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Crack morphology obtained in the fracture of materials with a disordered micro-structure
is studied using numerical simulations. Physical properties are embedded on a regular
three dimensional lattice as discrete stochastic elements which conform to the laws
of linear elasticity. In this model, also known as the beam lattice, these elements are
analogous to beams in that relative displacements between neighboring nodes induce
axial, bending, and shearing forces, as in a real elastic solid. The stochastic nature enters
via the introduction of random breaking thresholds on the individual elements. Using this
model, the exponent characterizing the scaling with system size of the crack roughness
perpendicular to the fracture plane is reported. Two different types of disorder have been
used to generate the thresholds, i.e., distributions with a tail toward strong elements or
with a tail toward weak elements. At weak disorders the self-affine regime seems to
lie beyond the system sizes presently included. At stronger disorders a self-affine regime
appears, for which we obtain exponents consistent with ζ � 0.6 for both types of disorder.
The latter result is in fair agreement with the experimental value reported for large length
scales, ζ 0.50.�
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1. INTRODUCTION
The modern academic interest in crack morphology can be
traced back to Mandelbrot et al. who introduced a mathemati-
cal framework for describing rough surfaces in terms of fractal
geometry [1]. Specifically, crack surfaces have been shown to be
self-affine in the sense that they satisfy certain scaling laws, where
a characteristic exponent governs the asymptotic behavior [2].
This means that a scaling of lengths with a factor λ within the frac-
ture plane implies that lengths perpendicular to this plane scale
with a factor λζ . Understanding fundamental aspects of crack
roughness is also important in the engineering fields. Such is the
case in the oil industry where flow properties within fractured
rock masses is of great interest. Quantitative properties of crack
surfaces are accessible through modern imaging techniques, and
predictions of computer models [3, 4] can be compared with the
results of practical experiments to verify or discard theoretical
assumptions.

Much of the theoretical work done so far has been based on
the random fuse model [5], i.e., a regular lattice of conduct-
ing elements which irreversibly burn out once their individual
thresholds have been exceeded. Breakdown is driven by a voltage
difference between two opposing boundaries and the analogy of
Kirchhoff ’s equations with linear elasticity is the reason why this
model is referred to as a scalar model of fracture. In two dimen-
sions results reported for the roughness exponent with the fuse
model are ζ = 0.74(2) [6, 7], and more recently ζ = 0.83(4) [8].
In three dimensions the random fuse model has yielded values

in the range 0.4 � ζ � 0.6, i.e., Batrouni et al. obtained ζ =
0.62(5) [9], Räisänen et al. obtained ζ = 0.41(2) [10, 11], and
Nukala et al. obtained ζ = 0.52(3) [12].

How do these results compare with experimental findings?
Initially it was thought that the universal roughness exponent
should be ζ � 0.8 [2]. Later it was realized that there should
instead exist two different regimes for the scaling behavior of
cracks [13, 14]. It was proposed that a smaller exponent ζ � 0.5
should be associated with short length scales and slow crack
growth [15], while a larger exponent ζ � 0.8 involving dynamic
effects of fracture should be associated with longer length scales.
The picture that has emerged more recently however is that,
although there are indeed two scaling regimes, it is in fact the
larger exponent ζ � 0.8 which is relevant to short length scales.
This is because of the screening of elastic interactions which takes
place within the intermediate region between the crack tip and
the surrounding medium, i.e., the fracture process zone. At larger
length scales one observes ζ � 0.45 [16, 17].

Roughly speaking, then, the three dimensional fuse model
results are in agreement with what is obtained experimentally at
large length scales. An important point to be considered with
the fuse model, however, is the fact that it models electrical
breakdown rather than fracture in a fully elastic medium. A
different lattice model which incorporates elasticity is the Born-
model [18]. Here the material is modeled as a network of elastic
springs, each spring being free to rotate at its ends. In two dimen-
sions ζ = 0.64(5) is obtained with this model [19]. As with the
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fuse model, this exponent is seen to drop somewhat when going
from two to three dimensions. The result, ζ = 0.5 [20], is consis-
tent with the range of exponents obtained with the random fuse
model and agrees rather well with the scaling expected at length
scales above those relevant to the fracture process zone.

A problem with the Born model is that it is not rotationally
invariant [21]. A different model which does not suffer from this
drawback is the elastic beam model [22, 23]. Here the beams
are rigidly connected at the nodes so as to preserve the angle
between any two neighboring beams. Rotations thus induce flex-
ing and twisting deformations, while linear displacements induce
transverse shear and axial forces. The exponent obtained with
the beam model in two dimensions is ζ = 0.86(3) [24], and
shows that the scalar and vectorial descriptions of fracture need
not necessarily produce similar results, although the more recent
two dimensional random fuse result of ζ = 0.83(4) quoted by
Zapperi et al. [8] is consistent with this. Since the beam model
provides a more realistic description of brittle elastic fracture than
does either the fuse model or the Born model it is of great interest
to see what the result is in three dimensions. An analogous study
to this end has been made by Nukala et al. [25], obtaining both the
global roughness exponent ζ = 0.48(3) and the local roughness
exponent ζloc, which they find to be equal to the global rough-
ness exponent for the beam lattice, ζ = ζloc. The local exponent
in such cases is obtained by considering the scaling properties
within “windows” of the crack surface for length scales l << L,
where L is the external size of the L × L × L lattice. Presently we
only regard the global roughness exponent.

2. MODEL
Our model is a deformable lattice in the form of a regular cube
with size L × L × L, where each node is connected to its nearest
neighbors by linearly elastic beams. Forces acting on the nodes
have been deduced from the effect a concentrated end-load has
on a beam with no end-restraints [26, 27]. A coordinate system
is placed on each node, and the enumeration of the connecting
beams follows an anti-clockwise scheme within the XY-plane, i.e.,
beginning with the beam which lies along the positive X-axis and
ending with that which extends upwards along the positive Z-axis,
see Figure 1.

At each stage of the breaking process, the updated displace-
ments for each node is obtained from

∑
j

Dij
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xi

yi

zi

ui

vi

wi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= λ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Xi

Yi

Zi

Ui

Vi

Wi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

which is solved iteratively via relaxation using the conjugate gra-
dient method [28, 29]. This minimizes the elastic energy to
obtain those displacements for which the sum of forces and
moments on each node vanish, i.e., the mechanical equilibrium.
In Equation (1), xi, yi, and zi are the coordinate displacements of
node i relative to its starting position before fracturing is initiated.

FIGURE 1 | Enumeration scheme on the beams of a cube lattice

connecting node i to its j = 1–6 nearest neighbors, showing the

coordinate system with i as its origin.

Likewise, ui, vi, and wi are the angular displacements around the
X-, Y-, and Z-axes, respectively (see Figure 1).

Presently we use the same expressions for force and moment
as those used in Herrmann et al. [23] and Skjetne et al. [24]. We
thus have three constants defined as

α = �

EA
, β = �

GA
, γ = �3

EI
, (2)

where E and G are Young’s modulus and the shear modulus,
respectively, A is the area of the cross section of the beam, � is
the beam length and I is the moment of inertia about the cen-
troidal axis of the beam. Our choice of these parameters mirrors
that of Herrmann et al. [23] and Skjetne et al. [24], i.e., the beam
length is set to � = 1 and we use α = 1, β = 30/7, and γ = 60/7.
Additionally, we define the quantity

ε = �

JG
, (3)

where J is the moment of inertia for torsion, in analogy with
Equation (2) since in three dimensions we require torque in addi-
tion to bending, axial and transverse forces. In this case we use
ε = 1. In the following it is also convenient to define

δx ≡ xj − xi, (4)

and similarly for the other five displacement coordinates.
Six terms contribute to each of the force components in

Equation (1). For instance, if we imagined the neighboring nodes
to be fixed, a translation xi of the central node i would induce axial
forces in beams 1 and 3 and transverse forces in beams 2, 4, 5,
and 6. If we take into account the displacements of the neighbor-
ing nodes as well, the axial force on node i from beam 1 is
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A(1)
i = 1

α
δx, (5)

while the transverse force on node i from beam 2, along the X-
axis, is given by

xS(2)
i = 1

β + γ
12

[
δx + 1

2

(
wi + wj

)]
. (6)

In each case j refers to the neighbor depicted in Figure 1.
Consequently,

Xi = A(1)
i + A(3)

i +
6∑

j �= 1,3

xS
(j)
i (7)

is how the force on node i along the X-axis depends on the dis-
placements and rotations of its six nearest neighboring nodes.
Similar expressions are deduced for Yi or Zi by considering
translations along the Y-axis or the Z-axis, respectively.

Likewise, an angular displacement ui about the X-axis with the
neighboring nodes fixed would create torque in beams 1 and 3,
and bending in beams 2, 4, 5, and 6. More generally, the torque in
node i from beam 1 is

T(1)
i = −1

ε
δu, (8)

while the bending moment from beam 2 is

uM(2)
i = − 1

β + γ
12

[β

γ
δu + 1

2

(
δz + 2

3
ui + 1

3
uj

)]
. (9)

For the angular force on node i about the X-axis and its depen-
dence on the displacements of the six neighboring nodes, we
have

Ui = T(1)
i + T(3)

i +
6∑

j �=1,3

uM
(j)
i , (10)

now with similar expressions for Vi and Wi.
To express the 36 force components in Equation (1) more

compactly,

rj =
j − 1∏
n = 0

(−1
)n

(11)

and

sj = (−1
)j

rj (12)

are quantities which we define for notational convenience, to keep
track of the signs and contributions from neighboring beams.
The j in each case refers to the neighboring beams as shown
in Figure 1. The Kronecker delta, moreover, has been used to
construct

λ̂s,t = δsj + δtj, (13)

i.e., an operator which includes s and t in the sum over all nearest
neighbors, and

χ̂s,t = (
1 − δsj

)(
1 − δtj

)
, (14)

which instead excludes s and t from the sum over all nearest
neighbors.

For the six components making up the force on node i along
the X-axis, i.e., Equation (7), we can now state this on a compact
form as

Xi =
6∑

j = 1

1
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(
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)]}
, (15)

and Yi as
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6∑
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1
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. (16)

In the same way, Zi becomes

Zi =
6∑

j = 1

1
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λ̂5,6δz +
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2
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(
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)]}
, (17)

Next, Equation (10) for angular displacements about the X-axis is
written out in full as

Ui =
6∑

j = 1

1

ρ
λ̂1,3δu +
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, (18)

and Vi, for angular displacements about the Y-axis, becomes

Vi =
6∑

j = 1

1

ρ
λ̂2,4δv +
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1
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12

χ̂2,4

{
β

γ
δv + rj

2

[
λ̂5,6δx − λ̂1,3δz

]

− 1

3

(
vi + 1

2
vj

)}
. (19)

Lastly, for angular displacements about the Z-axis, we get

Wi =
6∑

j = 1

1

ρ
λ̂5,6δw +

6∑
j = 1

1

β + γ
12

χ̂5,6

{
β

γ
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2

[
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]
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3

(
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2
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)}
. (20)
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To include the effects of material disorder we generate a ran-
dom number r on the unit interval [0, 1] and let this represent
the cumulative threshold distribution. We then assign thresholds
according to tF = rD, using two different types of distribution. In
the case of D > 0 the distribution is a power law with a maxi-
mum threshold of 1 which has a tail extending toward zero. In the
other case, D < 0, the power law is limited downwards by a mini-
mum threshold of 1, except now it has a tail extending up toward
infinity. The respective cumulative distribution functions are then
given by

P(tF) = t1/D
F (21)

for D > 0, where 0 ≤ tF ≤ 1, and by

P(tF) = 1 − t1/D
F (22)

for D < 0, where 1 ≤ tF < ∞. The case of D = 0 corresponds to
all thresholds being the same (tF = 1), i.e., we have a homoge-
neous medium without structural disorder. An increase in the
magnitude of the exponent |D| causes the coefficient of varia-
tion with respect to any two random numbers r and r′ on the
interval [0, 1] to increase. For the distribution types 0 ≤ tF ≤ 1
and 1 ≤ tF < ∞, the coefficient of variation for any two ran-
dom numbers within the interval are reciprocal but otherwise
the same. Therefore, large values of |D| correspond to strong
disorders and small values to weak disorders.

This prescription is the most simple way of incorporating
scale invariance into the distribution of thresholds. As system size
diverges, only power law tails toward zero or infinity should be
important [30–32]. The use of D as a parameter is then very
convenient and enables the asymptotic behavior of the fracture
process to be fully explored as a function of the disorder.

For each sample two thresholds are generated for each beam
on the lattice, one for the amount of bending that particular beam
can sustain before breaking (in pure bending mode), and one for
the amount of axial stress it can sustain before breaking (in pure
axial loading). Each beam is assumed to be linearly elastic up to
the breaking threshold. The two thresholds are combined in an
interaction formula for combined loading, i.e.,

(
A

tA

)2

+ |M|
tM

≥ 1, (23)

where tA and tM are the axial and bending thresholds, respectively,
and where M is the largest of the bending moments at the two
beam ends i and j. Essentially this is the same failure criterion
as that used in Herrmann et al. [23], except that |M| here gen-
erally represents the largest of the values obtained by comparing
bending within two planes. Hence,

|M| = max
{

(|Mi|, |Mj|)xy, (|Mi|, |Mj|)xz

}
, (24)

in the case of beams 1 and 3, where xy denotes bending within the
XY-plane, etc. In these calculations we have not considered break-
ing due to torque. The engineering literature suggests a range of

interaction formulae relevant to combined loading, but we have
only used the one outlined above.

Fracture is initiated by imposing a uniform displacement on
all nodes defining the top surface of the cube. The first beam to
break is the one with the weakest axial strength, whereupon the
location of subsequent breaks depends on a complex interplay
between quenched disorder and the constantly evolving non-
uniform stress-field. Each time a beam is removed from the
lattice, Equation (1) is used to obtain new equilibrium displace-
ments before Equation (23) is used to identify the next beam to
fail. This is continued until a surface appears which divides the
sample in two separate parts, see Figure 2. In this process one
beam at a time is removed from the lattice and the redistribu-
tion of stress is assumed to occur much faster than the breaking
of individual beams.

3. RESULTS AND DISCUSSION
In our calculations we have used open rather than periodic
boundary conditions. This introduces edge effects, especially for
small systems, but we assume it does not affect the roughness
calculations significantly for our largest systems. For each trace
along the surface we subtract the drift in the vertical direction,
and overhangs which might appear are removed. The roughness
is obtained as the root-mean-square of the variance perpendicular
to the (average) fracture plane, i.e.,

Wx(L) =
〈

1

L

L∑
i = 1

zx(i)2 −
[

1

L

L∑
i = 1

zx(i)

]2
〉1/2

, (25)

where zx(i) is the height in the vertical direction of the first intact
node encountered when moving down toward the lower remain-
ing part of the cube (those parts shown in Figure 2). Tracing
parallel to the X-axis we obtain Wx, and parallel to the Y-axis we
obtain Wy, results for Wx and Wy are statistically the same. We
have evaluated four different disorders, having made three sets
of calculations for type D > 0 disorder, i.e., D = 1, D = 2, and
D = 4, and one set for type D < 0 disorder, i.e., D = −4. In each
case a large number of samples were calculated for each size. The
system sizes we show in the plots are from L = 3 up to L = 40 or
L = 50, and for D = 1 we include L = 63.

In a log-log plot the self-affine relationship between the out-
of-plane crack roughness W and the system size L shows up as a
straight line, and we determine the roughness exponent from the
slope of this line. Apart from the smallest systems, for which edge
effects are significant, a self-affine relationship W ∼ Lζ emerges
well within the range of system sizes included in the present study
if we regard D = 2, D = 4, and D = −4. Presently system sizes
for which we have a sufficiently large number of samples lie in
the range L = 3 to about L = 50. Results for D = 2 and D = 4
are shown in Figures 3, 4, respectively. The exponent obtained
for D = 2 is ζ = 0.62(2), based on a straight-line fit to systems
L = 10, 13, 16, 19, 20, 22, 25, 32, and 40. For D = 4 we obtain
ζ = 0.590(4), based on a straight-line fit to L = 10, 13, 16, 20,
25, 32, 40, and 50. At weak disorders the change in the fracture
process from disorder dominated fracturing, where small cracks
appear randomly throughout the material, to stress dominated
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FIGURE 2 | Fracture surfaces, showing the lower remaining part of a cube lattice of size L = 40 after it has broken completely. Four samples are
included for D = 1 on the left, for D = 2 at center, and for D = −4 on the right.

fracturing, where a large crack emerges and breaks the sample,
occurs at an early stage. Hence the computer time needed to
break such each sample is less than that required to break a sam-
ple at strong disorder. Despite this, a very much larger number
of samples is needed to obtain solid statistics at weak disorders.
A comparable number of samples was generated for D = 2 and
D = 4, but the statistics are stronger in the latter case.

In the case of D = 1 it is perhaps more questionable whether
a self-affine regime has appeared within the range of system sizes
studied, as can be seen from Figure 5. In Figure 5 a line with slope
ζ = 0.78 has been fitted to the values for L = 16, 20, 25, and 32,
corresponding to an apparently linear regime. This is seen to cross
over into a regime with a smaller roughness exponent. At present,
however, we cannot tell what this exponent is, based on the sys-
tem sizes used currently. For the number of samples calculated,
the average values for L = 50 and L = 63 are subject to a certain

amount of statistical fluctuation but these are not large enough to
place them on the fitted slope. We assume that a self-affine regime
manifests itself for larger system sizes.

For weak disorders the fracture surface will appear as mainly
flat plateaus, slightly stepped up or down in relation to each other,
due to the surface height variations being smaller than the lat-
tice course-graining. This effect is especially accentuated for small
system sizes, but improves as system size increases. Because of
this, the length scale at which the cross-over occurs decreases
with increasing disorder and for this reason it appears that larger
system sizes are required in order to reliably estimate the rough-
ness exponent for weak disorders. So although D = 1 represents
a comparatively strong disorder in two dimensions [24], where
the resulting crack displays a very rough surface, this is not the
case in three dimensions. In three dimensions the added con-
straint on the crack surface from the extra dimension causes
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FIGURE 3 | Logarithmic plot, showing the roughness, W , as a function

of the system size, L, for disorder D = 2. Black circles denote those
points to which the straight line, with slope ζ = 0.62(2), has been fitted.
The largest errors on the points are approximately the size of the points.

FIGURE 4 | Logarithmic plot, showing the roughness, W , as a function

of the system size, L, for disorder D = 4. Black circles denote those
points to which the straight line, with slope ζ = 0.590(4), has been fitted.
The errors on the points are smaller than the size of the points.

the two dimensional traces along the three dimensional surface
to be more smooth than what is the case for a trace along a
purely two dimensional crack. Consequently, as can also be seen
by examining the fracture surfaces shown in Figure 2, D = 1 in
the threshold distribution corresponds to weak disorder in three
dimensions. Hence, the inclusion of larger system sizes, with suf-
ficiently many samples, is required to determine the exponent for
D = 1 or weaker disorders.

We next consider fracture in the D < 0 regime. At weak dis-
order one has a more or less uniformly distributed strength
throughout the elastic medium, interrupted here and there by the
odd strong element. Fracture in this case is stress dominated from
the onset—as the crack advances the next beams encountered

FIGURE 5 | Logarithmic plot, showing the roughness, W , as a function

of the system size, L, for disorder D = 1. Black circles denote those
points to which the straight line, with slope ζ = 0.77(1), has been fitted.
The errors on the points are larger than the size of the points, except for the
largest system L = 63.

along the path are most likely comparable in strength to those
already broken and since the stress is highest at the crack tip
these are the ones that will break next. Consequently, crack
growth is localized and unstable from the beginning, resulting in
a fracture surface that is quite smooth. As D increases, however,
a region of stable crack growth emerges, since now the num-
ber of strong beams in the distribution of thresholds becomes
significant. Fracture is now disorder dominated from the begin-
ning and a rougher interface results as the randomly distributed
micro-cracks gradually merge into a macroscopic fracture sur-
face. Finally, at some point, fracture becomes unstable and the
sample breaks completely. In studies of stress and strain in two
dimensions, using a very large range of disorders [33], this
turnover, from systems which are unstable from the onset to
systems within which there is initially a complex coupled inter-
action between stress and disorder, is seen to occur for disorders
approximately within the interval −2 < D < −3.

Presently, we include a single disorder for distributions with
a tail toward strong elements, i.e., D = −4. The result obtained
is ζ = 0.65(2), based on a straight-line fit to the average rough-
ness values for L = 10, 13, 16, 20, 25, 32, and 40. This is shown in
Figure 6, and the exponent is thus quite consistent with the results
obtained for D > 0 distributions. With a given D expected to pro-
duce less roughness in three dimensions than in two dimensions,
D = −4 here is probably close to this transient regime, where a
controlled regime of micro-cracking appears. This could possi-
bly account for the small difference obtained, i.e., ζ = 0.65 as
opposed to ζ = 0.59–62 at high D > 0 disorders.

4. CONCLUSIONS
To summarize, a roughness exponent of approximately ζ � 0.6
is obtained numerically for a discrete element model in the form
of a cube lattice where forces are derived in analogy with elastic
beams. Compared to other reported values in numerical works,
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FIGURE 6 | Logarithmic plot, showing the roughness, W , as a function

of the system size, L, for disorder D = −4. Black circles denote those
points to which the straight line, with slope ζ = 0.65(2), has been fitted.
The largest errors for the black circles are comparable to the size of the
symbols.

this value is somewhat higher. One cannot really compare with
results obtained in scalar models of fracture, such as the random
fuse model, although the result is still in fair agreement with the
various exponents obtained, i.e., 0.4 � ζ � 0.6, as reported in
Batrouni and Hansen [9], Räisänen et al. [10], Räisänen et al. [11],
Nukala et al. [12]. The Born model, which improves on the fuse
model in that it includes elastic behavior, has yielded exponents
in agreement with experiment, i.e., ζ � 0.5 [20]. This model,
as mentioned in the introduction is, however, not rotationally
invariant.

The most relevant result with which to compare our current
results are those of Nukala et al. [25], i.e., ζ � 0.5. Our results
are in fair agreement with this. A difference between the two stud-
ies is that in the former case periodic boundary conditions were
used and also a slightly different fracture criterion. In two dimen-
sions [24] we chose open boundary conditions to avoid having to
address the problem of fitting a sine curve to the fracture surface.
This because topologically the periodic lattice in two dimensions
is a cylinder and the intersection of this with a plane is a sine
curve. It may be difficult to judge whether a crack surface which
appears to be a sine curve really is a sine curve or if this shape is
something which appears as truly a part of the surface roughness.
We chose to use open boundary conditions in three dimensions
for similar reasons, and also generally to emulate a physical cube
as it would appear in a fractured laboratory sample. To our knowl-
edge, the significance of using different interaction formulae for
combined loading is a subject which has not yet been investigated
in studies using stochastic models. This is a subject which should
be addressed in future studies.

Future studies should also address the issue of lattice topol-
ogy. In two dimensions our calculations gave ζ = 0.86(3) [24]
which is quite different from the two dimensional beam lattice
result quoted in a study using a triangular lattice topology, i.e.,
ζ = 0.64(2) [34]. The triangular topology in two dimensions is

actually required for a Cosserat medium (such as the beam lattice
models) to be able to reproduce the macroscopic properties of a
real elastic solid. In three dimensions, the cubic lattice topology is
inadequate in this respect.
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