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The analysis of complex systems frequently poses the challenge to distinguish correlation
from causation. Statistical physics has inspired very promising approaches to search
for correlations in time series; the transfer entropy in particular [1]. Now, methods
from computational statistics can quantitatively assign significance to such correlation
measures. In this study, we propose and apply a procedure to statistically assess transfer
entropies by one-sided tests. We introduce to null models of vanishing correlations for
time series with memory. We implemented them in an OpenMP-based, parallelized
C++package for multi-core CPUs. Using template meta-programming, we enable a
compromise between memory and run time efficiency.
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1. INTRODUCTION
Natural science strives to find correlations in empirical data to
identify patterns that might indicate the presence of causation.
Frequently, such data consists of time series of a random variable
X with a recorded data set of {xt}. The stochastic process giving
rise to {xt} might have memory, so that xt is correlated with xt+τ

over a history of length τ .
Furthermore, X and another observable Y might be corre-

lated; if such two time series are correlated or have some form
of interdependence, a more sophisticated way to quantify the
connection—beyond, for example, the simple Pearson linear cor-
relation coefficient—is the transfer entropy (TE) proposed by
Schreiber [2].

The TE is asymmetric, so that TE(X → Y) �= TE(Y → X).
This difference indicates a direction of information flow and
thus potential causation from one variable to the other. This
distinguishes the TE from the time-delayed mutual information
(TDMI) which has no sense of “direction” [3].

Besides the conceptual advantages of the TE, current
approaches of using TE [4, 5] face two major problems which
we address in this work: (a) computation of the TE can be done
directly using simple arrays for the data, but only inefficiently
so, and, (b) while we can use the asymmetry TE(X → Y) �=
TE(Y → X) to guess on the direction of information flow, the TE
itself does not allow for a statistical assessment of the significance
of such flows and their respective directions.

To address the second issue we contribute with this study:

• We develop a statistical testing procedure that relies on the so
called Z-test. We show that, indeed, the Z-scores give sensible

answers in control- and tunable experiments while a naive
TE-application gives inconsistent answers.

• For the Z-tests we propose two different null models of inde-
pendence between X and Y (the first one for complete inde-
pendence between all measurements and the second one to
maintain intrinsic correlations of a potential “driving” sys-
tem X while assessing the dependence of Y on the intrinsic
dynamics of X).

• We argue about parallelizability and efficient implementation
of this Z-test based method. We show that our implementa-
tion’s parallelism is close to optimal.

• We offer the full implementation of our C++-library for
download under the GPL2 license1.

These contributions are illustrated in the experimental part of this
study in Sections 5 and 6 by applying the theory of Section 3 and
code to two examples of interdependent times series in Section 4.
Before, we briefly review the TE and general information theory
and in the next section.

2. INFORMATION THEORY AND TRANSFER ENTROPY
The Shannon entropy measures the (dis)order in a data set or a
model [6]. If p(x) is the probability of a symbol x for a random
variable X with a domain of definition DX , then the Shannon
entropy reads:

H(X) = − ∑
x∈DX

p(x) · log2

(
p(x)

)
(1)

1Full text available from http://www.gnu.org/licenses/gpl-2.0.html, accessed
on 02/03/2014.
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where we use the fact limε→0 ε · log ε = 0. From hereon, we will
use log2 and log interchangeably.

Now, in “traditional information theory” the Kullback-Leibler
divergence (DKL) is one measure of the interdependence of two
random variables X and Y [7] whose probability distributions are
pX and pY and whose outcomes are from a set D := DX ∩ DY .

DKL(pX |pY ) = ∑
χ∈D pX(χ) · log

(
pX (χ)
pY (χ)

)
(2)

which is well defined as long as DX ⊆ DY . This DKL-based
approach has, however, two short-comings: neither does it
include a “direction” of the information flow, nor does it include
a chronological ordering. Especially, any reference to chronologi-
cal order would be most desirable to identify potential causation
as “The cause must be prior to the effect” [8].

Due to this, [2] developed the concept of transfer entropy: first,
to include time order into the analysis we can use the entropy rate
Hr of the process {xt}. For convenience, we will assume that the
time is given on a regular grid of equidistant time intervals τ and
use counters like n to enumerate the time points, thus n := �t/τ�.
Were appropriated we will use n and t interchangeably.

Hr = − ∑
xn+1,xm

n

p(xn+1, xm
n ) log

(
p(xn+1|xm

n )
)

(3)

Here, xm
n is an m-tuple of measurements at time steps

n, n − 1, . . . , n − m + 1. We employ the same history length m
for both data sets {xn} and

{
yn

}
, while the general formulation

by Schreiber [2] allows different m and m′ for {xn} and
{

yn
}

,
respectively.

Note, that building histograms p(xn+1, xm
n ) and p(xn+1|xm

n ) is
– even for intermediate value of m—already difficult due to the
“curse of dimensionality” [9]. This effect is caused by the expo-
nentially increasing number of buckets in the histogram with
increasing dimension (m). The unwanted effects of sparsely pop-
ulated histograms due to small data sizes and the curse of dimen-
sionality is (partially) resolved by our one-sided testing procedure
introduced in Section 3 as we derive statistical significance
levels.

Following Schreiber [2], the transfer entropy is then an anal-
ogous extension of the entropy to the DKL as in Equation (2) to
include the effect of another time series

{
yn

}
.

TE (Y → X) =
∑

p(xn+1, xm
n , ym

n ) log
p(xn+1 | xm

n , ym
n )

p(xn+1 | xm
n )

(4)

Figure 1 illustrates the concept of using combinations along the
temporal order of the data sets {xn} and

{
yn

}
to compute the TE.

Equation (4) is a generalization of the concept of Granger
causality [10] for a particular choice of statistical model for
the X and Y—namely Gaussian processes. Eventually, TE and
Granger causality are equivalent for Gaussian variables [11]. This
equivalence inspired us to assign statistical significance based on
Z-scores which explicitly correspond to percentiles in the case of
Gaussian variables.

FIGURE 1 | Schematic representation of a TE calculation for a time

window of m = 1 (top) and m = 2 (bottom); herein m is the size of the

time window which “slides” along the sequentially ordered data {xt }
and {yt }. The “L”-shaped collections of singular data give rise to the tuples
of data xn+1, (xm

n , ym
n ), and (xn+1, xm

n , ym
n ) used in building the

p(xn+1 | xm
n , ym

n ).

3. STATISTICAL SIGNIFICANCE TESTING AND Z -SCORES
From Equation (4) we can immediately deduce [1] that the TE is
a difference of entropies, thus a relative entropy:

TE (Y → X) = H
(
xn+1 | xm

n

) − H
(
xn+1 | xm

n , ym
n

)
(5)

Here, H( . . . | . . . ) is the conditional entropy where we measure
the entropy in the first argument conditioned on the second.
More precisely,

H
(
xn+1 | xm

n

) := −
∑

xn+1∈DX

p(xn+1|xm
n ) · log2

(
p(xn+1|xm

n )
)

(6)

where p(xn+1|xm
n ) is the conditional probability of xn+1 given

the m-time window history xm
n . A similar formula can be

derived for H
(
xn+1 | xm

n , ym
n

)
by replacing p(xn+1|xm

n ) with
p(xn+1|xm

n , ym
n ).

Note that entropies are always non-negative. Obviously, an
upper bound for the TE is therefore H

(
xn+1 | xm

n

)
and one upper

bound for this is log |DX |. Therefore, the scale of the TE is deter-
mined by the size of the “event set” DX . In general, it is difficult, if
not impossible, to quantitatively compare TE values for a variable
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X and another one X̃ which have differently sized “event sets” DX

and DX̃ .
A method to account for different scales and allow an inter-

pretation along the lines of statistical significance testing is the
computation of a Z-score.

For a given data set (X,Y) the TE is a random variable as it
depends on the random variables x1, . . . , xN , y1, . . . , yN with N
the length of the time series. For such a random variable TE we
can compute the so-called Z-score as follows:

Z(TE) = TE−TEs
σ (TEs)

(7)

where TEs is the (arithmetic) mean of a (computational) sample
s of values under a null hypothesis of independence and σ (TEs) is
the respective standard deviation of the sample.

Thus, we can interpret Z(TE) as the deviation of the empiri-
cal value TE from the mean of the null model expressed in units
of standard deviation. Assuming a normal distribution of the TE
values, Z-scores correspond directly to one-tailed p-values. It is
important for the subsequent parts of this paper, to keep in mind
that negative Z-scores and those close to zero allow for an impor-
tant interpretation. Z < 0 or Z ≈ 0 implies that the TE of the
original data cannot be distinguished from pure random samples
or shows in almost all cases less information between X and Y
than a randomized sample.

In our quest to extract signatures of causal relations, those
cases with significantly large Z are relevant. Note, that our Z com-
putations allow for the statistical assessment while a few previous
studies focused on the influence of “background noise” and its
compensation by computational means [12, 13].

Naturally, the null hypothesis in causality detection is indepen-
dence. Then, a “computational null model” in entropy normal-
izations shuffles the order of elements in one data set [14]. The
chronological order is destroyed and thus the m-tuple based his-
tograms p(xn+1, xm

n ) become “flat.” This method maintains the
overall distribution of events and thus the marginal distributions
p(x) and therefore the local entropy H(x). The values obtained
under this null hypothesis are called Z in the subsequent parts of
this paper.

Now, one could argue that in the case that X drives Y the
intrinsic correlation among time ordered xt should not be ran-
domized to retain the internal dynamics of X as we are only
interested in potential correlations between the driving system xt

and the observable effects in yt . We also use this null and shuffle
only the order of yt . Results are then named Z∗.

Note, that we will perform both procedures for a computation-
ally created sample of size Ns which is obtained by shuffling the
order of the real data randomly, thus destroying potentially exist-
ing time-ordering and correlation (either in xt and yt [Z] or in yt

alone [Z∗]).

4. EXAMPLES AND TEST SYSTEMS
We illustrate the concepts of our approach by applying TE to two
controllable test systems that were used to generate synthetic data
sets. We describe both systems below:

4.1. COUPLED LOGISTIC MAPS
We follow Hahs and Pethel [15] who proposed an anticipatory
system to study transfer entropy. It is based on an unidirectional
coupled chaotic logistic map.

f (x) = r · x · (1 − x) (8)

The logistic map parameter r will be set to a fixed value of 4 and
thus operating in the chaotic regime. Then, the dynamics of the
coupled systems (xt, yt) is given by:

xn+1 = f (xn)

yn+1 = (1 − ξ) · f (yn) + ξ · gα(xn) (9)

Here, the first time series (xt , called the driving system) is the
logistic map. The response system yt incorporates two factors:
(1) the parameter ξ ∈ [0, 1] represents the coupling strength
of the systems xt and yt and (2) the coupling function gα

should include an anticipatory element. Hahs and Pethel [15]
used

gα(x) = (1 − α) · f (x) + α · f (f (x)) (10)

gα has a parameter α ∈ [0, 1] that modulates the anticipation
with respect to the driving system xt . In the extreme case of ξ = 1
and α = 1, the time series yt anticipates xt exactly; for ξ = 0 the
systems are decoupled and therefore not correlated at all. Figure 2
illustrates the influence of both parameters on the generated data
series.

4.2. A MARKOV CHAIN EXAMPLE
While the logistic map of Section 4.1 is deterministic, we add
a probabilistic system in the form of a Hidden Markov Model

FIGURE 2 | Correlations plots (xt vs. yt ) for the anticipatory system of

Equation 9. A, red squares: independent dynamics (α = 0, ξ = 0); B, green
triangles: yt is driven toward xt (α = 0, ξ = 1); C, blue crosses: yt is driven
to future state of xt (α = 1, ξ = 1).
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Table 1 | Transition ω (xt |xt−1) and emission σ (xt ) probabilities of our

HMM1.

(A) Transition ω (xt|xt-1) (B) Emission σ (xt)

xt = A xt = B yt = a yt = b

xt−1 = A 0.9 0.1 xt = A 0.9 0.1

xt−1 = B 0.1 0.9 xt = B 0.1 0.9

Table 2 | Transition ω
(
x̃t |x̃t−1

)
and emission σ

(
x̃t

)
probabilities of

our HMM2.

(A) Transition ω
(
x̃t|x̃t-1

)
(B) Emission σ

(
x̃t

)

x̃t = A x̃t = B x̃t = C x̃t = D ỹt = a ỹt = b

x̃t−1 = A 0.45 0.45 0.05 0.05 x̃t = A 0.9 0.1

x̃t−1 = B 0.45 0.45 0.05 0.05 x̃t = B 0.9 0.1

x̃t−1 = C 0.1 0.1 0.4 0.4 x̃t = C 0.1 0.9

x̃t−1 = D 0.1 0.1 0.4 0.4 x̃t = D 0.1 0.9

(HMM) that is built from a driving signal2 of two states xt ∈
{A, B} or of four states x̃t ∈ {A, B, C, D}. The second component
is the emitted symbol stream of the HMM yt, ỹt ∈ {a, b} with just
two states.

Table 1A contains the transition probabilities for the transi-
tion from a state xt to the new state xt+1. The emitted symbol
yt+1 is then drawn – based solely on the state xt+1 – following the
probabilities in Table 1B.

Our second HMM uses more internal states. The probabilities
in Table 2B are chosen in such a way, that the yt and ỹt emissions
can be compared with respect to the internal states. Note, that the
Perron-Frobenius theorem and the fact, that the ω-matrices of
Tables 1, 2 are stochastic, leads to the insight that the two states in
xt and the four internal states in x̃t are equally likely for t → ∞.

With the help of these two models we want to investigate,
whether (a) we can use the TE to obtain information on the inter-
nal state from the emitted symbols, (b) how the complexity of the
internal HMM organization (2 vs. 4 internal states) influences the
TE, and (c) illustrate how the Z-score normalization of Section 3
supports identification of such dependencies.

5. COMPUTATIONAL RESULTS
5.1. HISTOGRAM BUILDING AND INTERNAL PARAMETERS
First, we want to get insight into an important aspect of all empir-
ical studies on entropies: how to accurately build histograms, thus
frequencies, as estimators for the probabilities in Equation (4). To
this end, we follow the rationale of Hahs and Pethel [15] for the
anticipatory system of Equation (9). Obviously we want the res-
olution (meaning the number of bins used for discretization) to
be able to capture the causality X → Y while dismissing any sig-
nal for Y → X. In Figure 3 we illustrate this for an anticipatory
system with α = 1, ξ = 0.4. Clearly, we obtain a valid, distinctive
signal from four bins on. Therefore, we will use in the subsequent
parts of our computational study four and more bins.

2or Markov chain of internal states.

FIGURE 3 | The figure shows the TE as function of the number of bins

in the histogram creation (based on a data set of size 106 for the

system of Section 4.1), thus the discretization scheme employed (for

details see Hahs and Pethel 15). The lines are fits to local polynomial
regressions using the method of Cleveland and Grosse [16]. The gray areas
represent the confidence interval (p = 0.95) of the polynomial fit. The
intersection point is located at a value of around 4. Below this we obtain a
false assignment of information flow (Y → X ), while above the order of TEs
is correct (TE(X → Y ) > TE(Y → X )).

Now, that we have established a lower bound on the number of
bins we need to deal with, we turn our attention to the ability of
Z and/or Z∗ scores to improve upon raw TEs. Here, any sensible
approach must be able to improve the detection of directionality
in the information flow, that is, the coupling of yn to the dynamics
of xn and its respective history.

5.2. APPLICATION TO THE COUPLED MAP SYSTEM
Figure 4 show the results. In the top row we notice that for small
data sets (some 28 data points) we cannot distinguish—based
solely on the TE alone—between an existing coupling and van-
ishing one. And even for some 29 data points it is still not possible
to correctly judge on the information flow xn ↔ yn.

Note, that the Z and/or Z∗-scores of Equation 7 in the mid-
dle and lower rows of Figure 4 are negative for the independent
systems and thus imply no information flow. Therefore, only our
Z and/or Z∗-scores (see Equation 7)—which are computationally
much more involved—are able to hint on potential causal relation
for small data sets.

It is noteworthy, that even for 24 data points the Z and/or
Z∗-scores for the independent system are negative and thus the
empirical TE for this system is found to be insignificant. Note,
that this finding does neither depend on the used number of
bins.

For the coupled system (full lines in Figure 4) we find similar
results. In particular, we notice an important effect: saturating Z-
scores at values of Z ≈ −101 indicate a non-causal relation, while
monotonously increasing and thus data size dependent Z-scores
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FIGURE 4 | Top: Dependency of TE on the data size, that is the number of
samples in the creation of the histograms. The coupled systems (full lines)
were created with α = 1, ξ = 0.4 (see Equation 9) and time window of
one (left) and two (right). For the independent system (dashed lines) we
set both parameters to zero. Clearly, for the latter system the non-existing
information flow TEx→y manifests itself only after some 214 data points.
Values are the mean of 1000 independent replicas of data. Error bars
represent the standard deviation. Middle and Bottom: Z -scores for the TE
of the top panel for the respective time windows. The middle row uses a
shuffling approach that randomizes both vectors X and Y , while the

bottom row uses the shuffling model that preserves the intrinsic
correlation of the “driving” vector by only shuffling the “driven” vector.
Note, the Z -scores for the independent system are negative, we therefore
only show the absolute value to be able to use a logarithmic scale. Clearly,
the Z -scores for the independent system saturate at a negative, thus
insignificant level, while the coupled system (full lines) show significant
statistical power that continues to improve with increasing number of data
points. The observations depend quantitatively on the number of bins of
the histograms; however, the qualitative assessment is the same for
number of bins ∈ [4, 8, 16].

for the present coupling show that the more data we deal with, the
more significant the finding on the coupling becomes.

It is noteworthy, that computing the Z and/or Z∗ values at
different history window sizes m supports the identification of
the internal time scale(s) of X and Y . The (positive) Z and/or

Z∗-scores grow with a fixed exponent (1/2) as a function of data
size for m = 1 and the anticipatory system of Section 4.1 which
has an internal time scale of one. Now, when we use m = 2 in
our procedure, the scaling of Z and/or Z∗ is changed qualita-
tively and does not follow a simple law. We can therefore use our
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Z and/or Z∗ approach additionally to estimate the internal time
scales.

5.3. APPLICATION TO THE HIDDEN MARKOV MODELS
Now, that the Z and/or Z∗-scores contribute insight, we continue
our investigation by applying TE and its Z and/or Z∗-score assess-
ment to the HMM model of Section 4.2. The results are shown in
Figures 5A–C. Figure 5A shows that the overall TE for the causal
relation x → y is larger than the one for the more uncertain rela-
tion y → x. The findings do not depend on the complexity of the
internal driving dynamics as is evident from comparing HMM1
and HMM2 in the figure.

Still, it remains an open question how to compare the TEx→y

and TEy→x. They are numerically different, but is this a signifi-
cant difference? Figure 5B answers this question: the Z scores are
orders of magnitude different; clearly, the Z-score computation
show significant differences between Zx→y ≈ 101 and Zy→x ≈
10−1 for very small data sets. This difference gets even more
pronounced for “reasonable” sized data sets (∼ 256 and above).

Again, we find that the Z-score increases monotonously with
the data set size. This indicates a positive, synergistic influence of

the data quality on the statistical significance – an effect one can
expect based on basic statistics.

As expected the (positive) values of Z and Z∗ do not differ
for these systems as they are Markov-Models and thus the null
models in Z and Z∗ are equivalent for the Markov property.

At this point, we have shown that the Z-score normalization
contributes significant insight into causal relationships. This was
possible due to the test systems that allowed us to manipulate
these causal or probabilistic relationships among observables.

However, the tremendous advantages come with a price:
increased computational demands. In the next section we discuss
how we cope with this drawback and how insight from com-
puter science can help computational physics to improve upon
performance issues.

6. COMPUTATIONAL EFFICIENCY, PARALLELIZATION, AND
ALGORITHMICS

As one of us recently argued [17], computational physics could
greatly benefit from close collaborations with computer scien-
tists, especially in the fields of algorithmics and high-performance
computing. Unfortunately, these communities seem to have

FIGURE 5 | (A) shows the TE for the coupled Hidden-Markov-model of
Section 4.2 emitting varying number of data points. (B) shows the
Z -scores of the same data used in (A). The data sets were created with
the transition probabilities shown in Tables 1, 2, respectively. Gray points

indicate negative values, for which we show the absolute value, so that
we can still use a logarithmic scale on the y -axis. Full lines are for
HMM1 in Table 1 and dashed lines for HMM2 of Table 2. (C) show the
same for Z∗.
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somewhat diverged despite their fruitful history. Here, we will
illustrate the huge gains possible. As the Z and/or Z∗-score nor-
malization is an involved procedure, we must first assess how
many samples Ns we need to obtain any relevant sampling for the
Z and/or Z∗-score calculation of Equation (7).

From previous work on entropies [18] we obtain a ballpark-
figure for the lower bound on Ns of some 50–100 shufflings.
Accordingly, the Z and/or Z∗-score procedure is some two orders
of magnitude more computationally expensive than the simple
TE calculation3.

Does the size of the data set influence our computational
resource requirements? In Figure 6 we answer this. Clearly the
computational resources needed are proportional to the size of
the data set (curves are displaced by a constant factor). The his-
tory length m in Equation (4), however, has a non-dramatic
influence on the overall computing time. This is due to our first
code optimization: we use special histogram data structures that
cope with the sparse structure of the histograms for the prob-
abilities p(xn+1 | xm

n , ym
n ) etc.: whenever there is correlation the

histograms are only sparsely populated. Even for the shuffled his-
tograms this assessment holds, although for a different reasons:
due to the “curse of dimensionality” only a few data points are
randomly distributed in a rather large space, thus the histograms
are still sparsely populated. We therefore can store histogram
entries in a list of non-vanishing entries, implicitly assigning zero
occupancy to any p( . . . ) histogram entry which does not occur
in the list. Depending on the system under investigation this
reduces the scaling of the memory requirements from O(cm) with
a constant c to some more manageable amount. More impor-
tant, though, is the effect on the computational time: we do not
need nested loops of depth m to iterate over all entries. Rather,
we just go over the linear list that represents the non-vanishing
entries. This list has in the worst-case the same length as the
number of buckets in the naive, multi-dimensional histogram.
But typically, it is small as can be deduced from Figure 6. In our
implementation with used an associative map with vector-like
structure representing bucket identifiers as keys and counts as val-
ues. Since many parts of the computation filling these associative
maps depend heavily on the window size, knowing the window
size at compile-time offers many opportunities for optimizations
by the compiler.

In fact, the above mentioned bucket identifiers for the his-
tograms are nothing else than integer-coded values xt and
yt . For accessing associative map entries via keys it is much
more efficient to map m-dimensional keys (the integer-encoded
xt, xt+1, . . . , xt+m) to one single integer. This scales in a
naive implementation, however, with m and involves explicit
loops.

In order to obtain pre-compilation and potential loop-
unrolling benefits in computing the single-integer-keys we used
C++’s template facilities. We decided to let the code use either
template instances up to a maximum time window size mmax or
decide during run-time whenever m > mmax to iteratively create
keys.

3For each shuffling we have to compute the TE, then average over this sample.
Thus, the computational resources required are proportional to Ns.

FIGURE 6 | Dependency of the run time of the size of the data set (s).

Data sets were created for sizes from 103 to 106 indicated at the respective
curves. Standard deviations were smaller than 0.0015 and error bars
therefore omitted.

For such pre-compiled histograms we found the results of
Figure 7. The performance increase can be significant: for a time
series generated with 105 data points the wall computation time
decreases from about 570 to 370 s on a Core i7 920 Desktop
PC. Although with small data sets the effect can be neglected,
this shows how pre-compilation will be beneficial for large time
series and time windows. The program size increases with the
compile-time parameter mmax of explicitly allocated histogram
dimensions: ca. 550 kB for mmax = 1 and 5.9 MB for mmax =
100, a noticeable effect, but nevertheless negligible on modern
machines.

The second performance improvement—parallelization—is
even more stunning. Our implementation supports multi-
threaded calculations of the null model based on the afore-
mentioned shufflings. Since a single shuffle run is independent
to others4 they can be easily parallelized. To that end we used
OpenMP and ran benchmarks that show how efficient the library
runs on commodity, multi-core hardware.

Our shuffling procedure(s) are “embarrassingly parallel” [19]
as the computations are data parallel and compare to previ-
ous approaches [20]. Still, there might exist substantial overhead
(e.g., I/O) that renders any parallelization attempt futile. Figure 8
shows—for different hardware architectures—how the speedup5

S depends on the number of used CPU cores N. According to
Amdahl’s law [21] the speedup follows

S[N] = 1
(1−P)+ P

N
(11)

4After initial distribution of the original data set to each thread.
5The speedup is defined as the ratio of wall-time for a parallel program in
comparison to a single-core, sequential version.
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FIGURE 7 | Performance boost through pre-compiled time windows.

The dotted lines represent calculations with a compile-time setup of time
window mmax = 1. The straight lines represent the same calculation for a
compilation setting of time window mmax = 30. Note, that after setting
mmax during compile-time we can still vary m during run-time. The timings
are means of 1000 independent runs each. Note, that the improvement
reaches up to 35% across the board.

with the proportion of parallelizable code P. We found P to
be 99% for the AMD architecture and 97% for Intel hardware,
respectively. This implies, that our parallelization approach has
its limitations: for some 100 cores the overhead like IO would
correspond to 50% of the overall computation time and thus
for architectures like the Intel Phi additional and more involved
parallelization approaches are necessary.

7. CONCLUSIONS AND OUTLOOK
Transfer entropy (TE) is – like the related (time-delayed) mutual
information or other schemes of information theory [22] – effi-
ciently computable whenever the sampling space consists of a set
of discrete symbols and in low dimensions, that is with a short
history window and makes it therefore an interesting analysis
approach to correlated data.

While TE is a relative entropy, it was shown [11] that it is
closely related to the notion of Granger causality. As such it suf-
fers from a problem related to effect size: the value itself must
be assessed for its significance. One way to achieve this is Z-
score computation, which directly implies one-sided statistical
testing.

Here, we have shown, that Z-score normalization contributes
significant new insight, resolves the harming effects of data size
problems. We illustrated this by involved computations on two
test systems, both of which can be controlled for their “degree of
causality.” Furthermore, we propose a more involved null model
of independence (named Z∗) that is unique for the TE-setting
and retains intrinsic correlations in the “driving” time series
while assessing the correlation of the “driven” portion to the first
one. We found this overall approach to be able to determine

FIGURE 8 | Speed up with respect to number of CPU cores used N . We
performed the benchmarks for two different CPU architectures to illustrate
the transferability of the used parallelization approach. In parentheses are
the number of physical CPU cores and available threads on the very same
CPU. The fits are nonlinear least square fits. The fitted parameter P is
0.9945 with a standard error of the mean (SEM) of 10−4 for the AMD and
0.9732 (SEM = 10−3) for the Intel architecture.

internal time scales, but more importantly, to overcome problems
with small data sets and assign statistical significance to TE
values.

For simple systems which conform to the Markov property
we could show that the Z and Z∗ procedures return consistent
answers.

Previously, Waechter et al. [18, 23] implemented Z-score nor-
malization using graphical processing units (GPUs) for simpler
entropy concepts than the TE – in particular those without
the “curse of dimensionality” [14]. Here, we performed exten-
sive benchmarking and were able to develop a highly optimized
code that can be efficiently employed on modern multi-core
architectures.

In the future, we plan to apply the methodology and the library
to problems in biophysics and systems biology—fields in which
research is mainly focused on the search for correlations and
potential causal effects in experimental data and where—due to
the large number of individual time series that might be corre-
lated, sometimes up to thousands—efficient TE computations are
necessary. For N simultaneously recordings of time series we have
to compute N · (N − 1) TE measures due to the TE asymmetry.
Previously, typical N used were N ≈ 140 in molecular biophysics
[24], N = 64 in neuroscience [25], and from N = 32 [26] over
N = 100 [27] up to N = 1400 in gene regulation [28].

The overall improvements on real-world running times that
we achieved render the present approach applicable to real-world
scenarios: Kamberaj and van der Vaart [24], for example, need
to analyze all N2 combinations of the N = 140 time series. This
implies a difference between 135 days (if a single run with some
200 shuffles takes 10 s) in comparison to 22 years (for 10 min for
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a single computation). Clearly, these improvements are helpful as
the latter scenario would most likely be a show-stopper.

Furthermore, in (molecular) biophysics, were memory effects
could play a substantial role, the difference between Z and Z∗ can
be used to assign importance to intrinsic correlations within the
“driving” system for the causal relationships present.
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