
Hilbert transform relationship [10, 12, 44, 45], as in the Kramers-
Kronig relations for dispersion. In the present paper, causality also
applies in space, rather than in time, because of the single-sided
form of polar coordinates. Note that Jackson uses the causal form
in his treatment of dispersion, and even comments on its useful-
ness, but does not introduce it for the Green function in space
[12]. In mathematics the form in Equation 21 is known as the
Sokhotsky-Plemelj formula.

On-shell and off-shell, and Bragg diffraction
The two terms of Equation 21 are equivalent to the off-shell and
on-shell conditions, respectively, in quantum field theory. Virtual
particles are allowed to be off shell. The connection between vir-
tual photons and evanescent waves has been discussed [46, 47].
Lawson describes how there are two different types of virtual pho-
ton, corresponding to real off-shell values of k, and complex k,
respectively. In this Section we are concerned with the first type
[46]. According to Lawson, values k > k0, i.e., when the momen-
tum is greater than the energy associated with it, correspond to
virtual photons with negative mass, and are “spacelike.” When
k < k0, i.e., when the momentum is less than the energy asso-
ciated with it, the virtual photons have positive mass, and are
‘timelike.’ The second type of virtual photon, with complex k, cor-
responds with classical evanescent waves, as in Section Forward
and Backward Propagating Waves.

The on-shell part of Equation 21 corresponds to satisfaction
of the Bragg diffraction condition. If this term alone existed,
there would be no off-Bragg diffraction. In grating diffraction,
off-Bragg diffraction is modeled using k-vector closure, which
assumes the diffracted wave has slightly different value of q, or
by the so-called β-value method, which introduces a dephasing
measure [26]. In dynamical theory of diffraction, a deformation
of the k-space sphere (dispersion surface) occurs, analogous to
the splitting of energy levels in quantum theory [25]. The inho-
mogeneous part can be interpreted as describing the dispersion of
free space, a resonance phenomenon associated with an impulsive
source.

As q is positive definite, δ(q + q0) vanishes upon integration
over positive q. So effectively we can write

exp (i2πq0r)

r
⇔ 1

2πq0(q − q0)
− 1

2πq0(q + q0)

+ i

2q0

δ
(
q − q0

)
. (22)

Regularization
In the classic physics and electromagnetic books [11, 12], the
homogeneous solution is not written explicitly, but can be recov-
ered by treating q as complex and choosing an appropriate
integration contour. Then Equation 21 (or Equation 22) can be
recognized as showing explicitly the real and imaginary parts of
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F(q). The real part is the Cauchy principal value of the function
at q = q0, so we should write FI(q) = P

[
1/π(q2 − q2

0)
]
, where

P means principal part. An equivalent approach is to introduce
explicitly a non-physical small imaginary part [48], giving

FI(q) = Lim
ε → 0+

[
1

π(q2 − q2
0 − iε)

]

= Lim
ε → 0+

{
(q2 − q2

0)

π[(q2 − q2
0)2 + ε2] + iε

π[(q2 − q2
0)2 + ε2]

}

= 1

π(q2 − q2
0)

+ i Lim
ε → 0+

{
ε

π[(q2 − q2
0)2 + ε2]

}

= 1

π(q2 − q2
0)

+ iδ(q2 − q2
0), (23)

as before. This is a form of regularization, widely used in inverse
problems, similar to that used in renormalization theory. The
imaginary part of Equation 23, the second term of Cauchy-
Lorentz form, gives a delta function in the limit, and represents
solely propagating waves. Evanescent waves are contained in the
real part only (first term), which exhibits a singularity. Sometimes
the expression for FI(q) as given in Equation 19 is understood to
include implicitly the imaginary part, i.e., q (and therefore λ) is
assumed complex. But as Equation 19 exhibits a branch cut along
the real axis, we prefer to take both q and q0 as real and positive.
Then according to Hankel’s theorem [49] the value of the trans-
form for real q is equal to the mean of the values of the transform
for ε → 0+ and ε → 0−, just as we normally assume in deriv-
ing Fourier series. The integral is then equivalent to the Cauchy
principal value.

In-going waves
In a similar manner, for an in-going rather than an out-going
wave,

exp (−i2πq0r)

r
⇔ 1

π
(
q2 − q2

0

) − iδ
(
q2 − q2

0

)
. (24)

This corresponds to a sink, which as we have said, we usually
assume cannot exist alone in the real world. This assumption is
equivalent to the Sommerfeld radiation condition [13, 14]. But a
sink can exist physically in free space in conjunction with a source,
as together they can combine to give the homogeneous part alone,
which exhibits no singularity in the spatial domain. We recognize
that

1

π
(
q2 − q2

0

) ⇔ cos (2πq0r)

r

= 1

2

[
exp (i2πq0r)

r
+ exp (−i2πq0r)

r

]
, (25)

also represents a combination of an out-going and an in-going
wave, each of which includes both propagating and evanescent
components.

HOMOGENEOUS AND INHOMOGENEOUS WAVES, vs. TRAVELING AND
EVANESCENT WAVES
The homogeneous component in Equation 5 contains only prop-
agating components. It is a special case of the Whittaker expan-
sion over propagating plane waves traveling in all directions,
corresponding to a complete sphere in Fourier space [50]. This
should be contrasted with the Weyl expansion, which is an expan-
sion over a half-space, giving a hemisphere of propagating waves,
and evanescent waves [51]. The Weyl expansion for the scalar
Green function was presented by Carter [52]: the evanescent
field contains components for (q2

x + q2
y) > 1/λ only, whereas in

Equation 20 q can be greater than or less than 1/λ. An ana-
lytic expression for the propagating and evanescent components
was given by Bertilone [53, 54]. The Green function in Equation
21 is made up of a real inhomogeneous part and an imaginary
homogeneous part. Here “homogeneous” and “inhomogenous”
refer to corresponding forms of the Helmholtz equation. We
thus distinguish between “inhomogeneous” and “evanescent”
components. Both homogeneous and inhomogeneous parts con-
tribute to the far field, but only the inhomogeneous component
contributes to the near-field singularity [55]. Each propagat-
ing component in the Weyl expansion contains inhomogeneous,
as well as homogeneous, components when considered in 3D,
because for a point source a propagating plane wave component
exhibits a discontinuity at the source, being out-going on both
sides.

FORWARD AND BACKWARD PROPAGATING WAVES
We now explore the result of introducing a specific orientation.
The inhomogeneous part of the transform of the Green function
1/
[
π(q2 − q2

0)
]

contains components for q < 1/λ in addition
to those for q > 1/λ, and also contains propagating as well as
evanescent components. Putting

(q2 − q2
0) =

[
qz − (q2

0 − q2
x − q2

y)1/2
] [

qz + (q2
0 − q2

x − q2
y)1/2

]
,

(26)

and using partial fractions, the transform of the Green function
can be written in the form [7, 8, 56]

F(qx, qy, qz) = i

2
∣∣qz
∣∣
⎡
⎢⎣δ
(

qz −
√

q2
0 − q2

x − q2
y

)

+ 1

2πqz

(
qz −

√
q2

0 − q2
x − q2

y

)
+ δ

(
qz +

√
q2

0 − q2
x − q2

y

)

+ 1

2πqz

(
qz +

√
q2

0 − q2
x − q2

y

)
⎤
⎥⎦ . (27)

Here the homogeneous part (the first and third terms) is written
as the sum of two unweighted hemispherical shells in reciprocal
space, representing forward and backward propagating waves,
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respectively. The total transform has only out-going propagat-
ing components, so the inhomogeneous part (the second and
fourth terms) must also include propagating components. We
thus distinguish between forward and backward propagating
waves on the one hand, and out-going and in-going waves on
the other. A forward propagating wave is in-going for z < 0,
and out-going for z > 0. Some papers have confused causality
with forward propagation [57]: of course a backward propagat-
ing wave is physically realizable, as all it needs is a reversal of the z
coordinate.

Each of the inhomogeneous terms in Equation 27 contain
components with qz > 0 and qz < 0. For (q2

x + q2
y) < 1/λ2 these

terms each represent both out-going and in-going propagating
waves, which for z > 0 together with the homogeneous terms
result in a purely out-going, forward-propagating field, repre-
sented by a hemispherical shell in reciprocal space,

FFP(qx, qy, qz) = i∣∣qz
∣∣δ
(

qz −
√

q2
0 − q2

x − q2
y

)
. (28)

as shown in Figure 2A. This spherical surface, which includes
contributions from both the homogeneous and inhomogeneous
parts, is therefore not the same as McCutchen’s spherical sur-
face of homogeneous waves, and in fact has a strength twice that
of the homogeneous component. This is an important property
of our present treatment: using the hemispherical shell from the
homogeneous part alone would give half the correct result for the
diffracted field.

For a source at the origin z = 0, the Weyl expansion can be
applied separately for the regions z < 0, and for z > 0. The prop-
agating field is then out-going, and there is also an evanescent
field in both regions. But it is incorrect to think of these compo-
nents as adding together to give the total field, as the expansion for
z > 0 gives a field for z < 0, and vice-versa. So adding together
Weyl expansions for the two half-spaces does not give the total
field.

For q2
x + q2

y > 1/λ2, the inhomogeneous terms in Equation 27
transform to

fE(x, y, z) = i
� 1

qz
exp

[
i2π

(
qxx + qyy

)

− 2π
(

q2
x + q2

y − q2
0

)1/2 |z|
]

dqxdqy (29)

and are hence equivalent to the evanescent waves of the Weyl
expansion. As this is true for any choice of z direction, we con-
clude that the evanescent field is completely contained in the
part of the inhomogenous field corresponding to q > 1/λ. Note,
however, this part for q > 1/λ also includes components with
(q2

x + q2
y) < 1/λ2 which contributes to the propagating field. The

homogeneous terms in Equation 27 are not, by themselves, equiv-
alent to the (out-going) propagating components of the Weyl
expansion. A fuller discussion of the significance of introducing
a fixed reference direction, and calculation of fields for positive z
only, has been presented elsewhere [7, 8].

As for z > 0 an exponential decay is also produced by a trans-

form of the form δ
(
−iqz + (q2

x + q2
y − 1/λ2)1/2

)
, we can write

for the evanescent field

FE(qx, qy, qz) = i

qz
δ
(

qz −
√

q2
0 − q2

x − q2
y

)
,
(

q2
x + q2

y

)1/2

< q0, qz > 0&z > 0,

= 1

−iqz
δ
(
−iqz +

√
q2

x + q2
y − q2

0

)
,
(

q2
x + q2

y

)1/2

> q0, −iqz > 0&z > 0. (30)

Although the properties of delta function with complex argu-
ment may not be well established, here the argument of the delta
function is −iqz which is real, and we interpret the result as inte-
gration over a rectangular hyperboloid of one sheet in a spatial

FIGURE 2 | (A) The Green function transform for forward propagating
(non-evanescent) waves for observation points z > 0 lies on a hemispherical
shell. It consists of contributions from both the homogeneous and

inhomogeneous parts of the Green function transform in 3D (Equation 28).
(B) The evanescent part of the Green function transform resides on a
hyperboloid of one sheet in qx , qy , −iqz space (Equation 30).
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frequency space (qx, qy,−iqz), as illustrated in Figure 2B. Thus,
the full Rayleigh-Sommerfeld diffraction formula can be applied
exactly, including evanescent waves, using 3D Fourier transforms,
and evaluated numerically.

COMBINING THE WHITTAKER AND WEYL EXPANSIONS
The Weyl expansion represents an out-going spherical wave
in terms of an angular spectrum of plane waves [51]. As the
out-going spherical wave exhibits a singularity at its origin,
the expansion must include evanescent components. Evanescent
waves are not valid over a full, infinite space, so the expansion
is limited to a half-space. The Whittaker expansion represents
a singularity-free spherical standing wave in terms of angular
spectra of in-going and out-going plane waves over a complete
sphere [50]. Out-going waves can include forward-propagating
and backward-propagating components, and similarly for in-
going waves. No evanescent components are necessary as there
is no singularity. For some field distribtions, both the Whittaker
and Weyl expansions are valid [58]. For example, a field con-
sisting of forward-propagating, out-going waves in a half-space,
with no evanescent waves. It seems that there should be some
more general expansion, of which the Whittaker and Weyl expan-
sions are special cases. Devaney and co-workers have attempted
to reconcile the Weyl and Whittaker expansions, with some,
but limited, success [58, 59]. We reconsider this problem in
the light of our present treatment. We consider a few different
forms of expansion, which shed light on the relationship between
the two expansions, and show how the two expansions can be
combined.

A REGION OF SPACE WITHIN A CLOSED SURFACE FREE OF NET
SOURCES
Neglecting an evanescent field that may be present near to the
outside surface, inside the region there are only propagating
waves, equivalent to a sum over coincident source/sink com-
binations. This corresponds to a Whittaker expansion, a sum
over out-going and in-going propagating components, equiv-
alent to a divergence-free combination of sources and sinks
(Figure 1A).

A SOURCE-FREE HALF-SPACE WITH FORWARD PROPAGATING WAVES
AND EVANESCENT WAVES
This corresponds to a Weyl expansion (Figures 2A,B).

A FINITE REGION OF SPACE WITH NET SOURCES
We can combine the Weyl and Whittaker expansions by summing
over a distribution of sources and sinks with non-zero diver-
gence, giving a total homogeneous and inhomogeneous field.
The homogeneous and inhomogeneous parts of the spatial fre-
quency content are given by the filtered transform of the Green
function, given by homogeneous and inhomogeneous compo-
nents. As the homogeneous part is non-zero on the k-space sphere
only, different source/sink distributions can give rise to the same
homogeneous field, but the source/sink distribution is uniquely
determined by the inhomogeneous part. Relating the inhomoge-
neous part to the evanescent field requires selection of a reference
direction z.

FOR A REGION z > 0 THAT IS SOURCE FREE, ANY FIELD CAN BE
GENERATED BY A SUM OF PROPAGATING AND EVANESCENT
COMPONENTS
In addition to the components in the Weyl expansion, the propa-
gating components in general include in-going fields equivalent
to sources at infinity, which give no evanescent field for finite
values of z. For a known field in the plane z = 0, the spectral
distribution is a function of qx, qy only, which filters the trans-
form corresponding to the Rayleigh-Sommerfeld kernel [7, 8].
For any distribution of sources and sinks with z < 0, the field for
z > 0 can then be represented by an equivalent field in the plane
z = 0. Note that we do not claim that the field in the region z < 0
can be determined in general by this approach. The Rayleigh
hypothesis states that the field inside a re-entrant surface can be
determined by analytic continuation. Recent numerical evidence
and arguments based on transformation optics seem to support
the hypothesis except in some pathological cases [60, 61].

A LIST OF SPHERICALLY-SYMMETRIC FOURIER
TRANSFORMS
A list of SSFTs is given in Table 1, based on the transforms given
in Equations 16 and 20, rather than Equation 8, as is taken
by Mathematica. We have introduced the auxiliary functions of
the sine and cosine integrals, f1(x) = Ci(x) sin x − si(x) cos (x),
where si(x) = Si(x) − π/2. f1(x) decreases monotonically from
π/2, as shown in Figure 3. The first four entries in the table
are well known. Nos. 8–11 we have already discussed. Then Nos.
5–7 follow from 1–4 and 9. Nos. 12–14 can be derived consis-
tently from Nos. 1–11. Some of these transforms can be gener-
ated directly using Mathematica’s FourierSinTransform function.
Important exceptions are Nos. 8–11, and transforms derived from
them, which also do not appear in many published tables of trans-
forms. Cases in which care is needed in applying Mathematica are
indicated by an asterisk.

SUMMARY
In summary, we have examined the Fourier transform of Green
function in its own right in contrast to the standard approach in
theoretical physics and electromagnetism, which uses the trans-
form of the Green function only as a step on the way to finding

FIGURE 3 | The normalized value of f1, showing that it decays

monotonically.
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the Green function in real space. The transform is written in
a form where the homogeneous part is shown explicitly as a
delta function representing a spherical shell, and the inhomo-
geneous part contains spatial frequencies with q < q0 as well as
q > q0. Both homogeneous and inhomogeneous parts include
propagating components, and the singularity of the Green func-
tion is contained completely in the inhomogeneous part for
q > q0.

If a particular direction of propagation is assumed, for z >

0 the transform consists of a hemispherical shell representing
forward-propagating waves and part of a rectangular hyperboloid
of one sheet for imaginary qz representing forward-directed
evanescent waves. An analogous behavior holds for z < 0, but the
two hemispheres cannot be considered together as equivalent to
the homogeneous sphere because the hemisphere for z > 0 also
gives a field for z < 0, and vice-versa. The interpretation helps us
appreciate the connection between the forward scattering model,
and the use of the Ewald sphere approach in the inverse problem
of crystallographic and tomographic reconstruction.

Finally, our paper has been confined to the treatment of scalar
waves, but extension to the full electromagnetic case is straight-
forward, based on the use of the scalar Whittaker potentials,
equivalent to the dyadic Green function [48, 62–66].
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