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A commentary on:

Rotating structures in low temperaturemagnetized plasmas – insight from particle simulations

by Boeuf, J. P. (2014). Front. Phys. 2:74. doi: 10.3389/fphy.2014.00074

In a recent paper [1], Boeuf has addressed the question of electron transport in low temperature
E × B discharge devices using PIC MCC simulations. Using a general approach, it has been
demonstrated that particle simulations can be an extremely powerful tool to unravel some of the
mysteries of electron transport in these devices. Even through the aim of the paper was not to
provide a complete review of instabilities and anomalous transport in low-temperature E × B

discharge devices but rather to address these questions on a few specific examples, one of the
examples—electron vortices at low pressure—deserves some comments. This is because of a lack
of connection in [1] between PIC MCC simulation results and a large volume of experimental data
on the subject. In particular, discussion on the results of Abolmasov et al. [2] (cited as Ref. [18] in
Boeuf ’s paper) that describe different type of instability/oscillations as shown below is misleading.

Kaganskii et al. [3] were perhaps the first who noticed that Penning discharges in argon at
low pressures can exhibit two types of oscillations. In the majority of cases, the oscillations are
incoherent, radio-frequency, with a broad spectrum of frequencies present at the same time. The
frequency of these oscillations is gas pressure independent and scales with the electric andmagnetic
field in the same manner as the frequency of diocotron instabilities (ν ∝ E/B) [4]. It appears that
electron vortices revealed by 2D PIC MCC simulations in low pressure cylindrical magnetrons
[1] have very similar features. The vortex dynamics is usually chaotic (see Figure 4 in Boeuf [1]),
which explains irregularity in the observed current curves (Figure 5 in Boeuf [1]). However, there
are certain conditions under which the Penning discharge in argon acts as a source of intense,
coherent, almost sinusoidal oscillations in the range of 1–100 kHz [3]. Similar coherent, low-
frequency oscillations have been observed in inverted magnetrons [5] and in an anode layer ion
source (ALIS) [2]. In contrast to the rf oscillations, the frequency of these oscillations is gas pressure
dependent and scales with pressure and magnetic field in the same manner as the classical cross-

field electron mobility (µe⊥ ∝ p/B2) [4]. Despite these differences, both types of oscillations result
in the production of excess-energy electrons that move along the magnetic field to the electrodes at
the cathode potential. It is interesting therefore to pose the question of whether the mechanism of
the two types of oscillations is the same.

Diocotron instabilities are inherent to low-density, pure electron plasmas with “shear” in the
flow velocity. A classic example of diocotron instability is a low current, low energy, annular
electron beam radially confined in a uniform axial magnetic field [6], which is geometrically similar
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to an anode sheath in E × B discharges. A striking feature
of this experiment is that the diocotron instability distorts the
beam as it propagates axially. In this particular case, by using
an axial length of z = 7 cm, the beam has broken up into a
discrete set of vortex filaments. The more intense and energetic
is the beam, the longer the distance for the instability onset
[7]. Consequently, the axial length of E × B discharge devices
might be an important parameter for the formation of diocotron
instabilities/vortex structures in the electron sheath. In the paper
of Boeuf [1], the 2D simulation domain was perpendicular to
the external magnetic field and the 3rd dimension was taken
into account in a simplified way assuming that the length of
the plasma column is much larger than its radius (=2 cm).
Obviously in this case there is no limitation for the formation
of vortex structures. It should be emphasized however that the
ratio of the anode/cathode length L to its radius R is indeed
an important parameter of E × B discharge devices such as
Penning cell and cylindrical/inverted magnetron since it affects
the potential distribution inside the device [8]. Interestingly,
in the work on vortex structures [9], Kervalishvili has used an
inverted magnetron with the cathode length and radius of 7 cm
and 3.2 cm, respectively (L/R = 2.19). However, in his earlier

work on anode sheath instability [5], in which coherent, low
frequency oscillations were observed, an inverted magnetron had
L = 5 cm and R = 4 cm, resulting in L/R = 1.25. On the other
hand, the dimensions of discharge channel in ALIS in Abolmasov
et al. [2] did not exceed 1 cm, making the electron vortex
scenario of coherent oscillations in this case unlikely. Therefore,
to explain such oscillations a 1D theory has been proposed [2].
The theory states that coherent, low frequency oscillations in E

× B discharge devices are not caused by diocotron instability but
are the result of periodic travel of the electron sheath through
the discharge gap. Note that this type of oscillations only appears
when the electron density in the sheath reaches a critical value
n0 [5], which is typically ≥1011 cm−3. However, 1D PIC MCC
simulations in Boeuf [1] did not reproduce such oscillations.
A possible explanation to this could be the electron density
limit of PIC MCC simulations ∼1010 cm−3. In the future along
with the development of massively parallel PIC MCC simulation
tools it would also be of interest to implement transparent
conductive oxide electrode(s) in E × B discharge devices and
use streak/gated cameras (see, e.g., Anders et al. [10]) to further
clarify the electron sheath dynamics and benchmark theoretical
models.
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