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In many undersampled imaging systems, spatial integration from the individual detect
elements is the dominant component of the system point spread function (PS
Conventional focal plane arrays (FPAs) utilize square detector elements with a nea
100% fill factor, where fill factor is defined as the fraction of the detector eleme
area that is active in light detection. A large fill factor is generally considered to
desirable because more photons are collected for a given pitch, and this leads to a high
signal-to-noise-ratio (SNR). However, the large active area works against super-resoluti
(SR) image restoration by acting as an additional low pass filter in the overall PSF wh
modeled on the SR sampling grid. A high fill factor also tends to increase blurring fro
pixel cross-talk. In this paper, we study the impact of FPA detector-element shape a
fill factor on SR. A detailed modulation transfer function analysis is provided along wi
a number of experimental results with both simulated data and real data acquired wi
a midwave infrared (MWIR) imaging system. We demonstrate the potential advantage
low fill factor detector elements when combined with SR image restoration. Our resul
suggest that low fill factor circular detector elements may be the best choice. New vid
results are presented using robust adaptive Wiener filter SR processing applied to da
from a commercial MWIR imaging system with both high and low detector element
factors.
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1. Introduction

Image acquisition is subject to a variety of phenomena that cause degradations in the signal. All
images are impacted by blurring from the system point spread function (PSF) and noise from a
range of sources. Additionally, many imaging systems are designed with focal plane arrays (FPAs)
having a pixel pitch (i.e., space between detector elements) that does not meet the Nyquist criterion
for sampling with regard to the optical cutoff frequency. Such undersampling may lead to aliasing
artifacts and reduced image utility. Designing imaging systems for specific applications entails
navigating a complex tradespace and involves balancing factors such as optical resolution, field
of view, aliasing, signal-to-noise ratio (SNR), integration time, frame rate, as well as size, weight,
and power [1]. Similar considerations are involved in the design of microscopy systems [2]. The
inclusion of image processing algorithms, such as super-resolution (SR), can influence the selection
of many of these system parameters.
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It is the goal of SR processing to restore the blurred, noisy, and
undersampled imagery acquired from a given imaging system
[3–6]. With multi-frame SR, a sequence of frames with inter-
frame motion is used to form the SR image estimate [3–6].
In order to deconvolve the linear blur from the PSF, the PSF
must be defined on a sampling grid that meets the Nyquist
criterion. SR image restoration, which must occur on this grid,
generally requires that the observed imagery be upsampled prior
to any deconvolution. Sampling diversity provided by multiple
input frames makes this upsampling more accurate than with
a single frame. Note that the system PSF generally has two
main components: diffraction from the optics [7], and spatial
detector integration within each detector element [8, 9]. At the
observed resolution, the span of the spatial detector integration
will not exceed the pixel pitch. However, on the upsampled
SR grid, where the PSF is defined, the spatial integration from
each detector can now span multiple high resolution samples.
In fact, in many undersampled imaging systems, the spatial
detector integration becomes the dominant component of the
system PSF [8–11]. Thus, the detector element shape and
size (relative to the pixel pitch) can play a significant role in
image sampling and SR restoration. Conventional FPAs utilize
square detector elements with a nearly 100% fill factor, where
fill factor is defined as the fraction of the detector element
area that is active in light detection. A large fill factor is
generally considered to be desirable because more photons
are collected for a given pitch, and this leads to a higher
SNR. However, the large active area works against SR image
restoration by acting as an additional low pass filter in the
overall PSF when modeled on the SR sampling grid [12]. A high
fill factor also tends to increase blurring from pixel cross-talk
[12, 13].

In this paper, we study the impact of FPA detector-element
shape and fill factor on SR image restoration. We provide a
detailed modulation transfer function (MTF) analysis along with
a number of experimental results with both simulated data and
real data from a midwave infrared (MWIR) imaging system. We
show that there can be significant advantages to low fill factor
detectors, when state-of-the-art SR processing is employed. In
particular, our results show that circular active area detectors,
with an MTF zero at the optical cutoff frequency, provide some
of the best results in our tests. The low fill factor detectors
trade signal-to-noise ratio for a more favorable overall system
MTF that can be exploited by SR restoration. These results have
implications for imaging sensor design for both grayscale and
division of FPA sensors (e.g., color, multiband, and polarization)
[14–16].

The organization of the remainder of this paper is as follows.
The observation model is presented in Section 2. The primary
analysis of detector element active area and shape is presented
in Section 3. In Section 4, we describe the robust adaptive
Wiener filter (AWF) [11] SR method used here. Experimental
results are presented in Section 5. These results include a detailed
quantitative performance analysis using simulated data, and
new video results using a commercial MWIR imaging system
with both high and low detector element fill factors. Finally,
conclusions are offered in Section 6.

2. Observation Model

The observation model used here is shown in Figure 1. It begins
with a continuous-space desired image d(x, y), where x, y are
continuous spatial variables. We shall define ideal sampling as
sampling at or above the Nyquist rate, relative to the optical
cutoff frequency, with no PSF blur (other than an ideal band-
limiting filter at the optical cutoff frequency) or noise. The
discrete image formed by ideal sampling will be represented using
lexicographical notation as the vector z = [z1, z2, ...zN]T . In
practice, z is not available. Rather, the observed data include PSF
blurring, potentially sub-Nyquist sampling, and noise. Blurring
from the system PSF is modeled as

f (x, y) = d(x, y) ∗ h(x, y), (1)

where h(x, y) is the continuous space PSF and ∗ represents
linear convolution. Modeling the PSF is addressed in detail in
Section 2.1. The nonuniform sampling block produces a set
of samples from f (x, y) that may, in general, be nonuniformly
distributed spatially. In multiframe SR, these samples are
collected from multiple frames and registered onto a common
grid. The spatial distribution of these samples will depend on the
interframe motion [8]. Let the set of nonuniform sample values
be represented in lexicographical notation as f = [f1, f2, ..., fM]T .
Note the use of bold formatting for the lexicographical vector
f, to distinguish it from the parent continuous-space function
f (x, y). Using multiple frames with subpixel interframe motion
allows one to obtain a more dense sampling of f (x, y) than may be
possible with a single image. The resulting samples may or may
not meet the Nyquist criterion. However, unless the interframe
motion is carefully controlled, the samples will be nonuniformly
distributed. An example of the nonuniform samples resulting
from three translationally shifted frames is shown in Figure 2.
Here the native detector array is square with a detector pitch of
30 μm.

The order of operations shown in Figure 1 effectively assumes
that the PSF blurring occurs prior to any interframe motion. This
is valid for translational interframe motion for any PSF. It is also
valid for rotational motion for a circularly symmetric PSF. In the
case of modest affine motion and typical PSF parameters, this
model holds in an approximate sense, as analyzed in Hardie et al.
[10]. The noise in Figure 1 is assumed to be Poisson-Gaussian
noise, with both a signal-dependent and signal-independent
component [17, 18]. Incorporating the noise gives rise to the
observed pixels, denoted g = [g1, g2, ...gM]T . The details of
the noise model are desribed in Section 2.2. The SR restoration
problem is to estimate z from the observed g. This inverse
problem requires deconvolving h(x, y), and addressing noise
and nonuniform sampling. The approach taken by nonuniform-
interpolation based SR methods is to estimate a uniform set
of samples of f (x, y) from g, and then apply some form of
image restoration to deconvolve the PSF blur and reduce noise
[3]. Note that the AWF SR method that we employ here
performs this nonuniform interpolation and restoration in a
single weighted sum operation [8]. However, the main focus of
this paper is not on the internal workings of any specific SR
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FIGURE 1 | Observation model block diagram.

FIGURE 2 | Nonuniform sampling grid composed of the registered
collection of three translationally shifted frames, each with a pixel
spacing of 30 μm.

method, but rather on the imaging sensor used to acquire the
data. In particular, our focus is on the detector element active
area size and shape and its impact on the overall MTF and SR
results.

2.1. PSF model
A critical component of the observation model is the PSF, and its
Fourier transform, the optical transfer function (OTF) [1]. For
this, we shall follow the approach in Hardie [8], Hardie et al.
[16], Hardie et al. [10] and model diffraction limited optics and
blurring from the spatial integration of the detector elements. In
this case, the overall OTF is given by

H(u, v) = Hdif(u, v)Hdet(u, v), (2)

FIGURE 3 | Diffraction OTF, Hdif(u, v) , for MWIR system with F = 3.33
and λ = 4.5 μm.

where u and v are the horizontal and vertical spatial frequencies
in cycles per millimeter, Hdif(u, v) is the OTF from the
diffraction-limited optics, and detector integration is modeled
with Hdet(u, v). For a circular pupil function we have [7]

Hdif(u, v) =
{

2
π

[
cos−1 (ω) − ω

√
1 − ω2

]
ω < 1

0 else
, (3)

where ω = √
u2 + v2/ωc, the optical cutoff frequency is ωc =

1/(λF), and F is the f-number of the optics. Note that f-number
is defined as the ratio of the focal length of the optics to the
effective aperture [1]. The wavelength of light is represented by
λ. An example of Hdif(u, v) is shown in Figure 3 for a MWIR
imaging system with F = 3.33 and λ = 4.5 μm. Note that this is
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a bandlimiting OTF with cutoff given by ωc = 66.66 cycles/mm.
The detector OTF, Hdet(u, v), is determined by the active area
of a single detector on the FPA. More will be said about this in
Section 3.

Let us define the detector pitch of a native sensor to be p
mm. The sampling frequency associated with this sensor is then
given by 1/p cycles/mm. To guarantee the absence of aliasing,
the Nyquist theorem requires that 1/p > 2ωc = 2/(λF), or
equivalently p < λF/2. Because of the complex tradespace
associated with imaging systems design, the pitch in most
imaging systems does not meet this requirement. To characterize
the level of undersampling in an imaging system, we shall use the
parameter Q = λF/p [19]. Note that the undersampling factor is
given by 2/Q, such that Q = 2 corresponds to a Nyquist sampled
system, and Q = 1 corresponds to a system undersampled by
a factor of 2. Note that many imaging systems are designed
for Q ≈ 1, as this tends to be a good compromise between
aliasing and other factors, such as signal-to-noise ratio [19]. This
level of undersampling provides the opportunity for a significant
resolution boost using SR post processing. Figure 4 shows how
the pitch p and the f-number impact the Q-value for a MWIR
imaging system with center wavelength of λ = 4.5 μm.

Now consider Equation (2) in the spatial domain. The
continuous-space system PSF is given by

h(x, y) = ICSFT{H(u, v)} = hdif(x, y) ∗ hdet(x, y), (4)

where hdif(x, y) is the diffraction PSF, hdet(x, y) is the PSF
associated with the detector, and ICSFT{·} is the inverse
continuous-space Fourier transform. We may define a valid
impulse-invariant discrete-space PSF, hii(n1, n2) by sampling
h(x, y) at or above the Nyquist rate. This gives

hii(n1, n2) = �x�yh(n1�x, n2�y), (5)

FIGURE 4 | Sampling relationship between pitch and f-number for
λ = 4.5 μm. Three Q-values curves are shown where Q = λF/p.

where �x,�y < λF/2. We approximate this discrete PSF directly
using the frequency sampling filter design method based on the
analytic expression for the OTF in Equation (2) and Nyquist rate
sample spacings of �x,�y. With this discrete PSF, we are able
to accurately model the continuous PSF blurring using discrete
convolution. Furthermore, the discrete PSF is used to design the
AWF SR restoration filters.

2.2. Noise Model
Consider a Poisson-Gaussian noise model that accounts for
the photon arrival distribution as well as noise in the
electronics [17, 18]. Applying this model, the observed data are
given by

g = αp + β1 + η, (6)

where p ∼ P((f − β1)/α) is an iid Poisson random vector
with mean of (f − β1)/α. The random vector p models the
observed signal in the presence of shot noise, prior to any camera
gain or offset. The parameter α is a camera gain, β is a camera
offset, and 1 is an M × 1 vector of ones. Since the variance of a
Poisson random variable equals its mean, the covariance matrix
of p is given by P = diag

(
f1−β

α
,

f2−β

α
, . . . ,

fM−β

α

)
. The vector

η ∼ N(0, σ 2
η I) is an iid Gaussian random vector modeling the

electronics noise terms. Note that the mean of g in Equation
(6) is f, and the covariance is given by G = α2P + σ 2

η I. Also,
note that G is diagonal and the i’th diagonal element is given by
α(fi − β) + σ 2

η . For high mean values, a Poisson distribution is
known to be well approximated by a Gaussian. In this case, we
can approximate g as a heteroskedastic Gaussian random vector,
such that g ∼ N(f, G) [17, 18]. This is equivalent to an additive
Gaussian noise with a signal dependent variance, given by g =
f + n, where n ∼ N(0, G). For generating all of the simulated
data in Section 5, we will use the noise model in Equation (6).
However, the AWF SR algorithm is based on additive signal
independent noise. For the purposes of AWF SR processing we
shall assume the heteroskedastic model and use constant noise
variance of σ 2

n = α(f̄ − β) + σ 2
η , where f̄ = E{fi}.

Now, consider the impact of a changing signal level on this
Poisson-Gaussian noise. In particular, let the incoming signal be
scaled by s as a result of integration time change or ambient signal
level changes. The noise variance associated with the average
scaled signal level is σ 2

n (s) = α(sf̄ − β) + σ 2
η . However, a gain

of 1/s is needed to bring this scaled image back to the original
level for comparison. Thus, the effective noise level of the scaled
signal, relative to the s = 1 system, is

σ 2
e (s) = 1

s2 σ 2
n (s) = α

(
1
s

f̄ − 1
s2 β

)
+ 1

s2 σ 2
η . (7)

If β = 0, which is the case for most cameras, we get the following
relationship

σ 2
e (s) = 1

s
αf̄ + 1

s2 σ 2
η . (8)

Thus, we see that the noise variance due to the signal dependent
Poisson component scales with 1/s, while the signal-independent
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additive Gaussian noise component scales with 1/s2. This has
important ramifications for the detector active area analysis. A
photon limited system, with very low σ 2

η , will have a 1/s increase
in noise from a reduced signal level (i.e., s < 1) that might
come from a reduced detector active area. However, a system
dominated by thermal noise will have a 1/s2 increase in effective
noise. For the simulation results in Section 5.1, we shall use 8
bit image data to represent the true scene. Thus, we use camera
model parameters typical of commercial cameras operating in
an 8 bit dynamic range, that is 0–255 digital units (DUs). The
parameters we use are α = 0.02, β = 0.00, and σ 2

η = 0.50.
This gives us the effective noise variance relationship shown in
Figure 5, based on Equation (8).

3. Analysis of Detector Shape

In this section, we focus on how the detector active area shape
impacts the overall system PSF and OTF. We first show exactly
how the detector PSF model relates to the active area of an
element of an FPA in Section 3.1. Next, in Section 3.2, we examine
rectangular and circular active area detectors. In Section 3.3,
we provide a detailed system MTF analysis by combining the
diffraction and detector components of the MTF model. Finally,
in Section 3.4, we examine variable response detectors and their
MTFs.

3.1. Detector PSF
Consider the image on the focal plane resulting from diffraction
limited optics with no spatial integration from the detector
elements. This image is given by

d̄(x, y) = d(x, y) ∗ hdif(x, y). (9)

If we define the active area of a single detector element centered
at (0, 0) as a(x, y), then we have

FIGURE 5 | Effective noise variance, σ2
e (s), as a function of signal

scaling s, for three values of f̄ for α = 0.02, β = 0.00, and σ2
η = 0.50.

fi =
∞∫

τ1 =−∞

∞∫
τ2 =−∞

d̄(τ1, τ2)a(τ1 − xi, τ2 − yi)dτ1dτ2, (10)

for i = 1, 2, ..., M, where xi, yi are the spatial coordinates
of the detector element for sample i. This models the spatial
integration associated with the detector active area. Allowing for
a continuum of detector positions, we obtain

f (x, y) =
∞∫

τ1 =−∞

∞∫
τ2 =−∞

d̄(τ1, τ2)a(τ1 − x, τ2 − y)dτ1dτ2. (11)

This represents a deterministic correlation operation between
d̄(x, y) and a(x, y). If we define hdet(x, y) = a(−x,−y), then we
have

f (x, y) =
∞∫

τ1 =−∞

∞∫
τ2 =−∞

d̄(τ1, τ2)hdet(x − τ1, y − τ2)dτ1dτ2.

(12)
Note that this equivalent to the convolution operation f (x, y) =
d̄(x, y) ∗ hdet(x, y). Thus, the detector PSF is simply a reflected
version of the active area, hdet(x, y) = a(−x,−y). If the active
area is symmetric, then we have hdet(x, y) = a(x, y).

3.2. Rectangular and Circular Detectors
We focus on two basic active area shapes, rectangular and
circular. Figure 6 shows representations of FPAs with rectangular
and circular detector active areas. The detector spacings, or
pitches, are given by p1 and p2 in the horizontal and vertical
dimensions, respectively. For the rectangular detectors shown in
Figure 6 (left), we have

hdet(x, y) = rect
(

x
a1

,
y

a2

)
, (13)

where

rect(x, y) =
{

1 |x|, |y| < 0.5
0 otherwise . (14)

FIGURE 6 | Representation of FPAs with rectangular (left) and circular
(right) active area detector elements.
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The spatial frequency response associated with this detector
shape is given by the CSFT such that

Hdet(u, v) = CSFT{hdet(x, y)} = a1a2 · sinc (a1u, a2v) , (15)

where

sinc(u, v) = sin(πu) sin(πv)
(πu)(πv)

. (16)

The detector MTF for a square detector element with a = a1 =
a2 = 30 μm is shown in Figure 7. Note that in general, the spatial
frequency response in Equation (15) has zeros every integer
multiple of 1/a1 in u, and 1/a2 in v. We shall see that these
zeros are particularly consequential when performing SR on an
upsampled grid (i.e., sample spacing less than p1, p2). Consider a
square sampling FPA with p = p1 = p2. For a 100% fill factor
detector (i.e., a = a1 = a2 = p), the zeros occur at integer
multiples of 1/p in u and v. The optical cutoff frequency can
be expressed in terms of Q as ωc = 1/(pQ). Thus, for a system
with Q < 1, the 100% fill factor detectors put a zero within the
spatial frequency pass band of the diffraction limited optics OTF.
This means that spatial frequency information that is potentially
restorable via SR, would be completely eliminated. If instead of
100% fill factor, we set a = a1 = a2 = pQ for systems with
Q < 1, the detector zero will occur at the optical cutoff frequency,
preventing a detector zero from entering the diffraction OTF pass
band. Thus, systems with Q < 1 may benefit from a reduced fill
factor detector (i.e., a < p) to move the detector zero out toward
or beyond the optical cutoff frequency. It should be noted that
systems with a low Q also have the most to gain from SR because
of the high level of undersampling.

For the circular detectors, shown in Figure 6 (right), we have

hdet(x, y) = circ
(

x
b1

,
y
b2

)
, (17)

where

circ(x, y) =
{

1
√

x2 + y2 < 0.5
0 otherwise

. (18)

The spatial frequency response associated with the circular
detector shape is

Hdet(u, v) = CSFT{hdet(x, y)} = b1b2 · jinc
(
b1u, b2v

)
, (19)

where

jinc(u, v) = J1
(
πω)/(2ω

)
, (20)

ω = √
u2 + v2, and J1 is an order one Bessel function of the first

kind. The zeros of this frequency response do not occur at regular
intervals like the rect function. However, the very important
first zero occurs at approximately 1.22/b1 on the u axis and
approximately 1.22/b2 on the v axis. To align the circular detector
first zero with the optical cutoff frequency for the case of a square
grid of pitch p, we require b = b1 = b2 = 1.22pQ. The detector
MTF for a circular detector element with b = b1 = b2 = 30 μm
is shown in Figure 8.

FIGURE 7 | Square detector MTF for detector element width
a = a1 = a2 = 30 μm.

FIGURE 8 | Circular detector MTF for detector element diameter
b = b1 = b2 = 30 μm.

In division of FPA sensors like Bayer pattern color sensors,
multiband, and polarimetric imagers, a single FPA uses detector
elements of different types in alternating patterns. An example of
a polarimetric division of FPA array is shown in Figure 9 [14, 16].

Frontiers in Physics | www.frontiersin.org 6 May 2015 | Volume 3 | Article 31

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Hardie et al. Impact of detector-element on super-resolution

FIGURE 9 | Example of a division of FPA detector array with four
polarimetric channels.

Thus, the active area of a given detector element type must be less
than the pitch between like-elements (to make room for the other
element types). It is interesting to note that this naturally gives
the kind of reduced active area discussed above. If the system is
designed for a Q = 0.5 for one channel, and the patterns is like
that shown in Figure 9, then the active area for each channel is
the prescribed a = a1 = a2 = pQ when using the full FPA area.
Thus, if one does wish to employ reduced active area detectors for
enhanced MTF purposes, the “lost” area can be put to good use by
employing a division of FPA design [14, 16]. Another good use for
the “lost” active area is to serve as a guard band to greatly reduce
diffusion of charge carriers from one detector element to the
other. Such diffusion leads to parasitic low pass spatial filtering
of the imagery, causing an additional loss of resolution [12].

3.3. MTF Analysis
The overall MTF, combining diffraction and detector integration,
is shown in Figure 10 for the case of F = 3.33, λ = 4.5 μm,
and a = a1 = a2 = 30 μm. Note that the first zeros from
the detector MTF impact the overall MTF within the spatial
frequency passband of the optics. A cross section of this MTF
and component MTFs is shown in Figure 11. For a detector
pitch of 30 μm (i.e., 100% fill factor), this system would have
a native Q = 0.5. The folding frequency (i.e., one half of the
sampling frequency) is shown on Figure 11 along with the SR
folding frequency for an upsampling factor of L = 4. Notice how
the detector MTF zero is right in the middle of the diffraction
MTF pass band. Without SR processing, this zero would be
above the folding frequency and would be in the band of aliased
frequencies. Thus, the lost information from the zero would not
be consequential. However, if SR is being performed and we
are seeking to recover valid spatial frequency content out to the
SR folding frequency, the detector zero is highly undesirable.
Similar plots are shown in Figures 12, 13 and Video 2.MOV,
but for 25% fill factor square detectors with a = a1 = a2 =
15 μm. Note that here the detector zero aligns with the optical
cutoff frequency, allowing for the potential recovery of all spatial
frequencies afforded by the optics.

FIGURE 10 | Overall system MTF for the diffraction OTF in Figure 3
(F = 3.33, λ = 4.5 μm), and the detector MTF in Figure 7 (square with
a = 30 μm). Note the zeros from the detector impact the overall MTF within
the spatial frequency passband of the optics.

FIGURE 11 | Cross section of the MTF for Figure 10. The diffraction and
detector component of the overall MTF can be clearly seen. The native folding
frequency for p = 30 μm (100% fill factor, Q = 0.5), is shown along with the
L = 4 SR folding frequency.

It is important to note that the MTFs are normalized to have
a peak value of 1. While the curves in Figures 10–13 clearly
show how the detector zero changes, the reduction in signal
level from the reduced fill factor is not shown. Note that the
signal level is proportional to the active area, and signal gain is
reduced when decreasing active area. Therefore, the big question
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FIGURE 12 | Overall system MTF for the diffraction OTF in Figure 3
(F = 3.33, λ = 4.5 μm), and a square detector MTF with a = 15 μm (i.e.,
25% fill factor). Note the zero from the detector does not impact the overall
MTF within the spatial frequency passband of the optics.

FIGURE 13 | Cross section of the MTF for Figure 12. The native folding
frequency for p = 30 μm is shown along with the L = 4 SR folding frequency.

is this: is the loss in overall signal level justified by a favorable
detector zero location? To help answer this question, consider
the plot in Figure 14. This shows the relative gain as the detector
zero is moved from 1/p cycles/mm (for a 100% fill factor) to
1/pQ cycles/mm (where the first detector zero is aligned with
the optical cutoff frequency). The red curve on the bottom is
for a square detector, and the blue curve on top is for a circular
detector. This shows the reduction in signal as the active area is

FIGURE 14 | Detector integration gain vs. the detector zero frequency.
The gain plotted relative to a 100% fill factor detector with a = 30 μm having a
zero at ω = 1/p. Note that to move the detector zero out toward the optical
cutoff frequency, a and b must be decreased for rectangular and circular
detectors, respectively. The resulting reduction in fill factor causes a lowering
of the gain. Interestingly, the circular detector can achieve the higher detector
zero with a somewhat larger area.

FIGURE 15 | Cross-section of the MTF for Figure 12 scaled by the
detector Gain from Figure 14. Here one can compare the overall system
MTF employing a 100% fill factor with a gain adjusted MTF for the systems
with the detector zeros shifted out to the optical cutoff frequency. Note that
even though the gain is much lower, the overall transfer function for the
frequency band between 30 and 40 cyc/mm is higher using the smaller
detectors, because of the detector zero.

reduced and the detector zero is pushed toward the optical cutoff
frequency. It also shows that the circular detector is more efficient
than the rectangular one in this regard. The circular detector
provides more signal for a given zero location. Note that the
relative gain, designated G here, can be thought of as the factor
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s is Equation (8), with direct consequences on the effective noise
variance and SNR.

When the gain is incorporated with the MTF, we get the scaled
MTFs shown in Figure 15 and Video 3.MOV. The 100% fill factor
MTF is normalized to 1. The scaled MTFs for reduced fill factor
detectors are also shown for direct comparison. Note that the loss
of signal is seen as a global scaling, reducing the MTFs relative
to the 100% fill factor configuration. However, the reduced fill
factor architectures do not have the zero at 33.33 cycles/mm.
It should be noted that a reduction in gain is quite different
than a complete signal loss. Conventional signal processing
has no reliable means to recover lost frequency components.
However, attenuated spatial frequency content can be amplified
with techniques such as Wiener filtering. Thus, we argue that the
reduction in signal gain is justified by the potential to recover all
spatial frequency components below the optical cutoff frequency.

FIGURE 16 | Cross-section MTF plot similar to that in Figure 15, except
here we have an f-number of F = 4 (Q = 0.6) and L = 3 for SR. This
represents the set up for the experimental results for the infrared imaging
system in Section 5.2.

A similar plot to that in Figure 15 is shown Figure 16, but for
F = 4, Q = 0.6, and SR upsampling of L = 3. This additional
plot is shown because it matches the MWIR systems used in the
experimental results in Section 5.2. Because Q is slightly higher
in Figure 16, the detector zero is moved less to reach the optical
cutoff frequency. This means we have somewhat larger active area
detectors and less signal attenuation. Of course, we still have the
advantage of no detector zeros below SR folding frequency and
optical cutoff frequency.

To illustrate how the detector active areas need to be altered to
match the detector zero to the optical cutoff frequency, we have
included a number of cases in Table 1. This table shows a set of
MWIR imaging system parameters for a pitch of p = 30 μm,
λ = 4.5 μm, and a variety of f-numbers. Note that as f-number
goes down, the optical cutoff frequency goes up. For a fixed p =
30 μm, this means the undersampling goes up. To make the first
detector zero align with the increasing optical cutoff frequency
requires decreasing a for the square active area detectors and
decreasing b for the circular active area detectors. In particular,
we require that a = pQ and b = 1.22pQ, as described in
Section 3.2. The reduction of a and b creates a lower fill factor,
and lower relative signal gain. However, with the smaller active
area systems, we do not have a detector zero in the middle of
the optical pass band. Note that the fill factor for the circular
detector is larger than that of the corresponding square detector
by a factor of 1.222π/4. For example, consider Row 4 in Table 1.
With Q = 0.5, the rectangular detector fill factor is 25% and the
circular fill factor is 29.22%. Since b cannot be larger than p on
single FPA, we do not show values for the circular detector for
Q = 0.90 and 1.00.

3.4. Variable Response Detectors
In addition to active areas that are binary, we also consider
variable response active area detectors. Note that these are akin
to signal window functions, in that they must taper from zero
to some maximum sensitivity and back to zero in a finite length
(in this case p = 30 μm). Cross-sections of the window functions
considered are shown in Figure 17. Cross-sections of the detector
MTFs corresponding to 2D separable versions of the shapes in

TABLE 1 | Imaging system parameters where a and b are sized so as to produce their first MTF zero at the optical cutoff frequency, ωc.

Q F Undersampling ωc (cyc/mm) Rect Circ

a (μm) Fill factor (%) b (μm) Fill factor

0.20 1.33 10.00 166.67 6.00 4.00 7.32 4.68%

0.30 2.00 6.67 111.11 9.00 9.00 10.98 10.52%

0.40 2.67 5.00 83.33 12.00 16.00 14.64 18.70%

0.50 3.33 4.00 66.67 15.00 25.00 18.30 29.22%

0.60 4.00 3.33 55.56 18.00 36.00 21.96 42.08%

0.70 4.67 2.86 47.62 21.00 49.00 25.62 57.28%

0.80 5.33 2.50 41.67 24.00 64.00 29.28 74.82%

0.90 6.00 2.22 37.04 27.00 81.00 N/A N/A

1.00 6.67 2.00 33.33 30.00 100.00 N/A N/A

The pitch is assumed to be p = 30 μm and λ = 4.5 μm.
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FIGURE 17 | Cross-sections of separable active areas for a pitch of
p = 30 μm based on standard window functions. These correspond to
variable response detectors, in contrast with binary active area detectors.

Figure 17 are shown in Figure 18. Cross-sections of the detector
MTFs corresponding to 2D circularly symmetric versions of the
shapes in Figure 17 are shown in Figure 19. The conclusion we
reach from this analysis is that the variable response detectors
do not appear to provide more favorable MTF’s than the simple
binary versions. Furthermore, they would undoubtedly come
with significant manufacturing challenges, and would not be as
suitable for division of FPA sensors as their binary counterparts.

4. Super-Resolution

For the results presented here, we employ the robust AWF SR
method proposed in [11] which is based on that in Hardie [8],
Hardie [20]. A brief review of that method is provided here for
the reader’s convenience. The basic methodology is shown in
Figure 20. The output high resolution (HR) image, relative to a
low-resolution (LR) frame, is increased by a factor of L in both the
horizontal and vertical dimensions. We use a moving temporal
window of K frames to estimate each output frame. Global
registration that is robust to small amounts of local motion
is employed to get precise subpixel registration parameters for
the bulk of the imagery. Local motion is detected based on an
inconsistency with the estimated global motion parameters. In
particular, we register the K frames globally, apply a low pass filter
to attenuate aliasing artifacts and noise, and then we compute
the temporal range at each pixel. Thresholding is used to detect
large variations at a given spatial location. The pixel in these
areas are labeled as invalid because accurate registration is not
available [11]. Note that the most recent frame is designated as
the reference frame and all pixels from the reference frame are
labeled as valid.

Given the registration information as well as the local pixel
labels, the samples from all K frames are placed on a common
HR grid. A moving window centered about HR output pixel i is

FIGURE 18 | Detector magnitude frequency response of the separable
active areas in Figure 17 scaled relative to the DC gain of a 100% fill
factor detector.

FIGURE 19 | Detector magnitude frequency response of circularly
symmetric versions of the active areas in Figure 17 scaled relative to
the DC gain of a 100% fill factor detector.

used and the valid sampled spanned by this window are placed
into the observation vector gi = [gi,1, gi,2, . . . , gi,Gi ]T . The AWF
SR output is given by

ẑi = wT
ψ(i)gi, (21)

for i = 1, 2, ..., N, where ẑi is the estimate of the i’th pixel in z.
The parameter ψ(i) is the population index for window i. This is
an integer that uniquely specifies the spatial pattern of observed
valid pixels for the given observation window position. The AWF
filter weights for the particular population index are specified in
wψ(i) = [wψ(i),1, wψ(i),2, ..., wψ(i),Gi ]

T .
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FIGURE 20 | Robust AWF SR. A weighted sum of sampled from all registered frames are used for each observation window. In areas where local motion is
detected, only samples from the reference frame are used.

The minimum mean squared error (MSE) Wiener weights are
used for the AWF method [8, 11]. These are given by

wψ(i) = R−1
ψ(i)pψ(i), (22)

where Rψ(i) = E{gig
T
i |� = ψ(i)} is the autocorrelation

matrix, pψ(i) = E{zigi|� = ψ(i)} is the cross-correlation
vector, and � is a random variable representing the population
index. The correlations are found based on a parametric model
that considers the distances between all of the samples in each
observation window and the distances of these samples to the
desired HR pixel. The correlations are based on an assumed
autocorrelation function for d(x, y), which is given by

rdd(x, y) = σ 2
d ρ

√
x2+y2

, (23)

where x and y are continuous spatial coordinates measured in HR
pixel spacings, σ 2

d is the variance of the desired signal, and ρ is the
one HR pixel step correlation value. Using the observation model
in Figure 1, it can be shown that the cross-correlation function
between d(x, y) and f (x, y), can be expressed in terms of rdd(x, y)
[8] as

rdf (x, y) = rdd(x, y) ∗ h(x, y). (24)

Similarly, the autocorrelation of f (x, y) is given by

rff (x, y) = rdd(x, y) ∗ h(x, y) ∗ h(−x,−y). (25)

Sampling the autocorrelation function in Equation (25) at x, y
values corresponding to the displacement between samples in gi
yields E{fifT

i |� = ψ(i)}, where fi is the noise-free version of gi. In
the case of independent additive white Gaussian noise of variance
σ 2

n , it is straightforward to show that Rψ(i) = E{fifT
i |� = ψ(i)}+

σ 2
n I. A similar apporach used to obtain the needed pψ(i). Here we

evaluate Equation (24) based on the displacements between the
samples in gi and zi.

In this paper we consider translational interframe motion. In
areas with no local motion, the sampling pattern on the HR grid
is therefore periodic. This means that a relatively small number

of unique population patterns are observed. Thus, we can easily
precompute the weights and use a lookup table, as shown in
Figure 20, to allow for fast processing [8]. Where local motion
impacts an observation window, we weight only the reference
frame samples, giving a single frame AWF estimate in those areas.
This allows for fast processing, even in the presence of some local
motion.

One key thing to note here is that the system PSF, h(x, y),
governs the statistics used to form the weights. Thus, the detector
element model that impacts h(x, y), impacts the AWF SR weights.
In practice the correlations in Equations (24) and (25) are
evaluated on a high resolution discrete grid using an impulse
invariant version of the systems PSF and a sampled version of
Equation (23). The correlation values for any x, y values are
obtained by interpolating these discrete correlation signals.

5. Experimental Results

In this section, we present results using simulated data for
quantitative performance analysis. We also present results using
real data from a MWIR imaging system.

5.1. Simulated Data
For the simulations, we use a grayscale chirp image and 8
uncompressed images from the Kodak lossless true color image
suite [21]. The Kodak images have been converted to grayscale
for our purposes. All of the original images are 8 bit grayscale
images. All of the simulation results are based on the observation
model with F = 3.33, Q = 0.5, λ = 4.5 μm, and p = 30 μm
(i.e., the 4th row in Table 1). The noise comes from the Poisson-
Gaussian noise model with α = 0.02, β = 0.00, and σ 2

η = 0.50.
The SR processing uses K = 16 frames with L = 4 and assumes
noise of σ 2

n = α(f̄ − β) + σ 2
η .

The first image results are for a region of interest (ROI)
from the full chirp image and are shown in Figure 21. The high
resolution truth image is shown in Figure 21F. The average value
for simulated 100% fill factor detectors is f̄ = 127.4 (σn = 1.75
DU). Bicubic interpolation images from a single low resolution
noisy frame generated with 100% fill factor (a = 30 μm) and 25%
fill factor (a = 15 μm) are shown in Figures 21A,B, respectively.
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FIGURE 21 | AWF SR results for the 8 bit chirp image using simulated
MWIR system with Q = 0.50 from Table 1 with K = 16 frames and L = 4.
(A) Bicubic interpolation of a single frame with 100% fill factor detectors
(a = 30 μm); (B) bicubic interpolation of a single frame with 25% fill factor
square detectors (a = 15 μm); (C) AWF SR using 100% fill factor detectors;
(D) AWF SR using 25% fill square factor detectors; (E) AWF SR using 29.22%
fill circular detectors (b = 18.3 μm); (F) truth image.

Notice the extra aliasing artifacts in the low fill factor detector
image, especially near the perimeter of the outer circle. Also
notice the increase in effective noise (lower SNR). The outputs of
AWF SR using 100% and 25% fill factor input images are shown
in Figures 21C,D, respectively. Notice the aliasing is greatly
reduced in both images due to the SR processing. However, the
image obtained from the 25% fill factor images shows increased
high spatial frequency content. Finally, the AWF SR output using
simulated circular detectors with 29.22% fill factor (b = 18.3 μm)
is shown in Figure 21E. This result is very similar to that obtained
with the reduced fill factor square detectors, although there is
slightly less noise with the circular detectors. Note that the fill
factors for the 25% rectangular detector and the 29.22% circular
detector were were chosen so that the first detector MTF zero is
located at the optical cutoff frequency for both.

FIGURE 22 | AWF SR results for the 8 bit motocross image
(kodim05.png) using simulated MWIR system with Q = 0.50 from
Table 1 with K = 16 frames and L = 4. (A) Bicubic interpolation of a single
frame with 100% fill factor detectors (a = 30 μm); (B) bicubic interpolation of a
single frame with 25% fill factor square detectors (a = 15 μm); (C) AWF SR
using 100% fill factor detectors; (D) AWF SR using 25% fill square factor
detectors; (E) AWF SR using 29.22% fill circular detectors (b = 18.3 μm); (F)
truth image.

A similar set of results is shown in Figure 22 for a natural
image of a motocross scene (kodim05.png). Here, f̄ = 82.65
for the 100% fill factor image (σn = 1.47 DU). The truth
image is shown in Figure 22F. As with the chirp image, note the
increased aliasing using the low fill factor detector in Figure 22B
compared with 100% fill factor in Figure 22A. Also note the note
the improvement in the AWF SR image using the low fill factor
detector in Figure 22D compared with Figure 22C. In particular,
notice the detail on the front fork shock absorber cover in the
center of the image for the 25% fill factor image that is not present
with the 100% fill factor. As with the chirp result, the circular
detector image in Figure 22E is very similar to the reduced fill
factor square detector image, but with a very slight reduction in
noise.

Frontiers in Physics | www.frontiersin.org 12 May 2015 | Volume 3 | Article 31

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Hardie et al. Impact of detector-element on super-resolution

To illustrate the impact of signal level on the SR processing
with various detectors, peak signal-to-noise-ratio (PSNR) results
are plotted in Figure 23 for the motocross image scaled to
simulate various integration times. Note that for very low signal
scaling s (short integration times), noise is the predominant
degradation, and the maximum fill factor is beneficial. However,
as s increases (simulating longer integration times), the PSNR

FIGURE 23 | PSNR for K = 16 multiframe AWF SR for the 8 bit
motocross image (kodim05.png) with f̄ = 82.65 vs. signal scaling
parameter s. Note that s governs the effective noise variance as shown in
Equation (8). The system parameters are the Q = 0.50 row in Table 1. For all
but the lowest signal levels, the reduced fill factor detectors produce the
highest PSNR results after SR processing. A similar trend is seen with all of the
images tested.

FIGURE 24 | PSNR for K = 16 multiframe AWF SR for the 8 bit
motocross image (kodim05.png) vs. the detector zero frequency. The
system parameters are the Q = 0.50 row in Table 1, except a and b are
changed to control the detector zero location here. The detector zero
frequency ranges from 1/p to 1.5/(pQ). Note that the peaks occur very close
to the optical cutoff frequency 1/(pQ) = 66.67 cyc/mm.

goes up for all methods, but most significantly for the small fill
factor detectors. When little noise is present, the MTF benefit of
the reduced fill factor far outweighs the extra SNR of the large
fill factor detectors. The result in Figure 24 shows the PSNR for
the motocross image as a function of the detector zero. This
result suggests that the optimum zero location for the rectangular
detectors is close to the optical cutoff frequency. For the circular

FIGURE 25 | PSNR for K = 16 multiframe AWF SR for the 8 bit
motocross image (kodim05.png) vs. square detector width a, and
signal scaling parameter s. The system parameters are the Q = 0.50
row in Table 1. Note that for high signal levels (larger s), the optimum a is
close to 15 μm (with zero at the optical cutoff frequency 66.67 cyc/mm).
However, for very low signals levels (small s), larger active areas are
preferred.

FIGURE 26 | PSNR for multiframe AWF SR for the 8 bit motocross
image (kodim05.png) vs. the number of frames K. Shows is the result for
a 100% fill factor detector, as well as 25% rectangular and 29.22% circular
detectors with zeros at the optical cutoff frequency. Bicubic interpolation of a
single frame is also shown for reference. Note that the reduced fill factor
detectors benefit more from a larger K as this can help to compensate for the
lower SNR.
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detectors, the optimum appears to be slightly above the optical
cutoff for these data.

To see the effect of signal level (integration time) and detector
width for square detectors jointly, a PSNR surface plot is shown in
Figure 25. This shows the PSNR for AWF SR for the motocross
image. Here it can be seen that lower signal levels favor larger
detectors. As the scaling s (signal level) increases, small detectors
are favored. Interestingly, even for relatively small signal levels,
detectors with fill factor less than 100% are still favored. To see
the impact on the number of frames used in the SR processing
with s = 1, we present the results in Figure 26. Using a small
number of frames favors the larger active area images. However,
for K > 2, the 25% fill factor images yield higher PSNR results
with SR processing. With more frames, the SR processing can
better exploit the improved MTF of the small fill factor detectors
and can also exploit any redundancy for noise reduction.

To show that the benefits of reduced fill factor detectors is
not limited to the two images tested thus far, we have included
additional quantitative results in Table 2. This tables shows the
PSNR for 8 of the Kodak images [21] and the chirp image
with 100% fill factor square detectors, 25% fill factor square
detectors, and 29.22% fill factor circular detectors. For all of these
simulated detectors, we show the PSNR for single frame bicubic
interpolation and for multiframe SR processing. The reduced fill
factor circular detectors generally provided the highest PSNR
values, as might be expected from our analysis. It is interesting to
know that even with bicubic interpolation of a single frame (no
SR processing), the reduced fill factor detectors are still favored
here in most cases. Note that for the results in Table 2, we are
using s = 1 and we have a relatively high native SNR.

5.2. Real MWIR Video
In this section, we present results using an L-3 MWIR camera
equipped with F = 4 optics, a native detector pitch of p = 15 μm,
and center wavelength of λ = 4.5 μm. The camera is mounted
on a tripod and moved with a device to induce small look vector
angle variations. This provides translations shifts between frames

for SR processing. We employ a high frame rate of 240 fps, to
help in minimizing local motion. The robust AWF SR processing
detects any local motion and performs single frame restoration in
those areas.

In order to compare detector types we have downsampled the
imagery by a factor of 2 in each dimension, yielding an effective
pitch of p = 30 μm and Q = 0.6. By simply downsampling,
we are obtaining square detectors with effective fill factors of
approximately 25%. To simulate 100% fill factor square detectors,
we average sets of 2 × 2 native pixels prior to downsampling.
This averaging lets us obtain pixel values similar to what a single
larger active area detector would produce. In this way, we can
compare large and small fill factor detectors using an identical
scene, optics, read-out electronics, and camera motion. All of the
MWIR SR results use K = 16 and L = 3.

The first set of MWIR results is shown in Figure 27. The
imagery shows a resolution pattern. The top set contains
decreasing 3-bar patterns horizontally and vertically oriented.
The scaling is such that moving 6 groups to the right corresponds
to a doubling of spatial frequency. The bottom patterns are 4-
bar patterns horizontally and vertically oriented. Here, every 4
patterns corresponds to a doubling of spatial frequency. The
native p = 15 μm image is shown in Figure 27F, and an
ROI of this image is shown in Figure 27E. An L = 3 bicubic
interpolation of a single simulated 100% fill factor detector image
at p = 30 μm is shown in Figure 27A, and the corresponding
25% fill factor image is shown in Figure 27B. Again, increased
aliasing artifacts are evident in Figure 27B. In both of these
interpolated images, the last discernible 3-bar pattern in both
orientations is 14 patterns from the right. For the 4-bar target,
the last discernible pattern appears to be 10 from the right. The
AWF SR results for the 100% and 25% fill factor images are shown
in Figures 27C,D, respectively. With SR, the last discernible 3-
bar pattern is 9 from the right for the 100% fill factor, and
7 from the right for 25% fill factor. The last discernible 4-bar
pattern with SR is 7 from the right for the 100% fill factor, and
5 from the right for 25% fill factor. Thus, we see that the SR

TABLE 2 | PSNR results for AWF SR with K = 16 frames and L = 4 using a variety of 8 bit test images with a simulated MWIR imaging system with
Q = 0.50 from Table 1.

Image name PSNR

100% Fill factor Rect (a = 15.00 μm) Circ (b = 18.30 μm)

Bicubic AWF SR Bicubic AWF SR Bicubic AWF SR

Chirp (Figure 21) 11.8745 15.2495 11.8735 19.3619 11.8843 19.3508

kodim05.png (Figure 22) 21.1634 25.1547 21.3748 26.8084 21.3788 26.8360

kodim08.png 19.0177 22.5758 19.0918 24.3093 19.1035 24.3610

kodim13.png 20.3078 22.8358 20.3585 24.1589 20.3720 24.1701

kodim19.png 23.1418 26.9054 23.1200 28.1787 23.1472 28.2746

kodim21.png 23.9201 27.0373 23.9628 28.2626 23.9877 28.3251

kodim22.png 26.0118 28.8053 25.9628 29.6678 26.0027 29.7678

kodim23.png 28.7221 32.1974 28.6590 32.3456 28.7234 32.5606

kodim24.png 23.0289 25.7770 23.0741 26.9917 23.0947 27.0324

Bold entries in the table represent the best performance for that image.
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FIGURE 27 | ROI from real MWIR sensor data of resolution chart.
(A) L = 3 bicubic interpolation of simulated 100% fill factor detector
image at p = 30 μm; (B) bicubic interpolation of simulated 25% fill factor
detector image at p = 30 μm; (C) K = 16 and L = 3 AWF SR using
100% fill factor detectors; (D) K = 16 and L = 3 AWF SR using 25% fill
factor detectors; (E) native sensor image with p = 15 μm; (F) larger native
sensor ROI.

processing provides an approximately 2× increase in objective
resolution, and the reduced fill factor provides an objective boost
in resolution compared with 100% fill factor.

The final set of results is in Figure 28 and Video 1.MOV and
shows bleachers at Great American Ball Park in Cincinnati. The
native p = 15 μm image is shown in Figure 28F, and an ROI
is shown in Figure 28E. An L = 3 bicubic interpolation of a
single simulated 100% fill factor detector image at p = 30 μm
is shown in Figure 28A, and the corresponding 25% fill factor
image is shown in Figure 28B. Again, increased aliasing artifacts
are evident in Figure 28B. The AWF SR results for the 100% and
25% fill factor images are shown in Figures 28C,D, respectively.
Note that the horizontal bleacher rows are far more discernible
in the SR image with 25% detectors, compared with 100%. There
is a slight increase in noise, as expected, with the 25% detectors.
However, the boost in resolution is very noticeable.

FIGURE 28 | ROI from real MWIR sensor data of bleachers at Great
American Ball Park in Cincinnati. (A) L = 3 bicubic interpolation of
simulated 100% fill factor detector image at p = 30 μm; (B) bicubic
interpolation of simulated 25% fill factor detector image at p = 30 μm; (C)
K = 16 and L = 3 AWF SR using 100% fill factor detectors; (D) K = 16 and
L = 3 AWF SR using 25% fill factor detectors; (E) native sensor image with
p = 15 μm; (F) larger native sensor ROI.

6. Conclusions

In this paper, we have analyzed the impact of detector element
active area shape and size on sampling and SR post processing.
For 100% fill factor detectors in an imaging system with Q <

1, the detector MTF includes a zero in the band of spatial
frequencies that are potentially recoverable using multiframe
SR. The basic idea is that reduced fill factor detectors sacrifice
signal level, but provide a more favorable overall MTF by
pushing the detector MTF zero out toward or beyond the optical
cutoff frequency. Post-processing with multi-frame SR can then
exploit this expanded spatial frequency content for resolution
enhancement. The results in Section 5 show that when a relatively
high SNR is available, by virtue of high ambient signal levels and
suitable integration times, we can trade some of the high SNR
for an improved detector MTF using low fill factor detectors. In
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a high SNR environment, the optimum detector size is found to
be one where the first detector MTF zero is close to the optical
cutoff frequency. Thus, our recommendation is that the design of
detector active areas be guided by the Q-value for the sensor, if SR
is to be used. In particular, for rectangular detectors on imaging
systems with Q < 1, we recommend active area dimensions of
approximately a1 = p1Q and a2 = p2Q to put the first detector
zero at the optical cutoff frequency. Circular detectors appear to
have a slight advantage over rectangular detectors. For circular
active area detectors, the first detector MTF zero is located at
optical cutoff frequency for b1 = 1.22p1Q and b2 = 1.22p2Q. In
this way, the active area of circular detectors is 1.222π/4× larger
than that of corresponding square detectors. For an imaging
system with Q ≥ 1, the first 100% fill factor detector MTF zero
is not within the SR folding frequency. Thus, for such systems,
there may be no compelling reason to employ reduced fill factor
detectors. When reduced active area detectors are used, the extra
real estate on the FPA can be used for division of FPA sensing,
used as a guard band to minimize diffusion (pixel cross-talk),
and/or to allow for opaque electronics. A final note of caution
is that with reduced active area detectors we see an increase in
aliasing in the observed raw frames. This is due to a decreased low
pass filtering effect from detector integration. This can increase
the difficulty of discriminating true local scene motion from
aliasing artifacts for robust SR [11]. As always, a suitable balance
is needed based on the priorities of the sensor application.
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A video showing the MTFs in Figures 11, 13 with variable fill
factor ranging from 100% to 0% is provided in Video 2.MOV.
This video shows how the zero of the detector MTF moves to
higher spatial frequency as the fill factor is reduced. Thus, the
overall MTF is more favorable. A similar video showing the MTF
from Figure 15 with scaling relative to 100% fill factor detectors
is provided in Video 3.MOV. Here the gain relative to the 100%
fill factor detector is incorporated. Thus, as the detector zero
moves to higher spatial frequency, the overall system gain goes
down. However, for a system with a high SNR, this trade can be
beneficial.

A video showing the MWIR results for Great American
Ball Park from Figure 28 is provided in the file Video 1.MOV.
The upper left hand corner is 100% fill factor single frame
bicubic interpolation and the upper right hand corner is the
robust AWF SR output using 100% fill factor detectors (when
the red box appears). The lower left hand corner is 25% fill
factor single frame bicubic interpolation and the lower right
hand corner is the robust AWF SR output using 25% fill
factor detectors (when the red box appears). The increase
in resolution is apparent with the 25% fill factor detectors,
but also an increased in noise. Note also that the robust
AWF SR processing is allowing for the local motion of the
pedestrians [11].
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