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Intermittent fluid pulses in the Earth’s crust can explain a variety of geological phenomena,

for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually

modeled as continuous Darcian flow, ignoring that sufficient fluid overpressure can cause

hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic

fracture networks are largely self-organized: opening and healing of hydraulic fractures

depends on local fluid pressure, which is, in turn, largely controlled by the fracture

network. We develop a crustal-scale 2D computer model designed to simulate this

process. To focus on the dynamics of the process we chose a setup as simple as

possible. Control factors are constant overpressure at a basal fluid source and a constant

“viscous” parameter controlling fracture-healing. Our results indicate that at large healing

rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface

and displaying a 1/fα behavior. Low healing rates result in stable networks and constant

flow. The efficiency of the fluid transport is independent from the closure dynamics of

veins or fractures. More important than preexisting fracture networks is the distribution

of fluid pressure. A key requirement for dynamic fracture networks is the presence of a

fluid pressure gradient.

Keywords: hydraulic fracturing, fracture network, fluid flow, intermittent fluid flow, Earth’s crust, dynamics fracture

network, hydraulic breccia

Introduction

Fluid flow in the Earth’s crust is evidenced by a variety of geological phenomena, including
veins and hydraulic breccias. Veins are dilatant structures, typically fractures, filled with minerals
that precipitated from fluid (see review of [1], and references therein). Hydraulic breccias are
fragmented rocks where the fragmentation is mainly caused by chaotic fracturing due to fluid
overpressure [2–5], as opposed to tectonic breccias where the diminution is due to tectonic stresses,
typically along faults [6–8].

Both veins and breccias usually show evidence for repeated fracturing. Veins commonly
exhibit microstructures that are indicative of the “crack-seal mechanism” [9], where a
crack repeatedly opens and is subsequently sealed again by mineral growth (Figure 1).
This crack-sealing, which can be repeated thousands of times in a single vein, indicates
that fluid flow is not continuous, but intermittent: fluid pressure builds up to exceed
the tensional strength of the rock and cause failure, after which flow can occur until
the fracture permeability is sealed off again [9–13]. Hydraulic breccias also typically show
indications of repeated fracturing in the form of clasts in clasts and brecciated cement
[4, 14].
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Although evidence for intermittent fluid flow is abundant,
relatively little is known on the duration of and time spans
between fracturing events. An indirect indication can be achieved
by considering fluid flow velocities and total fluxes. Theoretical
considerations of fracture propagation velocity, and hence
velocity of contained fluid, range from m/yr to m/s [15, 16]. The
large range is mostly due to uncertainty in the fracture toughness
of rocks. Field observations suggest that flow velocities can reach
the upper end of the range. For example, [17] and [18] estimated
flow velocities of 0.01–0.1m/s from the size of grains that were
carried up by the fluid. Using similar arguments, [24] derived
flow velocities in excess of 5 m/s in a fluidized breccia with
m-sized clasts from the Cloncurry District, Australia.

Weisheit et al. [4] describe a hydraulic breccia, the Hidden
Valley Breccia, Australia, that is 10 km2 in outcrop and contains
clasts that range from<0.1mm to>100m in size. It formed over
a period of more than 150 million years, as basement gneisses
were exhumed in this area by over 12 km [19]. The estimated
amount of fluid to have produced this breccia is about 20 km3.
Assuming a porosity of 10% and a flow rate of 1m/s, at the upper
end of the aforementioned range, the estimated duration of flow
(1t) would only be about 2100 s, or a mere few hours. This
is a minute fraction of the >100 million years it took to form
the breccia. Even if the flow rate was 1 m/yr, the total duration
would only be about 2100 years. Fluid flow must therefore have
been highly intermittent with only very occasionally short bursts
of flow, and extremely long periods of pressure buildup. This
mechanism can result in dense networks of veins composed of
many crack-seal events that formed over long periods of time
[e.g., 20].

Intermittent flow is predicted to occur when the matrix
permeability of a rock is insufficient to accommodate fluid flow
[21, 22]. This leads to an increase in fluid pressure and opening
of hydrofractures. When exceeding a critical length, these can

FIGURE 1 | Microphotograph and sketch of a crack seal vein from

fossiliferous Cretaceous limestone in the Jabal Akhdar Dome, Oman

[20]. (A) Overview of one half of the vein, composed of hundreds of

individual crack-seal veinlets. (B) Distributed crack-seal veinlets, each tens

ofµm in width are visible in a close up. (C) Schematic development stages

of the vertcially stretched fossil fragment in (B). The actual order of fracture

events cannot be determined from the thin section image. Plane-polarized

light.

become mobile by propagation on one end and closure at the
other. Such “mobile hydrofractures” thus propagate together with
their contained fluid and can reach velocities in the order of
m/s [16, 22, 23]. Possible fluid sources which may generate the
necessary fluid pressure for hydraulic brecciation and hydraulic
fracturing are fluid released by igneous intrusions [24], fluid
release due to decompression [25, 26] or mineral dehydration
reactions [27]. Dehydration of the mineral biotite appears to be
the main fluid source in case of Hidden Valley [4].

In contrast, classically large-scale fluid flow is assumed to take
place by slow, convective fluid percolation, typically driven by
topography or thermal instabilities, for example due to igneous
intrusions [28, 29]. Such convective flow requires a fluid pressure
that is close to hydrostatic, which is incompatible with the high,
supra-lithostatic fluid pressures required to fracture rocks to
produce veins and breccias [1].

A number of numerical models for hydrofracture formation
exist already [30, 31] while new models are continuously
developed [e.g., 32–36]. The current interest in these models
is mainly triggered by the enormous economic importance of
artificial hydraulic (aka “fracking”) as a means of oil and gas
extraction. However, these models are focused on the micro- to
meso-scale, where single cracks and fractures can be numerically
resolved. Existing numerical models for crustal scale flow, on
the other hand, do not consider the interplay between fluid
flow and hydraulic fracturing, but assume that the intrinsic
matrix permeability of rocks is the only relevant parameter
[e.g., 37–39]. Miller and Nur [21] developed a crustal scale
cellular automaton model which was able to capture the general
dynamics of large scale hydraulic fracture networks, but wasn’t
based on realistic concepts for fluid propagation and closing of
fractures.

To our knowledge, the numerical model developed and
applied in this study is the first discrete crustal scale 2D
model which integrates fluid flow dynamics and hydrofracture
formation. This setup permits modeling of dynamic hydraulic
fracture networks and the derivation of the key control factors.
The setup is intentionally simple compared to the “real”
crust, since we are interested in the general characteristics
of the fracture patterns and the efficiency of the transport
mechanism.

Below we first show that the transport mechanism of crustal
fluid must include hydraulic fracturing in order to explain the
hydraulic rocks at Mount Painter. In a second step we investigate
the hydraulic fracture patterns which develop in a simplified
crust in a 2D model. We exclude the consideration of finer
geological intricacies in the model, e.g., geological layering. Of
more importance in this context are the influence of a crustal
scale pressure gradient and the rate of closure of hydraulic
fractures.

Fluid Flow and Hydraulic Fracturing in the
Earth’s Crust

The basic law governing laminar fluid flow q over a distance L
through porous media is Darcy’s law:
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q = K
1

(

Pf − ρH2Ogz
)

L
, (1)

where ρH2O is the density of water, Pf the fluid pressure, g earth’s
acceleration, K the hydraulic conductivity, L the distance and z
the height difference between start point and end point of the
fluid flow. In case of vertical fluid flow, and with reference to the
surface, L= z and Pf ,surface = 0.

It is commonly assumed that fluid overpressure causes tensile
fracturing [e.g., 33, 40, 41, 43]. Therefore, fluid pressure is non-
destructive as long as one of the following relation holds, which
are commonly applied fracture conditions [compare for instance
[33, 44, 47]:

Pf < σ3 + Pcr (2)

or

σ1 − σ3 ≥ 4Pcr (3)

where σ1 and σ3 are the maximum and minimum principal
normal stress in the solid and Pcr is the tensile strength of the
material. Here, tensile stress is negative.

The state of stress in the crust is probably among the most
controversial issues in geology/geophysics. While it is generally
safe to assume hydrostatic conditions for the fluid pressure, the
conditions for solid stress in the crust are a topic of continuous
debate. Elastic theory links uniaxial vertical loading stress to the
horizontal stress via a function of the Poisson ratio µ, which is
typically about 0.2–0.3 for geological materials. However, new
data [48] suggests that solid stress in the crust is approximately
isotropic if external tectonic stress is absent and below c. 1000m
depth., i.e., σ3 ≈ σ1. The reason is that the loading stress is mainly
compensated by brittle plastic deformation at this depth.

We apply this criterion in the numerical model, which
means that we effectively adapt the so-called lithostatic stress
model [e.g., 49], which assumes isotropic solid stress conditions.
This choice has been partly made because one of the specific
aims of this study was to use a simplified model, and to
focus on the driving forces. The driving force for hydraulic
fracturing is mainly the fluid pressure, independent of a specific
crustal stress model, due to the nature of the fluid pressure
gradient.

This means that the modeled solid stress field is probably
not exactly correct very close to the surface. However, the range
of possible horizontal stress values that has been reported is
large and includes the isotropic stress case (σv/σh = 1) till
approximately 250m depth [48]. Since we are concerned with
the fluid flow at a larger depth rather than in surface vicinity,
this was considered an acceptable compromise. This compromise
deems even more acceptable as we have to assume a permanent
open fracture network close to the surface, whose non-dynamic
behavior is not within the scope of interest for this study.

Under these conditions the criterion for failure is simply:

− Peff > Pcr, (4)

where Peff = σ3 − Pf is the effective pressure. The overpressure
Po is defined as Po = −Peff , if Peff < 0. Obviously, hydraulic
fracturing occurs if Po > Pcr .

FIGURE 2 | (A) Idealized pressure gradients in the Earth’s crust. Due to its

higher density, the lithostatic (solid) pressure increases with depth faster than

the hydrostatic (fluid) pressure. The effective pressure (Peff = Ps − Pf ) is

in-between. (B) Formation of mobile hydrofractures [after 1]. The different

pressure gradients of fluid and solid lead to fluid overpressure in the upper part

of a fracture and to fluid underpressure at the lower part of the fracture. The

fracture moves upward. Please note that the average fluid pressure in a

hydraulic fracture is identical to the pressure in the solid.

Figure 2A shows the idealized increase of fluid and solid stress
with depth. Due to different gradients of fluid pressure and solid
pressure (Ps) the difference between Peff and Ps increases with
depth. Therefore, at large depth a required fluid pressure in order
to initialize hydraulic fracturing is larger than at a shallower
depth. This has the additional effect that the fluid pressure
gradient in the vicinity of a fluid source is often higher at large
depth than it is at shallower crustal levels, resulting in larger flow
velocities on fractures at depth (Equation 1). Another effect of
the different fluid and solid pressure gradients is the potential
formation of mobile hydraulic fractures (Figure 2B, [1]).

Equation (1) in combination with the criterion for hydraulic
fracturing (Equations 2–4) permits the calculation of the
necessary minimum conductivity that crustal rocks must have
in order to conduct fluid flow with a given flow rate. A
potential fluid source in the Earth’s crust are metamorphic
dehydration reactions, which are caused by changing pressure
and temperature conditions.

For simplicity we consider the mineral reaction biotite →

feldspar + Fe/Mg-oxide + water as the single fluid source,
which has been suggested for the Mount Painter breccias [4].
We further assume that the reaction occurs at a depth of 16
km depth [e.g., 4, 50]. With a tensile strength of 1MPa [44]
the fluid pressure is very close to the lithostatic pressure if
hydraulic fracturing is initiated. If we assume a volumetric flux of
1 m/s, which has been suggested for Mount Painter, a necessary
minimum conductivity of approximately 6 × 10−5 m/s for the
conducting material follows from Equation (1). The conductivity
of non-fractured crustal material is approximately in the range
of 10−9–10−12 ms/s [43], several orders of magnitude too small
to allow the necessary fluid flow from the source zone to the
surface.

It must be concluded that fluid transport on the scale as
observed at Mount Painter can occur only along fractures.
These fractures may be either stationary or dynamic and mobile,
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TABLE 1 | Material parameters used in the simulations.

Matrix porosity Matrix Fracture Tensile Solid Water density Water Water

conductivity conductivity strength density bulk modulus viscosity

Value 0.01 10−9 m/s 10−2 m/s 106 Pa 2700 kg/m3 1000 kg/m3 2.59 Pa 1.05−3 Pa s

Source [42] [43] [43] [44] [1] [45] [45] [46]

depending on the evolution of the fluid stress field and the rate
of fracture closure/healing once the fluid pressure decreases. If
fractures heal slowly enough, fractures remain open between
intermittent fluid pulses, and the fracture network is therefore
stationary. The most dominant contributions to the closure of
fractures are healing (plastic deformation; [49], see also Figure 4)
and sealing (e.g., due to mineral precipitation or cataclasis; [40]).

Numerical Model

The computer model consists of a 2D section of crustal
dimensions through a material with constant porosity and
conductivity of the undamaged rock matrix, which represents
a simplified Earth’s crust. Fluid flow through porous rocks
and through fractures can be modeled as Darcian flow, using
Equation (1). We solve the Darcy equation with a Monte Carlo
approach applied to an explicit finite difference solution on a
regular square grid, which allows the computation of fluid flow
in highly anisotropic and heterogeneous media. The nodes in
this grid represent fractured or undamaged material with two
different predefined hydraulic conductivities (Table 1). Fractures
can be either horizontally or vertically oriented, therefore the
fracture conductivity is anisotropic.

Fracture nucleation and fracture propagation are distinctly
different steps in the simulations. Nucleation takes place once
fluid pressure at a node is sufficiently high to cause fracturing
in either the horizontal or vertical direction, according to the
fracture criterion outlined in Equations (2–4). In order to model
the inherent disorder of the material, Gaussian noise is applied
to the tensile strength of the nodes and to the conductivity of
fractures. The solid stress is considered to be isotropic (see cp the
discussion in Section Fluid Flow and Hydraulic Fracturing in the
Earth’s Crust), meaning that fracture nuclei increase conductivity
in both directions, horizontal and vertical.

In the numerical model a layer of constant overpressure
at the lower model boundary serves as the fluid source. This
allows us an assessment of the efficiency of the fluid transport
in the system as the effective conductivity of the system
once the system reaches a state of dynamic equilibrium. We
coined the term “effective conductivity” for this study, which
describes the averaged conductivity from the source at the lower
boundary to the sink at the surface. Other fluid sources, for
instance a constant production of fluid mass instead of constant
pressure, wouldn’t allow a similarly simple description of the
system.

The overpressure at the lower system boundary is freely
selectable in each simulation. The rate of fluid production is
therefore a direct function of the efficiency of the fluid transport

FIGURE 3 | Fractures propagate if the fluid pressure at a neighboring,

already fractured node is larger than the local fracture criterion. Here, a

vertical fracture propagates from layer 1 to layer 2, where it is arrested. σH,

horizontal solid stress; Pf , fluid pressure; Pcr , critical stress.

from the source to the surface. Geologically, this might represent
a pressure controlled fluid-producing mineral reaction.

Nodes are assumed to be mechanically coupled, which is
a typical assumption for the formation and propagation of
hydraulic fractures [e.g., 40, 51]. Thus, fractures propagate if the
fluid stress at an already fractured node is sufficiently high to
fulfill the fracture condition at a neighboring node too:

Pns−Pf<Pncr,

where the superscript n refers to the neighbor node (Figure 3).
Time stepping is often a non-trivial issue in the modeling

of geological processes, where long-term processes cause and
interact with dynamic processes on far shorter time scales.
The computer simulations use adaptive time steps with a fixed
maximum 1tmax. Time steps 1t are determined by an estimate
of the minimum time it takes to build up sufficient pressure at the
existing fracture tips to cause further fracture propagation. If this
time estimate is larger than 1tmax, 1t is set to 1tmax.

Closing and healing of fractures is a complex process, which
involves elastic and viscous closure of the fracture and dissolution
and precipitation of minerals within the fracture former fracture
aperture. Here we assume that a fracture is closed by viscous
flow of the solid matrix into irregularities of the fault surface
once Peff > 0 only, an assumption which is suitable for the
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FIGURE 4 | Model for the closure of a fractured area by viscous flow of

the solid into the fractured rock. The fracture is assumed to be formed by

fractured clasts rather than by clear cut fracture walls. These clasts act as

barriers against a simple elastic closure of the fracture once fluid pressure

within the fracture zone is smaller than the solid pressure. Therefore, the

fracture closes by viscous flow of the surrounding rock into the cavities made

up by the clasts.

given fundamental assumption of damage zones or tectonic
breccias rather than discrete faults with clear cut parallel walls
(cp Figure 4). Because the impact of the fracture closure rate on
the dynamics of the fracture network is one of the major interests
in this study, the solid viscosity is considered homogeneous
throughout the entire system. The fracture aperture is a function
of the former fluid overpressure in the fracture and is calculated
by a solution adapted fromMaugis [51].

Setup of Numerical Simulations and
Results

General Setup
Material parameters are compiled in Table 1. The following
parameters are identical in all conducted simulations: the system
size is 8000 (horizontal) by 16,000m (vertical), with a distance
1l between fluid source and fluid sink of 15,750m. A resolution
of 100 × 200 grid points is commonly used, but has been
occasionally compared to results with a solution of 150 × 300 in
order to test the resolution dependency of the model. Gaussian
normal distribution on the tensile strength of nodes assumes a
mean strength of 1MPa and a standard deviation of 0.1MPa. The
basal source layer with constant fluid overpressure Po = const
and the fluid sink with Pf = 0 Pa are located at opposed system
boundaries.

Modeling of individual fractures and fracture planes in a
crustal scale model requires a resolution which is not achievable
with today’s computational equipment. The model therefore

assumes that fractures form as fracture networks and affect the
entire area defined by a gridpoint. Comparing the results from
simulations with different resolutions did not show a change
of the system behavior regarding fracture mobility and fluid
transport efficiency.

In order to test the influence on the dynamics of the fracture
network, Po of the fluid source is varied between 0.5 and
2.0MPa during the simulations and the solid viscosity ν between
1017 and 1023 Pa s, which can be assumed to be close to
the geologically realistic lower and upper limit [52, 53]. We
assume here that fractured nodes have the same conductivity as a
typical sedimentary breccia [54–56], since fracturing in the crust
typically results in the formation of a damage zone rather than an
isolated fracture plane [34, 57].

The choice of a crustal stress model is a rather difficult one
since the topic is still under intense debate. The model assumes
a isotropic lithostatic solid stress, which is probably a good
approximation in case of a vertical crustal section, given that the
depth is considerably larger than ∼1 km and external tectonic
forces are absent (compare discussion in Section Fluid Flow
and Hydraulic Fracturing in the Earth’s Crust). This assumption
ignores natural variations in the horizontal stress field, which are
frequently observed drill-holes, but are difficult to quantify in a
model [58, 59].

Experiments in a System without Pressure
Gradient (“Horizontal” Profile)
In order to test the influence of the pressure gradient on the
dynamics of fracture formation and propagation, we compare
the time evolution of hydraulic fractures through a vertical 2D
section through the crust (1z = 16.000 m) with a horizontal
section (1z = 0 m). Fluid stress is constant in the case of a
horizontal section, i.e., dPf /dL= 0.

Figure 5 displays the resulting hydraulic fracture pattern, the
fluid mass change with time (1mf /t) and the fractured area in the
horizontal system. The fluid source is located at the left system
boundary with a constant overpressure Po = 1.2MPa while the
sink is at the right of the system. Thus, the hydraulic head over
the entire system length is 1H = 1P = 1.2MPa, identical to
simulations set in a vertical profile.

The final fracture network that develops in these experiments
is stationary. Close to the source a fracture front develops, which
is replaced by individual fractures once the front reaches a certain
distance from the sink (Figure 5). Fractures do not close once
formed but maintain sufficient fluid overpressure to keep existing
fractures open.

If fractures penetrate the sink, a large amount of fluid is
quickly drained into a fluid burst, creating the large negative
peaks in Figure 5B. Once a sufficient number of fractures reach
the sink, an equilibrium between fluid production and fluid
drainage is reached and the fluid mass remains approximately
constant (Figure 5, constant conditions are reached from 3000
years onward). From this point on the fracture pattern is
stationary. Due to the constant fluid overpressure in fractures, the
fracture viscosity is irrelevant to the development of the fracture
network and the fault patterns are identical whether ν = 1017

or 1023 Pa s. Negative spikes in the fluid mass change between
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FIGURE 5 | Final fracture pattern (A), fluid mass change with time

(1mf /t) (B) and total fractured area in % (C) in an simulation where the

hydraulic fracture propagation is calculated for a horizontal 2D section

through the crust, i.e., in the absence of an initial pressure gradient.

The situation is somewhat similar to flow to a well. Low viscosity conditions

(ν = 1017 Pa s), i.e., fractures close quickly. (A) Fractured nodes are white.

Fluid source is a constant layer with constant fluid pressure Pf = 1.2 MPa at

the left boundary of the model, the sink is at the right boundary with constant

Pf = 0 Pa, similar to experiments with vertical fracture propagation. Fractures

propagate until the source is sufficiently connected to the sink, at which point

flow becomes stable. The fracture network is stationary, even though the

viscosity is low. The fluid mass in the system remains constant from this point

on (B). Negative peaks are created by rapid drainage of the system fluid mass

when a fracture reaches the other side and fluid pressure is rapidly released.

From 3000 a onwards no further fracturing occurs. (C) Propagation of the

fracture front is fast at the beginning, then slows down and converges against

zero, which is indicated by a constant percentage of fractured material in the

system.

1500 and 2700 years (Figure 5B) correlate with the permanent
opening of single fractures, which cause sudden and very efficient
drainage resulting in a short dewatering event. Once the fracture
network is efficient enough to provide continuous pathways from
the source to the sink, both the fracture distribution and the fluid
mass in the system remain constant.

Unlike the vertical experiments described below, we were
unable to establish a permanent pulsating regime in these
experiments. If the fluid pressure at the source is to small,
flow occurs within the rock matrix. If pressure is high, a stable
fracture pattern develops, where the total number of fractures
increases with the pressure at the source. Dynamic flow and
fracture formation, however, seem to rely on the presence of a
fluid pressure gradient, as in the numerical simulations discussed
below.

Experiments with Fluid Pressure Gradient
(Vertical Profile)
If basal fluid overpressure is sufficiently large (starting already at
Po ≈ 0.8MPa, due to the noise on the tensile strength), hydraulic

fractures form and drain the fluid produced at the basal fluid
source toward the surface. In all experiments the fractured area
increases until the fracture network is efficient enough to create
equilibrium between fluid production at the basal fluid source
and fluid drainage at the surface.

Two sets of simulations have been computed: one set with ν =

1017 and 1023 Pa s (Figures 6–10). A detailed description follows
in the sections below. The fluid overpressure of the fluid source
was varied between 0.5 and 2.0MPa. The characteristic values
in Figures 6, 9—the fractured area and the balance between
fluid production and fluid drainage 1mf /t—reach near-stable
plateaus with recurring patterns, indicating that the system
is in a dynamic or stable equilibrium (discussed in Section
Intermittency of Fluid Flow).

Low Viscosity Simulations (Quick Fracture Healing)
Results for a viscosity mode (ν = 1017 Pa s) are displayed in
Figure 6. At 0.85MPa basal overpressure stationary hydraulic
fractures form at locations with low tensile strength and
propagate upwards from there. Although these fractures are
spatially stationary, they are in a dynamic equilibrium as their
tips open and close periodically.

Increasing the basal overpressure to 0.9MPa leads to the
formation of vertical mobile fracture clusters, which transport
fluid pulses to the surface. The horizontal location of these
vertical pathways is stationary and depends on the distribution
of the tensile strength at the boundary layers between fluid
source and non-fluid producing rock matrix. With increasing
overpressure the horizontal width and the vertical extend of
the fractured areas increase, and accordingly the total amount
of fractured rock material. At a basal overpressure of approx.
1.8MPa the system is completely fractured and fracture are
stationary.

At the beginning of each low viscosity simulation fluid is
transported by small mobile hydraulic fractures along distinct
vertical pathways. These pathways are defined by the tensile
strength at the interface between fluid source and rock matrix.
These mobile fractures precede the fracture front and lead to
permanent elevated fluid pressure along these vertical lines
(Figure 7, right). Fractures propagate from both the surface,
where effective stress is close to zero, and from the sink. With the
onset of fracture formation at the surface in the more dynamic
system with ν = 1017 Pa s, fluid is more efficiently drained and an
intermediate plateau in the development of the fluid mass change
with time 1mf /t is reached.

It is not intuitively clear why fractures form far from the fluid
source and close to the surface (Figure 7, left panel). The reason
is the increase of the fluid pressure along the fluid pathways
(Figure 7, right panel). This permanent increase, coupled with
flow enabled by the background permeability of the material,
leads occasionally to fracturing even if the fluid source is
in a distance. This phenomenon affects primarily rocks at a
shallow depth, because the necessary increase in fluid pressure
is comparatively low.

The interplay of the fracture network with the stress field
is visible in Figure 8, where the effective stress is displayed
at a random time after the system reached the state of
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FIGURE 6 | Final fracture pattern, fluid mass change (1mf /t) and total

fractured area in % in experiments with vertical hydraulic fracture

propagation at low viscosity ν = 1017 Pa s. Fractured nodes are white.

Fluid source is a constant layer with constant fluid overpressure at the

bottom boundary of the model. The sink is at the top boundary with constant

fluid pressure Pf = 0 Pa, representing a free surface. With increasing

overpressure, the total fractured area increases until the entire system is

damaged. Fracture clusters are dynamic and are mobile in the vertical

direction, moving upwards. The horizontal position is fixed and determined

by the Gaussian noise. Stable fracture patterns occur at fixed basal

overpressures of 0.5 and 2.0MPa. Periodic changes of the fractured area

and of the fluid mass, even after fluid production and fluid drainage are in

equilibrium, illustrate the dynamic nature of the fracture pattern and the fluid

flow. Red line: From the marked time step onward the system is considered

to be in a stable state. Power spectral density in Figure 11 is calculated for

the stable state.

dynamic equilibrium. If hydraulic fractures form only along
distinct vertical pathways (at a basal overpressure of 0.9MPa),
the effective stress along these pathways increases, potentially
boosting formation of future fractures along these lines. Fractures
close at locations where the effective stress is high (cp. Figure 8 at
basal overpressure of 1.1MPa).

High Viscosity Simulations (Slow Fracture Healing)
If the viscosity of the solid phase is increased to ν = 1023

Pa s fracture patterns are near-stationary, regardless of the

overpressure at the source. The stability of the fracture network
results from relatively large time interval which is necessary
to close these fractures in between fluid pulses (Figure 9). The
effective stress field (Figure 10) is a function of the fracture
pattern.

An intermediate plateau of 1mf /t (approximately about
0.005–0.01 kg/s) is reached shortly before the fluid network is
completed. This is similar to low viscosity simulations, but has
a different reason: the plateau is reached once a first front of
distinct hydraulic fractures reaches the surface. The interstitial
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spaces between these fractures function as propagation path for
a secondary fracture front. Once this secondary fracture front
reaches the surface, fluid production and fluid drainage reach a
balanced state and 1mf /t → 0.

Intermittency of Fluid Flow
If a signal is random can be distinguished by the power spectral
distribution (“psd”). Figure 11 displays the psd calculated for the
normalized fractured area of various simulations. The signal is
typical of the forma f−α, with α in the range 1.27–1.95, a clear sign
that the signal is not random white noise, but shows a correlation
in time.

FIGURE 7 | Fracture pattern and effective stress at an intermediate

state of the development of the fracture network with ν = 1017 Pa s.

Vertical experiment with fixed basal overpressure of 0.9MPa (cp. Figure 6). An

initial front of mobile fractures develops early on in the development,

generating columns of increased fluid pressure. This leads to the formation of

vertical hydraulic fractures nucleating at and propagation downward from the

surface, where the difference between hydrostatic fluid pressure and lithostatic

pressure is small (cp. Figure 2).

In two cases the psd in the upper frequency band is non-
linear. This affects simulations with a basal overpressures of
1.1/0.85MPa and a viscosity ν = 1017. This result is most
probably related to issues with relatively small spatial resolution
or time intervals of the simulations. In these cases the α has been
calculated for the linear part only. A value of α = 4.0 results
for the linear region in the lower frequency band in case of the
simulation with overpressure 1.1MPa/ν = 1017, but this value
can be attributed to the error.

Numerical simulations with near-stationary fracture networks
develop α = 0, indicating constant values with some numerical
random noise. This is the case in simulations where basal
overpressure is relatively large (compare Figures 6, 9). Psd plots
whith α = 0 were omitted from Figure 11.

The evolution of the fracture pattern for a particular
simulation (with 0.9MPa overpressure/ν = 1017) is shown in
Figure 12. Figure 12A shows the vertical movement of fracture
clusters in system snapshots from three consecutive years. When
a cluster arrives at the surface fluid drainage occurs. The
alternation with of fracture clusters with healed material causes
the intermittency of the fluid flow. Figure 12B displays the
time evolution of the fracture state of a horizontal section at
4000m depth through a simulation. After c. 400 years the onset
of a fracture pattern can be seen. From then on intermittent
fracturing and healing occurs in almost regular intervals.

Transport Efficiency of Fracture Networks
The efficiency of the fracture network to transport fluid can
be characterized by the hydraulic conductivity over the total
system length from source to sink, which will be termed the
effective conductivity Keff in the following. Keff is calculated from
Equation (1):

Keff =
qL

Psource
f

− ρH2OgL
.

The resulting conductivity of the system in the stable state is
plotted against the overpressure of the fluid source in Figure 13.
Conductivity increases linearly with the fluid overpressure at the

FIGURE 8 | Effective stress fields after equilibrium between fluid

production and drainage is reached in vertical experiments with

viscosity ν = 1017 Pa s. Preferred fluid pathways show heightened fluid

pressure (very good visible at basal overpressure of 0.9MPa). At a basal

overpressure of 1.1MPa, the heightened effective stress in areas of

temporary non-fractured areas is obvious.
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FIGURE 9 | Final fracture pattern, fluid mass change (1mf /t) and total

fractured area in % in experiments with vertical hydraulic fracture

propagation at high solid viscosity ν = 1023 Pa s. Fractured nodes are

displayed in white. Most hydraulic fractures remain permanently open after

their formation, and dynamic. Vertical clusters of hydraulic fractures, as under

low viscosity conditions, do not occur, but continuous fractures develop

connect between fluid source and surface. The vertical distribution of these

fractures is determined by the Gaussian noise. Red line: From the marked

time step onward the system is considered to be in a stable state. The power

spectral density in Figure 11 is calculated for the stable region.

FIGURE 10 | Effective stress field after equilibrium between fluid production and drainage is reached in vertical experiments with high viscosity ν =

1023 Pa s. Fluid pathways are signified by lowered effective pressures.
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FIGURE 11 | 1/fα power spectral density (psd), calculated from the

normalized fractured area in the simulations shown in Figures 6, 9

with Welch’s method. α is calculated by linear regression for the near-linear

intervals in the lower frequency band (red line). Not shown is the psd for

systems where α = 0 (white noise), which was the case for ν =

1017/overpressure = 2.0MPa, ν = 1017/1.0MPa and ν = 1017/1.1MPa (cp

Figures 6, 9). For comparison the psd for a random time series (α = 0). The

psd is close to 1/f if overpressure is small, α increases with increasing

overpressure. The non-linearity at high frequencies of some simulations is

probably related to the resolution and the simulation time.

source layer until it reaches a constant maximum, starting at
an overpressure of approx. 1MPa (Figure 13), which is also the
mean tensile strength of the material.

This means that the mean efficiency of the fluid transport
is independent of the fracture dynamics and the mobility of
fractures. Even before equilibrium is reached, the efficiency of the
different types of fracture networks in terms of fluid extraction
from source to sink is similar (cp. the fluid mass change per time
in Figures 6, 9). The main difference between static and dynamic
fracture networks is the occurrence of fluid pulses in case of a
dynamic fracture network, in difference to near-continuous flow
in case of a stationary network.

Discussion

Dynamics of the Fracture Pattern
The development of dynamic fracture patterns in the computer
simulations—in difference to a stable stationary fracture
network—depends on the following three preconditions:

• The fluid overpressure is close to the mean tensile strength of
the material, otherwise either no fractures form or the entire
system fractures homogeneously,

• A fluid pressure gradient is present, as is the case in vertical
profiles through the Earth’s crust, and

• Fractures close quickly (i.e., the matrix viscosity is low), once
the fluid pressure dropped below the solid pressure of the rock
matrix.

The interface layer between the fluid source and the rock matrix
is particularly important for the dynamics of the process. It
works similar to a valve: once sufficient fluid migrated from the
source into the adjacent rock mass, vertical hydraulic fractures
nucleate and propagate toward the surface, thus transporting
large amounts of fluid in a short period of time. Once the
interface layer is sufficiently drained and the fluid pressure is
lower than the matrix solid pressure, fractures close and the
process starts again. This process leads to a non-random 1/f α type
signal once the system reaches a state of dynamic equilibrium,
with 1 < α < 2.
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FIGURE 12 | Time evolution of fracture clusters, demonstrated with the

simulation using ν = 1017 and a basal overpressure of 0.9MPa (see

Figure 6). (A) Three subsequent snapshots of the fracture pattern. A single

cluster is highlighted for clarity. Note the vertical movement at ∼2000m per

year. (B) Time evolution of fractures in a 1D section through the simulation.

Section line is marked by the red rectangle, located at 4000m depth. Onset of

the fracture/healing process after c. 300. The figure illustrates the intermittency

of the fracture opening/healing process, which is induced by intermittent fluid

flow.

Preferred vertical fluid pathways develop according to
the Gauss distribution at the interface. If a fracture closes,
the fluid it transported is trapped and increases the local
fluid pressure due to the very low matrix conductivity. The
amount of additional fluid which is required to reactivate
these nodes as fractures again is significantly smaller than
in the adjacent material. These areas of heightened fluid
pressure from potential future pathways for hydraulic fractures
and quick fluid transport. Coupled with the non-destructive
background diffusion of the fluid this can even lead to
fracture initiation in a distance to the fluid source (Figure 6,
left).

If the viscosity of the surrounding solid matrix is at 1023 Pa
s fracture closure is typically slower than pressure build up and
hydraulic fracture patterns are stationary. Fluid mass balance
is reached once the fracture network is capable of draining the
entire fluid mass produced at the basal source. At this point the
fractured area and the drained fluid mass converge to constant
values, regardless of specific parameters. Periodic deviations from

FIGURE 13 | Effective conductivity of the total system between source

and sink after equilibrium between fluid production and fluid drainage

exists, drawn against various overpressure values for the basal layer.

Red: slow fracture closure (ν = 1017 Pa s). Blue: fast fracture closure (ν =

1017 Pa s). To avoid scaling problems the conductivity has been normalized by

the highest value of both plots. The development of the conductivity is almost

identical, regardless of the viscosity and the dynamics of the fracture network.

the equilibrium occur if ν is small, and are most significant at a
slight overpressure of approx. 1.1–1.3MPa.

Of particular interest to the dynamics of intermittent fluid
flow are the amplitude and the frequency of fluid pulses.
Pulses occur in simulations with a more dynamic low viscosity
setting, visible in the rate of change of the fluid mass in the
system (Figures 5, 8). The amplitude of fluid burst grows from
low overpressure values till the overpressure is identical with
the mean tensile stress is reached. A further increase of the
fluid overpressure leads to the elimination of fluid bursts with
small amplitudes, but still allows large fluid pulses in regular
intervals.

Comparing the horizontal setup (without a fluid pressure
gradient) to the results derived from vertical setups, it
becomes clear that the fluid pressure gradient is essential
for the development of dynamic fracture networks and fluid
pulses.

The presented numerical method and simulations illustrate
how a dynamic fluid flow systemworks, and the conditions under
which they can efficiently transport large volumes of fluid to
upper levels in the crust. These models are critical to understand
highly complex transport systems, such as the ones responsible
for the formation of large hydraulic breccias or dense networks
of crack-seal veins.

The dynamics observed in the simulations—in particular the
periodic changes of the fluid mass in the system, which was
observed in most setups—might help to explain phenomena
as the initially discussed hydraulic breccia, which depends on
intermittent large scale fluid pulses.

It is of great interest to note that the efficiency of the fluid
transport is virtually independent of the closing rate of the
fractures. This means that velocity and dynamics of the fluid
transport do not depend on the existence and reactivation of
preexisting fracture networks, at least under model conditions.
Potential fluid pathways are characterized by heightened local
fluid pressure, which is a byproduct of previous fluid flow
transport on fractures.
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Summary and Conclusion

Fluid transport in the crust involves the formation of hydraulic
fractures if the fluid overpressure at the source is sufficient.
Geological evidence for this process exists, for instance in form
of crack-seal veins or hydraulic breccias.

We simulated the dynamics of the vertical fluid flow from a
fluid source with a constant overpressure to the surface, including
the evolution of hydraulic fracture patterns. The ability to close
fractures, once fluid pressure is lower than the solid pressure,
is controlled by the matrix viscosity, which is taken to be at
its uppermost and lowermost geologically realistic limits. The
solid stress field is probably approximately accurate below 250m
depth, please note the discussion in Sections Fluid Flow and
Hydraulic Fracturing in the Earth’s Crust and General Setup.

Hydraulic fracture patterns may be either dynamic or stable,
depending on the ability of fractures to close quickly, once the
fluid pressure is released. In the dynamic case hydraulic fractures
form mobile clusters and fluid transport occurs in periodic
pulses. The reason is a valve function of the interface between
fluid source and matrix rocks, where fluid pressure builds up by
Darcian flow until it is sufficient to initiate fracture formation
and quick removal of fluid mass toward the surface. The fracture
dynamics follows a 1/f α pattern, with 1 < α < 2. If fractures
heal slowly, the fracture network is stable and fluid flow is nearly
constant.

The efficiency of the fluid transport is identical in both
cases, regardless of the dynamics of the fracture network.
While the dynamics of fluid flow and fracture formation differs
considerably between the two settings, the efficiency of the fluid
transport is not affected. Both systems have the same effective

hydraulic conductivity. This is even more remarkable since the
overpressure at the fluid source is constant, which means that
the fluid production is entirely controlled by the efficiency of the
transport mechanism. This means, in turn, that the existence of a
stable fracture network is not as important as often assumed, as
long as fluid overpressure is sufficient to initiate fracturing. More
important than a fracture network are areas of heightened fluid
pressure, where a relatively small amount of additional fluid is
sufficient to initiate further fracturing. These areas are generally
created by previous generations of hydraulic fracture swarms.

A key parameter for the dynamic fracture evolution is the
presence of a fluid pressure gradient. In absence of a gradient
fracture, as is the case of the “horizontal” setup, stable networks
are being formed.
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