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Pattern heterogeneities and anisotropies often carry significant physical information. We
provide a toolbox which: (i) cumulates analysis in terms of position, direction and scale;
(ii) is as general as possible; (iii) is simple and fast to understand, implement, execute and
exploit. It consists in dividing the image into analysis boxes at a chosen scale; in each box
an ellipse (the inertia tensor) is fitted to the signal and thus determines the direction in
which the signal is more present. This tensor can be averaged in position and/or be used
to study the dependence with scale. This choice is formally linked with Leray transforms
and anisotropic wavelet analysis. Such protocol is intuitively interpreted and consistent
with what the eye detects: relevant scales, local variations in space, privileged directions.
It is fast and parallelizable. Its several variants are adaptable to the users’ data and needs.
It is useful to statistically characterize anisotropies of 2D or 3D patterns in which individual
objects are not easily distinguished, with only minimal pre-processing of the raw image,
and more generally applies to data in higher dimensions. It is less sensitive to edge
effects, and thus better adapted for a multiscale analysis down to small scale boxes,
than pair correlation function or Fourier transform. Easy to understand and implement,
it complements more sophisticated methods such as Hough transform or diffusion tensor
imaging. We use it on various fracture patterns (sea ice cover, thin sections of granite,
granular materials), to pinpoint the maximal anisotropy scales. The results are robust to
noise and to users choices. This toolbox could turn also useful for granular materials,
hard condensed matter, geophysics, thin films, statistical mechanics, characterization of
networks, fluctuating amorphous systems, inhomogeneous and disordered systems, or
medical imaging, among others.
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1. INTRODUCTION
Inhomogeneous systems require specific tools for their quantifi-
cation, whether for data analysis, or comparison with numerical
and analytical modeling. Analysis of patterns to extract relevant
physical information is a fruitful approach in a wide range of
systems [1]. It strongly depends on the type of pattern. Patterns
made of well-defined individual units such as biological tissues,
grains in polycrystals, foams and emulsions, display immediately
accessible information; they can be described by specific tools
which take into account their topology (e.g., connections between
individual objects) [2]. Patterns in which identifiable individual
objects are present at several different scales, such as transport or
telecommunication networks, fiber bundles or polymer gels, may
reveal more information under a multiscale analysis. Finally, pat-
terns which involve several scales and objects too intricated to be
separately identified, ranging from stars and galaxies to colloidal

materials, diphasic systems and porous media, can rather be
statistically characterized, for instance by their texture [3].

Even in these latter class of less obviously decomposable pat-
terns, it is important to determine the local anisotropy, for
instance in nuclear magnetic resonance images (MRI) of brain
[4]. For fractures patterns, tools exist to characterize their struc-
ture, heterogeneity, topology and correlations [5]. However, in
addition, preferential directions are clearly visible by eye: they
depend on both scale and position (Figure 1). It is important
to make this observation quantitative, especially since mechan-
ical descriptions often require to take into account directions,
for instance of principal stresses and strains. Several good meth-
ods already exist to quantitatively reveal and characterize the
local anisotropy. Our goal is to complement them by providing a
method which: (i) cumulates analysis in terms of position, direc-
tion and scale; (ii) applies to a set of patterns as general as possible;
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FIGURE 1 | Fracture patterns. (A) Arctic sea ice cover; image size:
60 km. (B) Granite thin section: a sample of height 80 mm and diameter
40 mm is deformed until rupture and the fracture is sheared over 2 mm.
Image size: 4 × 3 mm2, i.e., 1024 × 888 pixels of 3.9 µm. (C–H) Granular
material: maps of correlation of the scattered light. White pixels

correspond to high correlation (i.e., weak deformations) and black pixels
to low correlation (i.e., large deformation). The size of one pixel
corresponds to ≈ 0.65 mm (2.6 grain diameters). Deformations are 0.9%
(C), 1.6% (D), 3.3% (E), 5.7% (F), 8.3% (G), and 9.5% (H). For details,
see Sections 3.1.1, 3.2.1, 3.3.1, respectively.

(iii) is simple and fast to understand, implement, execute and
exploit.

The outline of this paper is as follows. Section 2 exposes the
principle of the method. Section 3 applies it to three experimen-
tal examples. Section 4 compares this method with existing ones.
Section 5 concludes. The “Supplementary Material” presents
various tests of measurement robustness.

2. METHOD OUTLINE
At each step of the proposed method, the users can select variants
and validation criteria according to their own scientific require-
ments, their practical applications, and the features of interest in
the patterns they study. These choices are not necessarily based
on a mathematical justification and should not be validated using
visual detection only.

2.1. IMAGES
2.1.1. Input data
An image is a signal, encoded through pixels, each pixel position
�M having integer coordinates.

The pixels constitute an array, usually in two or three-
dimensions. It can be in any higher dimension, for instance for
series of images depending on parameters, like a movie. For sim-
plicity of explanations and especially of representation, examples
below are in 2D, but the formalism is indifferent to the dimension.

The information is any physical quantity I( �M), that is, a
field defined over the pixels. In examples below, I is a binary

number, 0 or 1, or a gray level, an integer number for instance
between 0 and 255. The formalism generalizes to I being a pos-
itive scalar, that is a continuous gray level; a vector with three
positive components, such as RGB images; or even a higher order
tensor.

2.1.2. Pre-processing
Only few, basic image pre-processing steps are required.

Without loss of generality, we consider a signal to be analyzed
which is coded in white (large I), over a black (low ) background.
Otherwise, a symmetry transform should be applied to the image
before starting the analysis: I → 1 − I for a binary image, I →
255 − I for a gray level image.

It is useful to eliminate isolated white pixels using a slight fil-
tering of the image, such as opening (erosion-dilatation), median
filter or low pass filter.

A gray level image can be used as it is, I = 0 to 255; or
first thresholded, I = S to 255, where the threshold S is selected
according to the noise level and the signal considered to be rele-
vant; or binarized, I = 0 or 1, where 1 represents the signal and 0
the background.

In the examples below, analysing binarized image yields qual-
itatively the same results (orientation and scale of maximal
anisotropy) as analysing gray level images, and quantitatively the
signal to noise ratio is larger (data not shown), while the vali-
dation of the results by visual observation of the image is much
easier.
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2.2. FORMALISM
2.2.1. Boxes
We introduce a scale �, and a list of positions �r inside the image;
�r does not need to coincide exactly with a pixel position (its
coordinates need not be integers).

Consider any function f ( �M) defined over the image �M. The
approximation of f at scale �, noted f̃ (�r, �) defined as the value of
f over an analyzing box at scale �, centered at �r, is:

f̃ (�r, �) =
∑

�M
φ

( �M − �r
�

)
f
( �M)

(1)

where φ is a smoothing function with compact support, which
defines the analysis box.

The box can be a circle of center �r and radius �, or a a square of
center �r and side 2�. The sum

∑
�M φf over all pixels in the analysis

box is then denoted
∑

box f . The box centers �r can for instance be
placed at each pixel of the image (sliding boxes) or at each node
of a larger grid.

Some boxes overlap image boundaries, and are thus incom-
plete. There are various possibilities to deal with them, which can
be selected according to the image. First, one can ignore these
incomplete boxes in the analysis. Second, one can add as many
black pixels as necessary to complete them without artificial sig-
nal. Third, one can put artificial periodic boundary conditions,
and complete them with pixels coming from the opposite side of
the image. Fourth, one can make the outer boxes coincide with
the image edges: then if the image size is not a multiple of the
box size, in order to tile the whole image the boxes should have
variables overlaps.

2.2.2. Inertia tensor
Setting now f ≡ I in Equation (1), we define the signal intensity
in the box at the chosen scale � as:

Ĩ (�r, �) =
∑

�M
φI
( �M) =

∑
box

I. (2)

If Ĩ(�r, �) = 0 we stop the analysis for the corresponding box.
Otherwise, we define the signal barycenter �G within the box by
setting f ≡ I �M in the Equation (1), for the numerator:

�G = 1

Ĩ (�r, �)
∑

�M
φI
( �M) �M =

∑
box I �M∑

box I
. (3)

We then measure the inertia tensor of the signal within the box,
taken at the barycenter G, through:

P (�r, �) =
∑

�M
φ I

( �M) −→
GM ⊗ −→

GM. (4)

In Equation (4), the center �r of the analysing box should be dis-
tinguished from the barycenter G of the signal in this box. By

construction, P is a symmetric tensor. In 2D, it writes:

P (�r, �) =
∑
box

(
X2 XY
XY Y2

)
I, (5)

where (X, Y) are the coordinates of
−→
GM.

2.2.3. Some variants
Equation (5) admits several variants.

I could be a vector or a higher rank tensor. Correspondingly, P
would be a tensor which rank is the rank of I plus two.

To give the same weight to pixels close to the barycenter and

close to the box boundary, one can set f ≡ I/|−→
GM|2 in Equation

(1) and define the direction tensor:

Q (�r, �) =
∑

�M
φ

I
( �M)

|−→
GM|2

−→
GM ⊗ −→

GM

=
∑
box

1

X2 + Y2

(
X2 XY
XY Y2

)
I. (6)

By definition, Q depends on cos2 θ , cos θ sin θ et sin2 θ , and

so on 2θ , where θ is the angle between
−→
GM and the x axis.

Note that since the denominator of Equation (6) can vanish for
M = G, it is reasonable to introduce a cut-off and sum only over
the pixels that are at least 1 pixel away from the barycenter G.
Comparing Equation (2) with Equation (6) shows that the trace
of the direction tensor is:

TrQ (�r, �) =
∑
box

I = Ĩ (�r, �) . (7)

The choice between P and Q does not introduce any qualitative
difference. In some boxes the result can be quantitatively different,
but after averaging over boxes, both yield similar statistical results.

Q is more sensitive to the directions close to the box center, P is
more robust to noise and reflects better the directions at the box
scale. This test, as well as other tests of robustness with respect to
variants (binarization, box shape, box position) and to noise, is
presented in the “Supplementary Material.”

2.3. MEASUREMENTS AND REPRESENTATIONS
Different measurements can be performed. Their dependence
with scale, position and orientation can be quantitatively repre-
sented using for instance graphs, maps and polar plots, respec-
tively. In 3D images, measurements are similar as in 2D, but
representations are less legible.

2.3.1. Graphs
Graphs can evidence the quantitative aspects of the dependence
with scale.

First, the scale is fixed. For each box, the inertia tensor is mea-
sured. Since it is symmetric, it can be diagonalized, and has two
real eigenvalues λ1 > λ2 ≥ 0. Its anisotropy 1 − λ2/λ1 calculated.
Then the anisotropies of each (non-empty) box are averaged and
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FIGURE 2 | Example of a synthetic image and its analysis. In insert :
artificial image (512 × 512 pixels) consisting in a cross loosely following the
diagonals of a square. The lines are about 11 pixels wide. The main graph
represents the anisotropy as a function of the scale.

their standard deviation recorded. Repeating this measurement
at different scales yields a graph of the average anisotropy 〈1 −
λ2/λ1〉 vs. scale, plotted with bars reflecting the spatial variations
of the anisotropy values.

An artificial example is shown in insert of Figure 2. The struc-
ture is a cross loosely following the diagonals of a square. The
main part of Figure 2 shows the average of the anisotropy vs.
scale. As expected, it displays a maximum at the scale where the
eye notes the maximal anisotropy. For small enough scales the
main pattern contained in a box is a part of one of the diagonals,
so that the anisotropy is high, and increases with the scale. For
a size of 128 or 256 pixels, which correspond to 1/8th and one
quarter of the image, the pattern contains one diagonal and the
anisotropy is maximal. For the larger scale, due to its symmetry,
the whole pattern is globally isotropic, the anisotropy curve drops
almost to zero. In cases where it would be important to distin-
guish a cross from a uniform image, one should adapt Equation
(5) to characterize a quadrupolar rather than dipolar anisotropy.

An alternative measurement is performed as follows. The ten-
sor in each box is calculated, then all these tensors are averaged,
and the resulting average tensor is diagonalized. This determines
the anisotropy of the average tensor, which is a single tensor per
image. At the largest scale where there is a single box as large as
the image, this measurement coincides with the preceding one.
However, it is usually much smaller than the average of each ten-
sor’s anisotropy, especially when the average tensor takes into
account contributions in various directions. In that case, each box
has a strong anisotropy, so that the average of anisotropies is large,
but since boxes have various directions, the average tensor is glob-
ally isotropic, hence its anisotropy is very low. This is called the
“powder effect” in crystallography, where different anisotropic
grains together contribute to an isotropic signal. Such graph is
useful to emphasize the appearance of correlated anisotropy at
large scale.

2.3.2. Maps
Maps evidence qualitative features of the spatial variations.

At a given scale, in each box (and thus at each position) the
inertia tensor is measured. No average is performed. Each ten-
sor is diagonalized. In each box, the anisotropy or direction can

be separately represented, for instance as a color map. Or they
can be represented together, using the classical representation of
the inertia tensor as an ellipse, with axis lengths λ1 and λ2 in
the directions corresponding to their respective eigenvectors1: the
map is then a juxtaposition of different ellipses.

One can rescale each ellipse by inscribing it in a square of the
same size as the box where it is measured. Thus, the ellipse size
reflects the scale of measurement. For a map constructed at a
given scale, all ellipses have a comparable size. There could be an
alternative possibility, where each ellipse size is proportional to
the intensity of the signal within the box.

At each position, several ellipses measured at different scales
can be superimposed. In order to keep some legibility, it is pos-
sible to represent only the eigenvectors rather than the whole
ellipses. Or to plot the same number of ellipses at all scales
(which means removing several boxes at small scales). Figure 3A
shows an example for an artificial pattern with two well-defined
length scales. At small scale, the ellipse is aligned with each
small structures, while at large scale the ellipse reflects the global
arrangement of the pattern.

A map can become more illuminating when superimposed on
the initial image (Figure 3A) or combined with a quantitative
graph: in Figure 3B, the transition region between both length
scales is visible around 64–128 pixels, especially for the anisotropy
of the average tensor, which evidences an effective correlation
scale for the anisotropy.

2.3.3. Polar plots
Roses are quantitative representations that focus on the depen-
dence with orientation, rather than the anisotropy itself.

For a given scale, in each box (that is, at each position) the
inertia tensor is measured. It is diagonalized and only the direc-
tion θ of the eigenvector associated with its main eigenvalue λ1 is
recorded. The histogram of θ is represented: since for an eigen-
vector θ and θ + π play the same role, they are both plotted
simultaneously. The same measurement can be repeated at dif-
ferent scales: in Figure 3C, the change in the principal direction is
clearly visible at 128 pixels, where many non-empty boxes contain
only a tiny amount of signal.

3. RESULTS
Examples are fracture patterns in ice, granite thin sections,
granular medium (Figure 1). Unless specified, all measurements
presented below are performed in square boxes.

3.1. SEA ICE FRACTURING
3.1.1. Data
The image analyzed is a visible wavelength satellite photograph
of the Arctic sea ice cover, taken by “Système Pour l’Observation
de la Terre” (SPOT) in early spring on April 6th, 1996, centered
around 80◦11′N, 108◦33′W (Figure 1A). It contains 5977 × 5977
pixels, each pixel being 10 m, i.e., the image covers about 60 ×
60 km2. The thickness ∼ 1 − 3 m of the sea ice cover is much
smaller than the lateral extension of the image. Due to this aspect
ratio, the ice sheet can be considered as two-dimensional.

1http://rsbweb.nih.gov/ij/
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FIGURE 3 | Two artificially separated length scales. (A) Synthetic
image with two well-defined anisotropy length scales. Inertia tensor in
three boxes, each at a different scale, is represented using
superimposed ellipses. Colored points label the barycenter of the signal.
Image side : 2048 pixels. Box size : pink 128, blue 512, green 1024
pixels. (B) Anisotropy graph. Closed circles: average anisotropy

1 − λ2/λ1 measured on (A), here using circular boxes. Bars: standard
deviation. Open circles: anisotropy of the average tensor. (C) Orientation
roses. Measurements are performed on circular boxes with diameters
(from left to right): 64, 128, 512, and 1024 pixels. The transition is
mainly between 64 and 128 pixels. At 1024 pixels, the average is
performed only over four boxes.

Owing to the much stronger albedo of snow-covered sea ice
(>0.6) compared to open ocean (<0.2) [6], newly opened frac-
tures appear much darker than the surrounding sea ice. This is
clearly visible on the gray-level (Ig) histogram (Figure 4A) of the
image where ice values are centered around Ig = 140. The gray-
levels result from several physical independent factors (sea ice
vs open water, but also local roughness of the surface, type of
snow, . . . ) and from measurement noise. The different secondary
peaks observed below Ig = 125 may correspond to different lev-
els of (recent) refreezing stages, from purely open water to thin,
snow-free ice. In the sea ice terminology, these fractures are
called “leads.” They differ in nature and origin from the so-called
“polynya” which are open water areas inside the ice pack result-
ing from warm water upwelling or wind-induced drift away from
a fixed boundary; there is no polynya in Figure 1A. This albedo
difference can be used to convert this grayscale image to a binary
image of only fractures or ice, as done in Weiss and Marsan [7]
and Marcq and Weiss [8].

The fracture network is typical of winter pack ice and has
been already analyzed in terms of fracture density and asso-
ciated scaling properties [7]. It was shown that this network
defines an ensemble of ice fragments (“floes”) power-law dis-
tributed in size, whereas the fracture density is characterized
by multifractal properties, both observations arguing for the
scale invariant character of sea ice fracturing [7, 9]. In these

previous analyses, the anisotropy of the fracture pattern was not
considered.

3.1.2. Analysis
At the scale of an individual fracture, the anisotropy arises from
fracture mechanics: the average fracture opening is much smaller
than the fracture length (see Figure 1A). We now ask whether
this anisotropy is preserved for fracture networks, and whether
it depends on the spatial scale.

Figure 4B shows the anisotropy 〈1 − λ2/λ1〉 vs. scale for
binary images obtained from the grayscale image of Figure 1A
using different thresholds, Ith = 95, 115, 125. For gray levels Ig ≤
Ith, a binary value Ib = 1 is assigned to the image (water), and
Ib = 0 instead (ice). No additional image processing was per-
formed on the raw grayscale image. Two anisotropy measures are
shown at each scale: the index averaged over all square boxes cov-
ering the image at a given scale, 〈1 − λ2/λ1〉 (closed symbols),
and the index of the averaged tensor (open symbols). These aver-
ages are performed on non-empty boxes, but without additional
weighting based on the total intensity contained in the box.

A similar analysis performed on the raw grayscale image (not
shown) leads to a similar evolution with scale, but very small
anisotropies. This is mainly due to (i) the reinforcement of con-
trast induced by binarization, and (ii) the fact that the averages are
performed in this case over all boxes, including many “ice-only”
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FIGURE 4 | Analysis of the sea ice image (Figure 1A). (A) Gray-level
histogram of the raw image. The dashed vertical lines indicate the range
of threshold values used for binarization. (B) Anisotropy vs. scale, for
different values of the threshold. Solid lines, closed symbols: anisotropy
(averaged over all boxes) vs scale for binary images obtained from
different thresholds (red upward triangles: Ith = 95, blue downward
triangles: Ith = 115, gray circles: Ith = 125). Dashed lines, open symbols:
anisotropy of the average tensor, same symbol and color code. (C) Test

of significance. Blue triangles: anisotropy vs scale for Ith = 115 [same
data as in (B)]. Errors bars correspond to the standard deviation over the
different boxes of the same size. Red open circles: same measurement
on a random image of the same size, with the same proportion of black
pixels: in this case, as expected, the anisotropy is zero at large scales,
but increases toward small scales as the result of pixelation (see text for
details). (D) Anisotropy ellipses, drawn at scales of whole (green), half
(purple) and quarter (pink) of image width.

or “water-only” boxes over which the gray-level results from noise
or processes not related to fracturing.

The evolution of the averaged index 〈1 − λ2/λ1〉 is qualita-
tively similar whatever the threshold Ith: a maximum anisotropy
at the scale of the entire image (5977 pixels, ∼60 km), a mini-
mum observed at ∼10 km (1024 pixels), and an increase toward
smaller scales. Anisotropies are larger for lower thresholds Ith.
This might indicate that a part of noise not related to fracturing
is included in the binary image when using a threshold too close
to the gray-level histogram maximum (Ig = 140) corresponding
to ice (Figure 4A).

On the other hand, this example also illustrates the intrin-
sic limitations of anisotropy measurements at small scales as
the result of pixellisation. Figure 4C shows the averaged index
〈1 − λ2/λ1〉 calculated for a spatially randomly reshuffled version
of the sea ice image binarized with Ith = 115. The resulting image
contains the same number of non-empty (Ib = 1) pixels as the

original binary image, though randomly distributed in space, i.e.,
without expected anisotropy. The associated anisotropy is indeed
negligible above 1 km (128 pixels), but becomes non-negligible
compared to the averaged index of the original image for L = 32
pixels (320 m) and below. This can be easily understood by the
possibility to obtain by chance an anisotropic distribution of filled
pixels for such small boxes.

The large anisotropy obtained at the image scale (60 km) is
clearly the signature of the large faulting system crossing the
left part of the image, with fragmented material inside. This is
confirmed by the corresponding ellipse inclined at about 60◦
(Figure 4D). Large values obtained below ∼2 km probably corre-
spond to the strong anisotropy of the narrow fractures observed
on both sides of this system. These small scales fractures may
have different orientations, thus explaining that the anisotropy
of the averaged tensor is small below 10 km: in other words, the
correlation length associated to the orientation of this secondary
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fracturing network is small; L = 10 km appears as a transi-
tion scale between two fracturing systems, at least in terms of
anisotropy.

Figure 4D shows the ellipses constructed at this scale, which
eccentricity is indeed, in average, much reduced compared to the
ellipse corresponding to the global scale. Such transition scale was
not observed in terms of fracture density, which is characterized
by multifractal, i.e., scale invariant, properties [7]. Obviously, a
much more comprehensive analysis of sea ice fracturing networks
from various images covering a wide range of spatial scales would
be needed to conclude on the ubiquitous (or not) character of
such transition scale for sea ice fracturing anisotropy. The present
analysis simply demonstrates the ability of our methodology to
reveal the anisotropy of fracture patterns at different scales, with
minimal pre-processing of the raw image (simple binarization).

3.2. THIN SECTIONS OF GRANITE
3.2.1. Data
Figure 1B shows fractures in compressed granite [10]. The rock is
compressed in laboratory, enough for allowing cracks to develop.
At the onset of damage, their direction of propagation is parallel
to the direction of major stress which induces a strong dam-
age anisotropy. Beyond a given threshold of crack density, the
damage becomes localized along shear bands characterized by
a concentration of cracks which produces a granular material
which geometry is conditioned by the orientation of cracks and
the amount of deformation. At this stage a strong anisotropy of
the grain shape is expected. Deformation then develops mainly
within the granular material; grains fragment, becoming more
and more isotropic.

At the end of the experiment, epoxy resin is injected in
the sample to preserve its structure during machining of a
thin section. The images are obtained by scanning electron
microscopy where gray levels reflect the atomic mass. The resin
appears in black, so that cracks and grain boundaries are easy
to identify. The analysis of the anisotropy should identify areas
that experienced strong deformation (more isotropic) and also
a progression from damaged areas (anisotropic) to granular
areas (less anisotropic when approaching of the area of high
deformation).

3.2.2. Analysis
Figure 1B was analyzed like sea ice (Section 3.1.2). The con-
trast between the non-fractured granite (Ig around 120) and
the resin/fractures (Ig close to 0) is excellent, thus making the
binarization straightforward. Consequently, the anisotropy mea-
surements weakly depend on the selected threshold Ith. The
results presented in Figure 5 were obtained for Ith = 50 and do
not change for Ith = 30 or 70.

Figure 5A shows the ellipses constructed at different scales
(from 32 to 128 pixels) and centered at different positions.
Along the main inclined fault containing fragmented material,
the anisotropy is small at scale 64 pixels, illustrating the rela-
tive isotropy of the highly fragmented gouge. It slowly increases
toward larger scales, probably as a result of partial sampling of
the anisotropy of the fault itself. Fractured zones on both sides
of the main fault show very strong anisotropies at small scales

associated to single elongated fractures, as well as sharp rotations
of principal directions when several fractures are included within
the box. This distinction between a fault with fragmented gouge,
surrounded by zones of intense fracturing without fragmentation,
was also observed on the sea ice image (Figure 1A), for spatial
scales 7 orders of magnitude larger.

Figure 5B shows a colored map of the anisotropy index 〈1 −
λ2/λ1〉 calculated at the scale L = 64 pixels (gray boxes cor-
respond to empty boxes). This shows quantitatively the gra-
dient of anisotropy from the gouge material inside the fault
to the much more anisotropic peripheral fractured zones. This
result highlights the differences between fracture and fragmen-
tation processes: while fractures are initiated locally under ten-
sion (mode I) with opening much smaller than fracture length,
i.e., characterized by a strong anisotropy, fragmentation under
shear is a complex multiscale process involving friction, grain
rotation and comminution (e.g., [11–14]) that leads to rela-
tively isotropic grain shapes. The present analysis clearly reveals
this transition from one mechanism to another across the fault
plane.

This space analysis quantifies what the eye detects qualitatively.
It can be complemented by an angle analysis, which clearly iden-
tifies the main directions of anisotropy (Figure 5C). The scale
analysis is similar to Figure 4B, but less pronounced, and with
a minimum around 100–200 pixels (data not shown).

3.2.3. Simulations
We also analyse numerical simulations of progressive damage: for
details see Ref. Amitrano [15]. Briefly, a finite element model is
progressively loaded in order to increase the stress supported by
the material. The strength of each element is choosen at random.
To mimic the effect of increasing crack density, when the stress in
a element reaches its strength, its elastic modulus is decreased by
a constant factor less than unity. A model on a 256 × 128 grid is
plotted here as a corresponding 512 × 256 pixels image, so each
grid unit is covered by 4 pixels.

The diffuse and isotropic damage progressively evolves toward
localized and anisotropic damage. Due to elastic interactions, the
damage becomes progressively localized until the rupture of the
whole sample, like in natural materials (Figure 1B). The damage
parameter is D = 1 − E/E0, where E is the current elastic modu-
lus and E0 is the initial elastic modulus. Figures 6A–C show the
increments in damage D at three of the last steps, during damage
localization.

Figure 6B shows the ellipse analysis for step 38 and Figure 6D
shows the mean anisotropy at different scales for all the steps. To
detect possible biases related to changes in damage intensity, we
also performed the analysis for the same damage distribution but
spatially spread at random (dotted lines in Figure 6D). The pat-
tern of anisotropy can be considered to be significant as a clear
departure from random images exists (except for largest scale
in the initial steps). The anisotropy evolves toward the macro-
failure with a clear dependence on scale. Anisotropy progressively
decreases for small scales (32 pixels) whereas for large scale it
increases suddenly when the macrofailure occurs. The interme-
diate scale of 64 pixel shows no particular trend and appears as a
transition scale.
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FIGURE 5 | Analysis of granite (Figure 1B). (A) Analysis in position,
orientation and scale. There are 4 × 4 analysis boxes placed on a grid of 110
pixels step centered on the image. Concentric ellipses represent
measurements at 32 (orange), 64 (red), 96 (blue), 128 pixels (green). (B) Map

of the anisotropy index 〈1 − λ2/λ1〉 at scale 64 pixels. Red: weak anisotropy;
yellow: strong anisotropy; gray; boxes without information. (C) Roses: 16
pixels (left) and 128 pixels (right). Threshold = 50, squared boxes (circular
boxes yield indistinguishable results).

3.3. GRANULAR MATERIAL
3.3.1. Data
Mohr-Coulomb analysis predicts that failure in granular mate-
rial occurs along surfaces where the ratio of tangential stress over
normal stress attains a material dependent ratio, called inter-
nal friction coefficient [16]. However, mechanisms of plasticity
of disordered material suggest that preferential orientations for
deformations are related to the stress redistribution after local-
ized deformations (directions of the Eshelby stress tensor [17])
which are given by elastic properties and geometry of localized
deformations. The determination of the anisotropy at different
scales may allow to see the competition between those two failure
mechanisms.

Ref. Le Bouil et al. [18] designed an experiment in order to
look at the precursors of failure. Briefly, a granular material com-
posed of glass beads of diameter d = 0.25 mm is placed between

a latex membrane and a transparent glass plate. A confining pres-
sure −σxx is applied laterally along the horizontal axis x, and the
material is compressed slowly in the perpendicular direction z,
with a pressure −σzz . The granular material is illuminated with
a laser light, and the scattered light detected with a camera. The
coherence of the scattered light is measured with a normalized
correlation function which is 1 if no deformation takes places, and
which is lower than 1 when deformation takes place [19, 20].

The map of the scattered light correlation between succes-
sive images is calculated (Figures 1C–H). It shows an evolution
of the correlation of the scattered intensity between two succes-
sive images acquired at the global axial deformations ε = 	L/L
and ε + 	ε with 	ε ≈ 1 × 10−5.

White pixels correspond to well-correlated scattered light (i.e.,
weak deformation of the material), and gray pixels to decorre-
lated scattered light (i.e., important deformation of the material).
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FIGURE 6 | Simulations of progressive damage in granite compression.

(A–C) Snapshots of the incremental damage. The cells that experienced
damage during the step appear in white and the others in black. The whole
simulation is decomposed in 40 steps of incremental damage, each step
corresponding to an equal number of damage events. (A) Step 34, (B) step

38, (C) step 39. On (B), anisotropy ellipses at image width are superimposed.
(D) Mean anisotropy at different scales (32, 64, 128, 256 pixels) for each
strain step. Steps are spaced in order to ensure an equal number of damage
events in each step. Dotted lines correspond to the same damage
distribution but spatially spread at random.

Figures 1C–H shows that the mesoscopic reorganizations occur-
ring between ε and ε + 	ε evolves during the loading process.
At the early stage of the loading process (Figures 1C,D) reorgani-
zations occurs under the form of localized zone of deformations,
called spots, and already described [21] together with a smooth
and diffuse decorrelation. Around ε ∼ 3.5% (Figure 1E) some
largely deformed zones appear. At this point decorrelated zones
show anisotropy (Figures 1E,F). Two orientations appear (with
a vertical symmetry reflecting the symmetry of the loading),
and become permanent (Figure 1G). Finally, at the latest stage

of the loading process, two well-defined shear bands appear
(Figure 1H).

3.3.2. Analysis
Figure 7A shows the evolution of the deviatoric stress σzz − σxx

vs. the global axial deformation ε = 	L/L.
Figure 7B shows in colorscale the evolution of the anisotropy

vs. the size of the boxes used for the image analysis, and
vs. the deformation of the sample. Large enough ensemble
for the average anisotropy at a given scale are obtained by
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FIGURE 7 | Analysis of correlation patterns in precursors to the

rupture of a granular material (Figures 1C–H). (A) Loading curve:
deviatoric stress σzz − σxx vs. the global axial deformation ε = 	L/L.
Inserts : images used for the analysis obtained from the correlation
maps of Figures 1D,E,G. (B) Anisotropy vs. strain and box size for
the whole experiment (see color code on the right side: red =

anisotropic, blue = isotropic). For each value of the deformation 20
consecutive images are used in order to increase the statistics for
the calculation of the average of the anisotropy at a given scale. (C)

Test of significance: same plot after mixing the pixels of each image.
In the three panels, the strain increment between successive images
is δε = 10−5.

using 20 consecutive images as representative of the same
pattern.

In order to reduce pixel noise at small scales which is very high
in the original maps of correlation, and to reduce the effect of a
gradient of deformation present at the beginning of the loading
(Figure 1D), before anisotropy calculation the maps have been
pre-treated as follows : median filter of radius 3, substraction of
the average gradient in deformation along the vertical direction,
binarization.

The resulting analysis (Figure 7B) shows that from a strain of
about 1%, the anisotropy is maximal for scales between 8 and 64
pixels. The decrease of the anisotropy at the largest scale can be
understood by the fact that bands tend to appear in two sym-
metric directions so that at large scale the anisotropy decreases.
In this particular case, a quadrupolar rather than dipolar analysis
would allow a more detailed description of the conjugate bands
system at large scale (Section 2.3.1). Below 1% the data are still

partly obscured by the overall gradient of deformation over the
sample. The scale of maximum anisotropy increase slightly for
strains between 1% and 5% and then stabilizes between 32 and
64 at the end of the process. At given scales, above a size of 16, the
anisotropy increases with the deformation.

A test of the accuracy of multiscale analysis is the compar-
ison of the result of the same algorithm applied on an image
composed of the same pixels values as the original one, but
where the positions of the pixels have been randomly mixed so
that potential spatial structurations have been destroyed. Such
randomization has been applied on all the images used for the
analysis of the emergence of anisotropy in the biaxial test and the
result is displayed on Figure 7C. A significant anisotropy appears
at decreasing scales during the loading. At small deformation,
anisotropy appears only at the largest scales, then the maximal
value of the anisotropy appear at smaller and smaller scales.
Anisotropy coming from pixel noise is expected for a pattern
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containing random pixels, yet such noise can only appear when it
contains at least two non-zero pixels. Indeed, when a box contains
only one non-zero pixel, the barycenter of the box is located on
that pixel and the anisotropy is null. It explains why for the images
containing few information, as the first example where only 1.2%
of the pixels are non-zero (top left inset of Figure 7A), anisotropy
only appears for large enough boxes of analysis. When the amount
of information increases, pixel noise appears at smaller scales, as
the probability for two pixels to be in a smaller box increases.

A test performed with Q instead of P (not shown) evidences
only a weak effect on Figure 7B. Conversely, the analysis of a ran-
dom image yields a result very different from Figure 7C: a strong
anisotropy is visible at small scales due to boxes with a small
number of white pixels, with but especially without strain.

4. DISCUSSION
Our formalism can be related with two existing ones: the Leray
regularization, and the optimal anisotropic wavelet transform.
The inertia tensor can be compared with existing measure-
ments, such as the anisotropic pair correlation function, the
Fourier transform, the Hough transform and the diffusion tensor
imaging.

4.1. LINK WITH EXISTING THEORETICAL FORMALISMS
4.1.1. Link with Leray regularization
Let us first explain the historical context of Leray’s work. The
Navier-Stokes equations (NSE) take the form of partial differ-
ential equations describing for the fluid velocity. These types of
equations are not suitable for non-differentiable fields, so that
one needs both new tools and more general descriptions of the
fluid equations to deal with singular fields, as already recognized
by Onsager [22]. However, the NSE can still be meaningful in
the sense of distributions, i.e., after smearing with smooth test
functions φ(x, t). Leray [23] worked over a suitable formalism to
construct weak solutions of a partial differential equation with
singularities, like Euler equation, through a sequence of filtered
velocity field u obtained by smearing it at scale with special test
functions φ�(x, t) = �−3φ(x/�). The corresponding velocity field
are smooth, and obeys smoothed version of the NSE that describe
the behavior of u in a larger phase space, including both the phys-
ical space and the scale space. Limiting behaviors for viscosity
ν → 0 weak solutions of the NSE can then be obtained through
limits of u as � → 0. Leray regularization is an example of func-
tion φ with interesting properties, albeit (or because) intrinsically
anisotropic.

In the spirit of Leray, we introduce a scale transform, with the
important difference that we specifically want to extract unbiased
anisotropy information. We introduce a spatial coarse-graining
(which can be extended to spatio-temporal coarse graining) such
that:

ū(b, �, t) =
∫

d3x

�3
u(x, t)F

(�k ·
(�b − �x

))
, (8)

where �b, �x and �k are vectors (|�k| = 1/�), and F is any C∞ non-
negative function decaying to zero sufficiently rapidly at infinity

(more quickly than x−2) and such that
∫

F(x)dx = 1 [24–26]. An
example is the Gaussian F(x) = exp(−x2/σ )/(2πσ ).

To achieve the link with the inertia tensor, consider the scalar
quantity I and take its transform according to Equation (8). By
definition, it has the interesting property:

∂kj Ī(b, �, t) =
∫

d3x

�3
(bj − xj)I(x, t)F′(�k · (�b − �x)),

∂kj∂kl Ī(b, �, t) =
∫

d3x

�3
(bj − xj)(bl − xl)I(x, t)

× F′′(�k · (�b − �x)), (9)

so that ∂kj∂kl Ī(b, �, t) is nothing but P, the inertia tensor of
I. Hence Equation (4) appears as a particular case of Leray
transform.

This suggests how to generalize Equation (4). If the signal I
is a vector rather than scalar quantity, the inertia tensor can be
replaced by the scale tensor:

Sij(ū) = ∂kj ūi(b, �, t) =
∫

d3x

�3
(bj − xj)ui(x, t)

× F′ (�k ·
(�b − �x

))
. (10)

The trace and the antisymmetric part of S yield the divergence
and the rotational in scale space, respectively.

4.1.2. Link with optimal anisotropic wavelet transform
The inertia tensor can be compared with the Optimal Anisotropic
Wavelet Transform (OAWT) introduced by Ouillon et al. [27]
and used in characterization of fracture patterns or heteroge-
neous porous media [28]. The basic ingredient of OAWT is an
anisotropic wavelet, depending on 3 parameters: the scale a, the
orientation θ and the anisotropy factor σ . The final output is a
rose diagram, representing the typical orientation of a given por-
tion of the image as a function of scale. Its obtention requires
the computation at each scale of all the wavelet coefficients as a
function of σ and θ . An appropriate decimation of these wavelets
coefficients through appropriate thresholding enables, for each
scale a, to keep only “optimized” coefficients with given orienta-
tion θopt and anisotropy σopt . The rose diagram is then obtained
as a histogram of the optimized orientations or each scale. This
method therefore provides the typical orientation as a function
of scale at the expense of a waste of computations: most of the
computed coefficients are not used.

By comparison, the inertia tensor converges to an isotropic
wavelet transform when the wavevector is isotropic. The final out-
put of our method are ellipses, which axes are along the direction
of anisotropy and which orientation provides the typical orienta-
tion at each scale and each point of the image. The computation of
these ellipses requires the obtention of the inertia tensors, that are
nothing but the second scale derivatives (derivation with respect
to the wavector) of the Leray-like transform (Section 4.1.1) and
are very simple to implement numerically. The inertia tensor
therefore provides a more direct and conceptually simple way to
obtain the same information as the OAWT.
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4.2. COMPARISON WITH SOME EXISTING METHODS
4.2.1. Anisotropic pair correlation function
The pair correlation function of an image is:

g (�r) =
〈
I (�x) I (�x + �r)〉〈

I (�x)2
〉 (11)

The average is here taken over all pixels �x in a box. The pair corre-
lation function characterizes the dependence in scale r = |�r| and
in direction θ of vector �r.

Classical uses of g (�r) average over the direction θ of vector �r
and only the dependence in scale, g(r), is plotted. A standard use
of this function g (�r) is to perform the average over all positions �x:
the box is equal to the whole image. A problem in that case is that
�x + �r does not necessarily belong to the image, and thus image
boundary effects have to be taken into account.

Figure 8 plots the pair correlation function for granite images
in conditions similar to Figure 5C. Since here we are interested
in anisotropy, we can alternatively plot g(θ) for a fixed r, which
yields an analysis in direction (Figures 8A,B). Superimposing
plots at different values of r yields an analysis in scale and
direction (Figure 8C).

The pair correlation function detects well the large scale
anisotropy. However, if the pattern contains small scale
anisotropic structures in various directions, the pair correlation
function does not detect an anisotropy at small scale (Figure 8C).
This drawback is reminiscent of the anisotropy of our average
tensor (Figure 4B).

By splitting the image into smaller boxes (like for the iner-
tia tensor), the pair correlation function too can be measured
vs. position, and thus in principle detect small scale anisotropy.
However, in practice, the drawback of the pair correlation func-
tion is its edge effect, which becomes stronger and stronger
when boxes get smaller. We have performed several tests and
improvements of pair correlation function on both the granite
and granular patterns without being able to significantly measure
any small scale anisotropy (data not shown).

4.2.2. Fourier transform
Fourier transform decomposes an image into a set of spatial fre-
quencies which reflect the existence, the spacing and direction
of geometric patterns. In each box of a grid, after appropriate
windowing (multiplication by a square cosine) that minimizes
the edge effects, the local Fourier transform can be calculated.
Its norm is maximum in the center of the Fourier space and its
decrease is anisotropic. It is possible to quantify the anisotropy of
this Fourier transform, for instance by binarizing it and measur-
ing the anisotropy of the resulting cloud of points, yielding the
initial pattern’s local main direction [29].

Since only the norm (and not the phase) of the Fourier is
used, the analysis is insensitive to possible translations of the pat-
tern. This is convenient when different images are averaged, for
instance in ensemble average over different experiments. Fourier
transform is useful at a fixed scale. However, it suffers the same
edge effects as the pair correlation function (Section 4.2.1), so that
for a true analysis in terms of both position and scale, the optimal
anisotropic wavelet transform (Section 4.1.2) or the inertia tensor
are more suitable.

4.2.3. Hough transform
The Hough transform is a tool allowing to detect lines in pictures
[30]. We use it on the granular image patterns (Figures 1C–H) to
find the preferential direction of the intermittent and permanent
shear bands.

The method is based on a characterization of lines in the plane
by two polar parameters (ρ,θ), ρ being the distance between the
considered line and the origin, and θ the polar angle between the
normal to the line and the abscissa. Using this parametrization the
whole set of possible lines going through a given point (x0, y0) can
be written :

ρ = x0 cos θ + y0 sin θ, (12)

so that the ensemble of concurrent lines associated to a single
point in the plane is represented by a sinusoid in the (ρ,θ) param-
eter space, the so-called Hough space. For an image containing N

FIGURE 8 | Pair correlation function of the post-rupture granite

image (Figure 1B). (A) Polar representation of the pair correlation
function. Analysis radius is 8 pixels ; polar angle takes 20
uniformly distributed values between 0 and 2π . (B) Same with

64 pixel radius. (C) Series of polar plot showing multiple analysis
radii: 32 (red), 64 (green), 128 (blue), 256 (orange), and 512
(purple) pixels ; polar angle takes 96 uniformly distributed values
between 0 and 2π .
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FIGURE 9 | Hough transform of granular material images (Figures 1C–H).

(A) Beginning of the loading process (cf Section 3.3). Left : Correlation map.
Right: Hough transforms of the correlation map. The contribution of each
sinusoid is weighted depending on the value of the correlation of the point of

the map, gI (the weight is 1/gI if 0.1 < gI < 0.8, 10 if 0.1 > gI , 0 if gI > 0.8).
(B) Same as (A), at the end of the loading process. Definitions of notations x,
y , ρ, θ . (C) Inclination of the two lines obtained using the barycenter of the
two first local maximal areas in the Hough space during the loading process.

points, the representation in the Hough space will contain N sinu-
soids (Figures 9A,B). The intersections of those sinusoids give
values of the parameters corresponding to lines going through
several points of the pattern. For example, the Hough trans-
form of Figure 9A displays several values of the parameters (ρ,θ)
for which numerous sinusoids intersects. Lines corresponding to
those values of the parameters are drawn in blue on Figures 9A,B,
using barycenters of the maximal areas in the plane of parameters
(ρ,θ).

As Figure 9A, left displays numerous scattered spots, several
intersections are seen in the Hough space (Figure 9A, right) and
the areas corresponding to intersections of sinusoids are wide. On
the other hand, in Figure 9B, left, where two very clear inclina-
tions are seen on the image, the Hough transform (Figure 9B,
right) displays two clear intersections of most sinusoids, indeed
corresponding to the principal inclinations in the image.

Figure 9C shows the successive inclinations of the major lines
obtained using the Hough transform. For each value of the axial
strain, the values of the parameters of the barycenters of the local
maximal areas in the Hough space are used. At the beginning of
the loading process, the inclinations obtained are scattered but
follow a general trend: a monotonous evolution from two sym-
metric positions starting from almost horizontal to lines inclined
at ±30◦.

Since Hough transform and inertia tensor provide different
types of outputs, they are complementary rather than directly

comparable. Hough transform is highly accurate to analyse the
position and direction of well-formed linear structures, such as
fibers. The inertia tensor is multiscale; it probes various types of
anisotropic structures, not only lines; and it is simpler.

4.2.4. Tensor imaging
In nuclear magnetic resonance images (MRI), normally per-
formed in 3D, it is possible to determine in each voxel the
local diffusion coefficient of water molecules. Diffusion can be
anisotropic: water diffuses more quickly along one direction than
along another; a diffusion tensor, rather than a scalar coeffi-
cient, can be determined voxel by voxel. Such diffusion tensor
imaging (DTI) can be analyzed to determine privileged direc-
tions (oriented distribution function, or ODF), using specific
representations like q-ball imaging (QBI). This is instrumen-
tal to evaluate the presence and position of fibers, for instance
in brain or muscle, using a set of techniques collectively called
“tractography” [4, 31].

Both DTI and inertia tensor measure a local anisotropy, which
can help to identify fibers by investigate how aligned are the
anisotropy directions of neighboring voxels. Both use tensorial
formalisms, which make them mathematically robust, adaptable
to both 2D and 3D, and amenable to similar representations; both
are suitable for averages over different images (for which Fourier
transform is sometimes better, see Section 4.2.2). Beside that,
DTI and inertia tensor differ strongly; since they use different
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types of inputs, they are complementary rather than directly
comparable.

DTI is a subpixel resolution technique, in the sense that it helps
finding fibers even where the actual image obtained by MRI is
uniform or at least isotropic. Rather than the anisotroy of the
pattern itself, it investigates the anisotropy of a physical prop-
erty defined at each voxel, which is itself a tensor (the diffusion
tensor). Since the scale of study is determined by the timing,
amplitude and shape of the gradient pulses, DTI can be made
multiscale by performing a new experiment for each scale, even
at scales smaller than the voxel size [32].

In other fields, other tensors can be imaged. In mechanics, a
local stress or strain tensor can de defined at the scale of resolution
of the analysis, or after coarse graining at the scale of a box up to
the system size scale [33].

The inertia tensor, much simpler than tensor imaging, is based
on a scalar value at each voxel, and determines the anisotropy
of the spatial distribution of this scalar among voxels. The
anisotropy is a property of the pattern, irrespective of the phys-
ical quantity encoded in the scalar value. It is directly multiscale,
at scales larger than the voxel size. It detects fibers at scales larger
than the voxel size (which Hough transform performs more accu-
rately, see Section 4.2.3). It also probes other types of anisotropic
structures.

Equation (4) is tensorial, and thus equally valid in three
dimensions, where the analogous of Equation (5) is:

P(�r, �) =
∑
box

⎛
⎝ X2 XY XZ

XY Y2 YZ
XZ YZ Z2

⎞
⎠ I. (13)

The set of measurements based on a 3D tensor can be inspired
from mechanics: normal differences, ratios of eigenvalues, 2d
invariant. Numbers ranging from 0 to 1 to quantify the anisotropy
can be inspired from MRI: standard deviation of the three eigen-
values (λ1, λ2, λ3) normalized by their average 〈λi〉 (“relative

anisotropy”) or by their root mean square
〈
λ2

i

〉1/2
(“fractional

anisotropy”); or 1 minus the “volume ratio” (defined as the
product of the eigenvalues divided by their average cubed),
1 − λ1λ2λ3/ 〈λi〉3.

Representations can also be inspired from mechanics or MRI:
ellipsoids, bars, color maps.

5. CONCLUSION
In summary, the proposed method for anisotropy analysis con-
sists in dividing the image into analysis boxes at a chosen scale; in
each box an ellipse (the inertia tensor) is fitted to the signal and
thus determines the direction in which the signal is more present.
This tensor can be averaged in position and/or be used to study
the dependence with scale. While this choice is motivated more
by the search for simplicity than by any mathematical reason, it
is linked with the formalisms of Leray transforms and anisotropic
wavelet analysis.

Such protocol is intuitively interpreted, and consistent with
what the eye detects: relevant scales, local variations in space,
privileged directions. It is fast and parallelizable. It constitutes a
versatile toolbox with several variants adaptable to the users’ data

and needs. It is useful to statistically characterize anisotropies of
2D or 3D patterns in which individual objects are not easily dis-
tinguished, with only minimal pre-processing of the raw image,
and more generally applies to data in higher dimensions. It is less
sensitive to edge effects, and thus better adapted for a multiscale
analysis down to small scale boxes, than comparable methods
such as pair correlation function or Fourier transform. Easy to
understand and implement, it complements more sophisticated
methods such as Hough transform or diffusion tensor imaging.

We successfully use it on various fracture patterns (which dif-
fer by seven orders of magnitude in spatial scales: the sea ice
cover, thin sections of granite, and granular materials), to pin-
point the maximal anisotropy scales. The results are robust to
noise and to users’ choices. It is possible to distinguish the case
where all regions are isotropic, from the case where all regions
have anisotropies but in different directions (“powder effect”).
Beside the field of fracture, this toolbox could turn useful for
granular materials, hard condensed matter, geophysics, thin films,
statistical mechanics, characterization of networks, fluctuating
amorphous systems, inhomogeneous and disordered systems, or
medical imaging, among others.
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