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Factors that can limit the effective resolution of an imaging system may include aliasing

from under-sampling, blur from the optics and external factors, and sensor noise.

Image restoration and super-resolution (SR) techniques can be used to improve image

resolution. One SR method, developed recently, is the adaptive Wiener filter (AWF)

SR algorithm. This is a multi-frame SR method that combines registered temporal

frames through a joint nonuniform interpolation and restoration process to provide a

high-resolution image estimate. Variations of this method have been demonstrated to

be effective for multi-frame SR, as well demosaicing RGB and polarimetric imagery.

While the AWF SR method effectively exploits subpixel shifts between temporal frames,

it does not exploit self similarity within the observed imagery. However, very recently,

the current authors have developed a multi-patch extension of the AWF method.

This new method is referred to as a collaborative AWF (CAWF). The CAWF method

employs a finite size moving window. At each position, we identify the most similar

patches in the image within a given search window about the reference patch. A

single-stage weighted sum of all of the pixels in all of the similar patches is used to

estimate the center pixel in the reference patch. Like the AWF, the CAWF can perform

nonuniform interpolation, deblurring, and denoising jointly. The big advantage of the

CAWF, vs. the AWF, is the CAWF can also exploit self-similarity. This is particularly

beneficial for treating low signal-to-noise ratio (SNR) imagery. To date, the CAWF has

only been developed for Nyquist-sampled single-frame image restoration. In this paper,

we extend the CAWF method for multi-frame SR. We provide a quantitative performance

comparison between the CAWF SR and the AWF SR techniques using real and simulated

data. We demonstrate that CAWF SR outperforms AWF SR, especially in low SNR

applications.

Keywords: aliasing, image restoration, super-resolution, under-sampling, correlation model, multi-frame,

multi-patch

1. Introduction

Multi-frame super-resolution (SR) is an image processing technique that provides an effective
increase in the sampling density of an imaging sensor. This is done by combining pixels
from multiple shifted low-resolution (LR) frames onto a common high-resolution (HR)
image grid. In this manner, one has more samples per unit area, compared with that
provided by the native focal plane array (FPA), with which to reconstruct an HR image. For
undersampled imaging systems, this increase in sampling rate can provide a reduction in aliasing
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artifacts, which provides improved resolution. SR processing can
further improve image resolution by reduction of noise and blur.

The interpolation-restoration SR methods tend to be the
simplest, both conceptually and in terms of the computational
complexity [1]. A wide variety of such methods have been
proposed in the literature [2–6]. Most of these methods begin
with registration of LR frames to a common HR reference
grid. Then, nonuniform interpolation is used to get uniformly
spaced pixel values. This increases the effective sampling
rate of the imaging sensor, but doesn’t treat noise or other
blur. A restoration procedure typically follows the nonuniform
interpolation to tackle the effects of the system point function
(PSF) and noise. Most such methods decouple the nonuniform
interpolation and restoration steps for simplicity. However, the
partition weighted sum (PWS) SR method [7] and the adaptive
Wiener filter (AWF) SR method [8] perform the nonuniform
interpolation and restoration steps jointly. This provides
performance and computational advantages in many cases. In
particular, the AWF SR method has been shown to provide
best-in-class performance amongmany interpolation-restoration
methods [8]. The AWF SR method uses a weighted sum of
registered LR pixels from multiple frames, based on a correlation
model and knowledge of the subpixel displacements between
frames. In addition to multi-frame SR for grayscale imagery,
variations of the AWF SR method have been successfully applied
to demosaicing, color SR, and SR processing of polarimetric
imagery [9–13]. While the AWF SR method effectively exploits
subpixel shifts between temporal frames, it does not exploit
self similarity within the observed imagery. Recently, a spatially
adaptive filtering method for SR has been proposed [14, 15].
This recursive method is based on iterative video block matching
and 3D filtering (V-BM3D)[16]. One remarkable advantage of
V-BM3D approach is it can exploit nonlocal similarity between
blocks within the temporal frames. Very recently, the current
authors have developed a multi-patch extension of the AWF
method for image restoration [17]. This new method is referred
to as the collaborative AWF (CAWF). The CAWFmethod is also
capable of exploring the self similarity during image restoration
for its estimate. The CAWF method employs a finite size moving
window. At each position, we identify the most similar patches
in the image within a given search window about the reference
patch. A single-stage weighted sum of all of the pixels in all of the
similar patches is used to estimate the center pixel in the reference
patch. The weights are determined based on a new multi-patch
correlation model.

To date, the CAWF method has only been developed for
and applied to single image restoration with no aliasing [17].
In this paper, we develop and demonstrate the CAWF
method for multi-frame SR. Like the AWF, it can perform
nonuniform interpolation, deblurring, and denoising jointly. The
big advantage of the CAWF SR vs. the AWF, is the CAWF can
also exploit self-similarity within the image sequence. This is
particularly beneficial for multi-frame SR when the signal-to-
noise ratio (SNR) is low.We provide a quantitative and subjective
performance comparison between the AWF SR and the CAWF
SR using simulated and real data. The CAWF SR method
shows the capability of delivering high performance, in terms

of objective metrics and subjective visual quality, particularly for
low SNR applications.

The rest of this paper is organized as follows. The observation
model is defined and discussed in Section 2. Section 3 presents the
CAWF SR algorithm. In Section 4, we demonstrate the algorithm
efficacy using simulated and real image data. Finally, in Section 5,
we offer conclusions.

2. Observation Model

Here we present the observation model used to develop the
CAWF SR method. The observation model closely follows that
used for the AWF SR method in Hardie [8]. However, we present
it again here for the reader’s convenience. A block diagram of
the observation model is shown in Figure 1. It starts with desired
continuous image as input, d(x, y). The ideal discrete HR image
in lexicographical notation is given by z = [z1, z2, ..., zN]

T ,
where N is the total number of HR pixels. It is this image we
wish to estimate with the SR processing. In the model, the desired
continuous image goes through a geometric transformation to
account for intra-frame motion during video acquisition. The
multiple outputs can be expressed as

dp(x, y) = Tθp

{

d(x, y)
}

, (1)

where Tθp is a transformation operator associated with the p’th
frame, where p = 1, 2, ..., P. In this paper, we consider only
global translational intra-frame motion. After the geometric
transformation, the model includes convolution with the system
point spread function (PSF). This can be represented as

fp(x, y) = dp(x, y) ∗ h(x, y), (2)

where h(x, y) is the PSF. The PSF model can include a variety
of blurring contributors, such as motion blur and atmospheric
effects. However, here we follow the approach in Hardie [8] and
consider only diffraction from a circular exit pupil and spatial
detector integration. We refer the reader to Hardie et al. [18]
for details on the PSF model. The next step in the observation
model is the sampling block. An important consideration here is
the sampling rate relative to the cut-off frequency of the optics.
According to the Nyquist sampling theory, the continuous image
can only be reconstructed from its samples if

1

δs
≥ 2ρc, (3)

where δs is the spatial sampling interval in the horizontal and
vertical dimensions, and ρc is the optical cut off frequency. Note
that the optical cut off frequency can be expressed in terms of the
wavelength of light and the f -number of the optics. In particular,
this is given by

ρc =
1

λ f /#
, (4)

where λ is the wavelength, and f /# is the f-number. Sampling
at a lower rate can lead to aliasing artifacts in the acquired
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FIGURE 1 | Forward observation model relating the desired continuous image, d(x, y) to the observed LR frames, g(p).

imagery. It also makes an impulse invariant discrete model of
the PSF invalid. However, because there are many trade-offs to
be made in imaging system design, most imaging systems are
designed with some level of undersampling [19]. Let the p’th
sampled frame be represented in lexicographical form as f(p) =
[f1(p), f2(p), ..., fJ(p)]

T , where J is the number of LR pixels in each
frame. We shall assume that these images are sampled at a rate
below the ideal image z by an integer factor of L in the horizontal
and vertical dimensions.

The final step in the block diagram is the noise block. We
assume the noise is additive Gaussian noise with zero mean and
variance of σ 2

η . Thus, LR output frame p can be written in a
lexicographical form as

g(p) = f(p)+ η(p), (5)

where η(p) ∼ N (0, σ 2
η I) . Note that for the model in Figure 1,

the motion and convolution blocks can be commuted for
translational motion [8]. The blocks can also be approximately
commuted for affine motion under certain conditions [13].
After the commutation, the uniform sampling block can be
replaced with a nonuniform sampling block that incorporates
samples from all P LR frames on a common grid. This
provides a nonuniformly sampled version of f (x, y), but with a
denser sampling grid than a single frame provides. The noisy
version of these nonuniform samples are represented here in
lexicographical notation as g = [g1, g2, ..., gJP]

T .

3. Collaborative Adaptive Wiener Filter for
Super-Resolution

3.1. CAWF Overview
The goal of the proposed CAWF SR is to estimate z from the
observed LR frames, g(p), for p = 1, 2, ..., P. In order to help
the reader follow and easily understand the CAWF concept,
we define some CAWF parameters in Table 1. The CAWF SR
algorithm is shown in Figure 2. First, subpixel registration is
done to place all of the observed LR samples on a common
HR grid. The registration is done by using the gradient-based
registration technique described in Hardie et al. [20], Irani and
Peleg [21], Lucas and Kanade [22]. Asmentioned in Section 2, the
full set of samples are represented by the vector g. The CAWF SR

TABLE 1 | CAWF parameters definitions.

Parameter name Variable Definitions

HR patch size W ×W The span in HR pixels for a patch.

HR searching window size Z × Z The span in HR pixels where

patches can be identified as

similar patches.

Number of similar patches M Number of patches which are

identified as similar patches.

Downsampling and upsampling L The factor which is used to up

and dawn sampling an image.

Number of pixels in patch K The total of LR pixels in HR grid

within the patch span.

method employs aW ×W HR pixel spanning moving patch that
passes over the HR grid in steps of L HR pixels in the horizontal
and vertical dimensions. Let the observed samples that lie within
the span of the i’th patch be denoted with the vector gi. Let
the number of pixels in each of these vectors be denoted as K.
Note that K will be constant because we are considering only
translational intra-frame motion, and we move patches only in
LR pixel spacings across the HR grid. At each reference patch
position, we identify the M most similar patches within a search
window about the reference patch of size Z × Z HR pixels. In
particular, for a given reference patch index i, we compute the
following distances

Di,j =
1√
2K

‖ gi − gj ‖2, (6)

for j ∈ Si, where Si contains the window indices within
the search window. We select the M patches corresponding
to the M smallest distances. All pixels in the similar patches,
including the reference patch, are concatenated in one vector.
This combined vector is given by g̃i = [gTsi,1 , g

T
si,2

, ..., gTsi,M ]
T ,

where si =
[

si,1, si,2, ...si,M
]T
. To illustrate this multi-patch

selection process, Figure 3 shows an L = 3 HR grid made from
three registered LR frames. The solid red box is the reference
patch, and the blue boxes represent the identified similar patches.
The large green box represents the span of the search window.
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FIGURE 2 | Block diagram illustrates the proposed CAWF SR algorithm. Dashed lines mean the process occurs one time for the entire process while

continuous lines mean the process repeats for each moving window (J times).

FIGURE 3 | The HR grid shows the LR pixel locations for three frames

(triangular, star, and square). The large green box represents the searching

window span (45× 45 HR pixels).The red box represents the reference patch

while the blue ones represent its similar (each one is 15× 15 HR pixels). The

small dashed red box represents the estimation window (3× 3 HR pixels)

The CAWF SR method estimates the L × L HR pixels in the
center of each observation patch. This L × L estimation window
is shown in Figure 3 as a small red dashed box. All of the pixels
in the g̃i are used in a weighted to estimate these HR pixels. This
is given by

d̂i = WT
i g̃i, (7)

where d̂i = [di,1, di,2, ..., di,L2 ]
T is a vector of estimated desired

pixels, and Wi is a matrix of weights. After processing the entire
image, all of these outputs are combined to form the estimated

TABLE 2 | The AWF and the CAWF system parameters which are used for

both real and simulated data results.

Parameter name Variable CAWF AWF

values values

HR patch size W ×W 15× 15 pixels 15× 15 pixels

HR search window size Z × Z 45× 45 pixels N/A

Number of similar patches M 10 1

Autocorrelation decay ρ 0.75 0.75

Patch similarity decay α 5 N/A

Patch intensity variance σ2
d

1000 1000

F-number f/# f/5.6 f/5.6

Number of frames P 9 9

Downsampling and upsampling L 3 3

TABLE 3 | Imaging Source camera (DMK 23U618) specifications.

Parameter name Values

Pixel pitch 5.6 µm

FPA size 640× 480

Dynamic range 8 bit

Gain 16.5 dB

Sensitivity 0.015 lx

Shutter 1/64 s

HR image, denoted as ẑ. The weights are designed to minimize
mean squared error (MSE) [17] and are given by

Wi = R̃−1
i P̃i, (8)
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FIGURE 4 | The translational truth and estimated shifts for the nine

simulated LR frames.

FIGURE 5 | Lighthouse image. (A) Truth image and (B) first simulated LR

frame with L = 3 and ση = 10.

where R̃i = E
{

g̃ig̃
T
i

}

is a KM × KM auto-correlation matrix

for the multi-patch observation vector g̃i, and P̃i = E
{

g̃id
T
i

}

is a KM × L2 cross-correlation matrix between the multi-patch
observation vector, g̃i, and the desired vector, di. Note that
the vectors involved are treated as random vectors here, and
E{·} represents the expectation operator. The correlations are
modeled using a new nonuniform multi-patch correlation model
described in Section 3.2.

3.2. Nonuniformly Sampled Multi-Patch
Correlation Model
This section presents the nonunifomly sampled multi-patch
correlation model used to provide the correlations needed for
Equation (8). The model is similar to that in Mohamed and
Hardie [17], but here applies to the nonunifomly sampled

FIGURE 6 | The first Lighthouse ROI. (A) The truth image, (B) bicubic

output image, (C) AWF SR output image, and (D) the CAWF output image.

Processing is done using L = 3, P = 9, and ση = 10.

FIGURE 7 | The second Lighthouse ROI. (A) The truth image, (B) bicubic

output image, (C) AWF SR output image, and (D) the CAWF output image.

Processing is done using L = 3, P = 9, and ση = 10.

multi-patch observation vector g̃i. In particular, the auto-
correlation matrix model for g̃i is given by

R̃i = σ 2
d e−Di/(αση) ⊗ R+ σ 2

η I, (9)
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TABLE 4 | Quantitative performance of the bicubic, the AWF and the CAWF outputs for 7 Kodak images for L = 3, P = 9, and ση = 10.

Method Metric type Images names

Kodim03 Kodim04 Kodim09 Kodim10 Kodim15 Kodim19 Kodim23

Bicubic psnr 27.85 27.55 26.56 26.85 27.33 24.19 27.67

ssim 0.63 0.64 0.63 0.65 0.63 0.62 0.65

AWF psnr 30.17 29.96 29.29 29.24 29.68 26.59 30.29

ssim 0.76 0.78 0.77 0.79 0.76 0.78 0.78

CAWF psnr 30.70 30.43 29.74 29.66 30.12 27.21 30.83

ssim 0.80 0.82 0.81 0.83 0.81 0.81 0.82

Bold numbers means the “highest performance.”

FIGURE 8 | PSNR and SSIM statistics for the various SR algorithms over 50 shift and Gaussian noise patterns realizations (A) PSNR and (B) SSIM.

These results are obtained for Lighthouse image when L = 3, P = 9 and ση = 10.

FIGURE 9 | Results showing CAWF SR performance as a function of the number of similar patches M (A) PSNR and (B) SSIM. These results are obtained

with L = 3, P = 9, ση = 10 and M varying from 1 to 17.

and the cross correlation matrix is given by

P̃i = σ 2
d e−[Di]1/(αση) ⊗ P, (10)

where I is a KM×KM identity matrix,⊗ is a Kronecker product,
σd

2 is the variance of desired image, α is the patch similarity
decay, Di is an M × M distance matrix between patches, and
[Di]1 is the first column of the distancematrix. The termsR andP

represent the auto-correlation and cross-correlation matrices for
a single patch.More will be said about these shortly. In ourmodel,
these single patch statistics are “modulated” by the distance
matrix to account for interpatch similarity. The parameter α is a
tuning parameter to govern the strength of this modulation. The
SNR is incorporated into the model with the selection of σ 2

d
and

σ 2
η . The distance matrix is populated using the distance metric in

Equation (6) using theM similar patches as follows
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FIGURE 10 | The PSNR for AWF, CAWF, and the bicubic outputs with different levels of noise. (A) ση = 1, (B) ση = 5, (C) ση = 10, and (D) ση = 15. These

results are obtained with M = 10 and the number of frames, P, varies from 1 to 9.

Di =











Dsi,1,si,1 Dsi,1,si,2 · · · Dsi,1,si,M

Dsi,2,si,1 Dsi,2,si,2 · · · Dsi,2,si,M
...

...
. . .

...

Dsi,M,si,1 Dsi,M,si,2 · · · Dsi,M,si,M











. (11)

Let us now consider the single patch statistics. Note that

R = E
{

f̄f̄T
}

, (12)

is the K × K auto-correlation matrix of a single noise-free patch
obtained from a variance-normalized desired image. The matrix

P = E{f̄d̄T}, (13)

is the K × L2 cross-correlation matrix for a single noise-free
patch obtained from a variance-normalized desired image and
the desired pixels in the estimation window. The single patch
statistics differ from those in Mohamed and Hardie [17] in that
here a single patch is a nonuniformly sampled patch made up
of samples from multiple registered LR frames. The relative
positions of the samples in the patch depend on the particular
interframe registration. Thus, we model these statistics based on
continuous-space correlation functions in the same manner as
that described in Hardie [8]. In particular, we assume the desired
image is a wide sense stationary and we get auto-correlation of
normalized noise-free image as

rf̄ f̄ (x, y) = rd̄d̄(x, y) ∗ h(x, y) ∗ h(−x,−y), (14)

where rd̄d̄(x, y) is the autocorrelation function of the variance
normalized desired image. Following the approach in Hardie [8],
this is modeled as

rd̄d̄(x, y) = ρ

√
x2+y2 , (15)

where ρ is auto-correlation decay constant. Similarly, the cross-
correlation between noise-free signal obtained from a variance
normalized desired image and the variance normalized desired
image is given by

rd̄f̄ (x, y) = rd̄d̄(x, y) ∗ h(x, y). (16)

Since the motion is global translation, spacing between LR pixels
is periodic (i.e., the same pattern) for the entire HR grid. With
knowledge of the shifts between all LR frames, θp, horizontal and
vertical distances between all samples in a patch can be computed
easily. Then by applying these displacements to Equation (15)
and then into Equations (16) and (14), we can fill both correlation
matrices in Equations (12) and (13).

Finally, combining (8) with (12) and (13), we can express the
CAWF SR weights as

Wi = R̃−1
i P̃i =

[

e−Di/(αση) ⊗ R+
σ 2

η

σ 2
d

I

]−1

e−[Di]1/(αση) ⊗ P.

(17)
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FIGURE 11 | The SSIM for AWF, CAWF, and the bicubic outputs with different levels of noise. (A) ση = 1, (B) ση = 5, (C) ση = 10, and (D) ση = 15. These

results are obtained with M = 10 and the number of frames, P, varies from 1 to 9.

FIGURE 12 | The PSNR for AWF and CAWF, with different levels of

noise. These results are obtained with M = 10 and the number of frames,

P = 9.

Note the weightmatrix,Wi, is of sizeKM×L2 where each column
has the weights to estimate one particular HR pixel in the i’th
estimation window. Before applying the weights, we follow the
approach in Hardie [8] and normalize each column of weights to

TABLE 5 | Quantitative performance of the bicubic, the AWF and the

CAWF outputs for the Lighthouse image when L = 3, P = 9 and four levels

of noise.

Method Metric type Noise standard deviation

σn = 1 σn = 5 σn = 10 σn = 15

Bicubic psnr 25.55 25.18 24.19 22.93

ssim 0.85 0.77 0.62 0.49

AWF psnr 30.03 27.92 26.59 25.74

ssim 0.95 0.85 0.78 0.72

CAWF psnr 30.13 28.36 27.21 26.39

ssim 0.96 0.87 0.81 0.75

Bold numbers means the “highest performance.”

sum to one to avoid possibly creating a grid artifact if processing
non-zero mean data. Using the model to compute the required
correlations, note that there are two key tuning parameters. One
is the auto-correlation decay, ρ, which controls the correlation
between pixels within a given patch used to form R and P. The
other parameter is the patch similarity decay, α, which controls
the correlation between patches. The SNR also plays a role in
shaping the correlations and ultimately the weights. Note that for
a high SNR, the CAWF filter is more aggressive and relies less
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FIGURE 13 | The estimated shifts for the nine real LR frames (data

set I).

FIGURE 14 | The first LR frame (data set I) which has been captured by

an 8 bit gray-scale Imaging Source camera (DMK 23U618) in our

University of Dayton Image Processing Laboratory.

on spatial correlation for noise reduction. In low SNR imagery,
the opposite is true. Also, note that when highly similar patches
are found, as reflected in the distance matrix, the weights adapt
to this and provide more aggressive SR processing. When no
similar patches are found, the CAWF effectively reverts to the
AWF method, primarily weighting only the reference patch.
The relationship between the distance matrix and weights is
explore more thoroughly for image restoration in Mohamed and
Hardie [17].

FIGURE 15 | Two processed ROIs from the real image sequence (data

set I). Bicubic output for ROI 1 (A) and ROI 2 (B). AWF SR output for ROI 1

(C) and ROI 2 (D). CAWF SR output for ROI 1 (E) and ROI 2 (F).

4. Results and Discussion

In this section, the efficacy of the CAWF SR method is
demonstrated. We compare against a single frame bicubic
interpolation and the AWF SR method, in order to demonstrate
the advantages of mutli-patch processing. Note that AWF SR
is equivalent to CAWF SR when M = 1. We present results
with both simulated data and real data. The real data represent
raw data directly from the imaging sensor. In the case of the
simulated data, we begin with a very high resolution and high
signal-to-noise ratio image (not from the the sensor used for
the real data). We then artificially degrade this ideal image with
simulatedmotion, PSF blur (we follow the approach inHardie [8]
and modeled the diffraction from a circular exit pupil and spatial
detector integration), downsampling, and noise, according to the
model in Figure 1. The simulation is designed to mimic the
real sensor to the greatest degree possible. That is, we simulate
the same detector pitch, f-number, downsampling factor, and
system PSF, as the real camera. All of the processing, simulation,
and sensor parameters used in the are provided in Tables 2, 3.
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FIGURE 16 | The estimated shifts for the nine real LR frames (data

set II).

FIGURE 17 | The first real LR frame (data set II) which has been

captured by an 8 bit gray-scale Imaging Source camera (DMK 23U618).

The simulated data allow for a quantitative performance analysis
based on objective truth.

The real camera data are acquired with an 8 bit gray-scale
imaging source camera model DMK 23U618. Table 3 presents
the camera specifications [23]. We assume a wavelength of λ =
0.55 µm and employ f /5.6 optics. Based on Equation (3), the
Nyquist detector pitch would be δs = 1.54µm. Thus, the camera,
with its 5.6 µm detector pitch, is under-sampled by a factor of
3.64. Because of the optical transfer function, there tends to be
relatively little energy near the SR folding frequency. Thus, in
practice, we find that good results can be obtained with a slightly

FIGURE 18 | Two processed ROIs from the real image sequence (data

set II). Bicubic output for ROI 1 (A) and ROI 2 (B). AWF SR output for ROI 1

(C) and ROI 2 (D). CAWF SR output for ROI 1 (E) and ROI 2 (F).

smaller upsampling factor of L = 3 and this is what we use for
the presented results. For both the simulated data and real data,
we use the same camera specifications to model the PSF and use
L = 3 for downsampling and for SR upsampling.

With regard to performance metrics, we use a subjective visual
assessment for the real data. For the simulated data, we use the
peak signal-to-noise ratio (PSNR) metric, which is defined as

PSNR
(

z, ẑ
)

= 10 log10











2552

1
N

N
∑

i=1

(

zi − ẑi
)2











. (18)

We also use the structure similarity index (SSIM), which is
defined in Wang et al. [24].

4.1. Simulated Data
The first experiment in the simulated data results is a
visual demonstration of the CAWF performance. We use
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the uncompressed 8 bit Kodak test image “Lighthouse”
(Kodim19) [25] which we have converted to grayscale. We utilize
the parameter values inTable 1 and follow the observationmodel
in Figure 1 to get the LR frames. We blur the Lighthouse image
with the prescribed PSF, shift it by random amounts, down
samples these images by L = 3 and add Gaussian noise with
ση = 10. We generate a total of P = 9 LR frames in this manner.
Figure 4 shows the nine truth translational shifts as well as the
estimated ones. The HR Lighthouse image is shown in Figure 5A

and the first LR frame is shown in Figure 5B. The results for
single frame bicubic interpolation, AWF SR and CAWF SR are
shown for two regions of interest (ROIs) in Figures 6, 7. The
first and second HR truth ROIs are shown in Figures 6A, 7A,
respectively. The outputs of the bicubic interpolation for both
ROIs are shown in Figures 6B, 7B. The effects of noise can be
seen as “blotches” in the flat areas of the image. Aliasing and
blurring are clearly evident along the fence. The AWF outputs
are shown in Figures 6C, 7C, and the CAWF outputs are shown
in Figures 6D, 7D. Examining the the outputs of AWF and
CAWF, it is clear that both methods provide better resolution
than bicubic interpolation. However, the CAWFmethod appears
to provide better noise suppression. Quantitative results using
seven Kodak test images are provided inTable 4.We use the same
PSF as before with L = 3, P = 9, and ση = 10. Both PSNR and
SSIM results are provided. Note that in average the CAWF PSNR
is higher than the AWF PSNR by approximately 0.5 dB, and the
SSIM is greater by approximately 0.04 (Bold numbers means the
highest performance).

The next experiment shows that the improvement in
perfromance seen with CAWF is observed even with many
noise and shift realizations. In partcular, we use the lighthouse
image and simulate 50 sets of LR frames. Each set is obtained
with different realization of random intra-frame shifts and noise
samples. The results are shown in Figure 8, with PSNR shown
in Figure 8A, and SSIM shown in Figure 8B. From Figure 8A,
the means of PSNR are 27.15, 26.55, and 24.20 for CAWF, AWF,
and single frame bicubic interpolation, respectively. The standard
deviations of PSNR for the same methods are 0.0602, 0.0550,
and 0.0102. Also, the means of SSIM shown in Figure 8B are
0.81, 0.78, and 0.62 for CAWF, AWF, and single frame bicubic
interpolation, respectively. The respective standard deviations of
SSIM are 0.0021, 0.0012, and 0.0015.

Results are shown in Figure 9 that illustrate the impact of
changing the number of similar patches, M, in the CAWF SR
method using the lighthouse image (Kodim19). The PSNR and
SSIM of the CAWF SR outputs are shown in Figures 9A,B,
respectively. For these results, we again use the parameters listed
in Table 2, but vary M from 1 to 17. Note that M = 1 means no
patch similarity is utilized, and the CAWFmethod reduces to the
AWF. Note that PSNR increase significantly withM forM ≤ 10,
and there appears to be a “knee” in the curve near M = 10. It is
for this reason that we have elected to useM = 10 in the previous
results. A similar patterns is seen with SSIM in Figure 9B.

In a final simulated data experiment, we study the impact
of noise level and the number of LR input frames used on the
AWF and CAWF SR methods. These results are presented in
Figures 10, 11. The lighthouse image is used with the parameters

in Table 2, but with P ranging from 1 to 9. The PSNR results
for σ 2

η =1, 25, 100 and 225 are shown in Figures 9A–D,
respectively. A similar set of results, but with the SSIM metric,
are shown in Figure 11. Clearly, increasing the number of
input frame improves performance for both CAWF and AWF.
Also, the relative improvement increases with noise level. This
trend is shown in Figure 12. Note that CAWF SR consistently
outperforms AWF SR in these results. Table 5 shows quantitative
results for the bicubic, AWF and CAWF for the four levels of
noise when P = 9. We conclude these results from Figures 10,
Figure11.

4.2. Real Data
In this section, two sets of real data are processed and presented.
In both data sets, we get the LR frames by panning the camera
described in Table 3 across a scene. We utilize nine frames as
inputs (P = 9). We employ the parameters listed in Table 2

for processing. Also we assume the noise is additive zero-mean
Gaussian noise with variance of σ 2

η . Using the sample variance in
a flat region of the scene, we estimate the noise standard deviation
for both data sets to be ση = 5.

The estimated intra-frame translational shifts for the first data
set are shown in Figure 13. The first full (320 × 320) LR frame
from this dataset is shown in Figure 14. Aliasing can be seen
in this imagery, especially in the chirp pattern shown in the
left lower corner. To better illustrate the SR results, two ROIs
are selected. These processed ROIs are shown in Figure 15. The
bicubic results are shown in Figures 15A,B. The AWF results are
shown in Figures 15C,D. Finally, the CAWF results are shown in
Figures 15E,F. As with the simulated data, the AWF and CAWF
methods appear far better than the bicubic interpolation in terms
of aliasing reduction and resolution enhancement. However,
the CAWF outputs appear to show more detail than the AWF
outputs do. This can be seen in the high frequency regions of
the chirp ROI and the parallel lines above and below the word
“signal.”

For the second real data set, the estimated intra-frame
translational shifts are shown in Figure 16. Figure 17 shows the
first full (300 × 300) LR frame from this second dataset. Also
two ROIs are chosen, one shows a portion of the notebook
in the scene, and the other is part of the window mullion.
These processed ROIs are shown in Figure 18. The bicubic
results are shown in Figures 18A,B. The AWF results are shown
in Figures 18C,D. Finally, the CAWF results are shown in
Figures 18E,F. We believe that the performance of CAWF SR
method using the real data is consistent with that obtained with
the simulated data, and that CAWF SR does offer a notable
improvement over AWF SR.

5. Conclusion

We have proposed a novel CAWF method for multi-frame SR.
The first step of the CAWF SRmethod is to register all LR frames
one a common HR grid. Then, for each LR pixel position on the
HR grid, we identify the M most similar patches within a given
search window about the reference patch. A single-stage weighted
sum of the pixels in the similar patches is used to estimate the
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L × L HR pixels in estimate window at the reference patch. The
weights are based on a new nonuniformly sampled multi-patch
correlation model. The CAWF SR method can be viewed as an
extension of AWF SR [8] using mutli-patch processing. Using
multiple similar patches to form the estimate allows the CAWF
technique to exploit self-similarity to greatly increase the noise
robustness over the AWF SR method. In light of the CAWF
method, The AWF method can be viewed as a special case where
M = 1 and only the reference patch is included in the weighted
sum to form the estimate. Like the AWF SR, CAWF SR can
perform nonuniform interpolation, deblurring, and denoising
jointly. The big advantage of the CAWF, vs. the AWF, is improved
performance in low SNR data. From the real and the simulated

image data, the CAWF SR outperforms AWF SR for all scenarios
and cases tested. Although the most benefit is seen when the
noise level is high. We believe the CAWF SR approach might be
beneficial in several other applications as well, including those
where the AWF is successful [9–13].
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