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Long runout landslides: a solution
from granular mechanics
Stanislav Parez* and Einat Aharonov

Faculty of Mathematics and Sciences, Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Large landslides exhibit surprisingly long runout distances compared to a rigid body

sliding from the same slope, and the mechanism of this phenomena has been studied

for decades. This paper shows that the observed long runouts can be explained quite

simply via a granular pile flowing downhill, while collapsing and spreading, without the

need for frictional weakening that has traditionally been suggested to cause long runouts.

Kinematics of the granular flow is divided into center of massmotion and spreading due to

flattening of the flowing mass. We solve the center of mass motion analytically based on

a frictional law valid for granular flow, and find that center of mass runout is similar to that

of a rigid body. Based on the shape of deposits observed in experiments with collapsing

granular columns and numerical simulations of landslides, we derive a spreading length

Rf ∼ V1/3. Spreading of a granular pile, leading to a deposit angle much lower than

the angle of repose or the dynamic friction angle, is shown to be an important, often

dominating, contribution to the total runout distance. The combination of the predicted

center of mass runout and the spreading length gives the runout distance in a very good

match to natural landslides.

Keywords: long runout landslides, Heim’s ratio, granular flows, granularmaterials, spreading, frictional weakening,

apparent friction

1. Introduction

Landslides are natural hazards responsible for serious damage to life and property. Understanding
their flow would allow us to predict their runout (horizontal travel distance), estimate their energy
and reduce the associated risk. From the mechanical point of view, landslides are granular mass
flowing down a hill slope and on a flat plane while spreading due to internal shear. However, the
mechanical problem of evolution of a granular flow in the configuration depicted in Figure 1 have
not been fully solved yet. In this paper, we give an analytical solution for the case when the slide can
be modeled as a granular flow driven by gravity and mechanical interaction between grains. We
predict the runout distance L and compare the prediction to natural landslides.

Runout of landslides has attracted a lot of scientific interest. The most debated puzzle has been
the “long runout landslides" problem: large landslides exhibit a surprisingly long runout that seems
to violate common frictional behavior. For a rigid block of rock to travel the same distance as
large landslides would require friction coefficient as low as 0.1, i.e., a small value compared to
common friction coefficient of rocks ≃ 0.4–0.7 observed in laboratory scale experiments if no
plastic processes operate.

The energy conservation for a rigid body sliding with constant friction coefficient µC yields [1]
ρgHCOM = µCρgLCOM, or
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HCOM

LCOM
= µC (1)

where HCOM and LCOM are drop height and runout of the center
of mass (COM), as shown in Figure 1. For the same reason,
Heim’s ratio H/L (a.k.a apparent friction) is used as a proxy for
friction coefficient of landslides. For ease of field measurements,
H and L are themaximum drop height and runout (see Figure 1).
Figure 2A shows Heim’s ratio as a function of landslide volume,
V , taken from Lucas et al. [2]. The data includes field data from
literature and digital topography models using photogrammetry.
Two surprising observations emerge: (a) Heim’s ratio is not a
constant like for the rigid block with constant friction coefficient,
but decreases with landslide volume, and (b) the minimum value
observed for largest landslides is as low as H/L ≈ 0.1, i.e.,
considerably lower than friction coefficient of common rocks or
soils. In other words, larger landslides achieve longer runouts on
falling from a hill slope with given height. While field data is
usually plotted in terms of Heim’s ratio, the best collapse of data
is achieved when plotting simply L as a function of V , as shown
in Figure 2B. Legros [3] concludes that landslide spreading is
essentially controlled by their volume, and not by H.

Several processes have been suggested to solve the long runout
puzzle, e.g. frictional heating of pore fluids [4, 5], fluidization [8–
11], or plastic deformation due to melting of grains [6, 7] and
flash weakening [2, 4]. Here, we study a purely mechanical
problem of granular flow under a gravitational field. In that
case, two processes might account for the long runout of
landslides relative to rigid block sliding: (a) the friction decreases
considerably with volume, e.g., due to changes in shear rate,
and/or (b) spreading of grains relative to COM is larger for larger
landslides.

Our knowledge about granular flows mostly comes from
laboratory scale experiments and computer simulations. As a
result, three flow regimes were classified [12]: “solid” in which
grains interact via long-lasting frictional contacts and deform
slowly, “gaseous” in which grains interact through short collisions
compared to deformation time scale, and “liquid” which is a
transition between the two previous. For flow down a slope, the

θ

LCOM

HCOM

LCOM
H

L

Rf

Ri

FIGURE 1 | Geometry of the landslide model. The dashed line identifies

the region of the original slope that was removed by the landslide. The shaded

area is the final deposit of the landslide. Calculation of the total runout L is

divided in two sub-problems: (a) the center-of-mass runout LCOM and (b) the

initial and final spreads Ri and Rf. LCOM is derived from an analytical solution

for granular flow of constant thickness on an inclined plane. Spreading of the

landslide due to its flattening is included in the calculation of Rf.

three regimes can be attained by changing the slope angle θ [13,
14]. If θ is small, no flow is observed, only an elastic deformation.
Once θ exceeds the angle of repose, the flow accelerates. Yet, the
increasing rate of collisions eventually leads to a steady flow. If,
however, the slope is steep enough the flow keeps accelerating
because the energy that grains receive during free fall between
collisions exceeds the dissipation. We can expect that most of
landslides flow in the liquid regime, in which flow is possible
yet not too vigorous, because they occur when a slope becomes
unstable, i.e., close to the angle of repose.

Evolution of granular flows in the liquid regime has been
solved only approximately using “shallow water models” or
by means of computer simulations. Neither of the approaches
has established scaling laws for runout distance with volume.
“Shallow water models” arise from depth-averaged mass and
momentum conservation equations, originally derived by Savage
and Hutter [15]. The resulting equation for mean velocity
neglects spatial variation of velocity inside the moving body.
Hence, the shallow water model is less accurate if shear rate is
large. Flow down a slope was studied by Savage and Hutter [15],
Pouliquen and Forterre [16], Mangeney et al. [17], Faccanoni and
Mangeney [18] and Capart and Hung [19], including analytical
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FIGURE 2 | (A) Heim’s ratio H/L for a collection of landslides from the Earth

(g = 9.81ms−2), Mars (g = 3.73ms−2), Iapetus (g = 0.223ms−2), and Io

(g = 1.796ms−2), taken from Lucas et al. [2]. Note that Heim’s ratio decreases

with landslide volume to a value as low as ≈ 0.1, i.e., considerably lower than

friction coefficient of common rocks or soils. (B) Runout as a function of

landslide volume for the same collection of landslides.
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solutions for evolution of velocity, front position and thickness.
Those studies do not address cessation of the flow, or prediction
of runout or Heim’s ratio. The later was done by Lucas et al. [2]
within a semi-empirical model. They showed that Heim’s ratio
based on the analytical solution of Mangeney et al. [17] and
Faccanoni and Mangeney [18] is compatible with field data if
the value of basal friction coefficient is adjusted appropriately.
However, the optimal value is significantly lower than that
obtained from laboratory experiments.

An alternative to analytical models is granular dynamics
simulations. Campbell et al. [20] carried out large scale discrete
simulations, which showed Heim’s ratio as a function of volume
similar to field data. Staron and Lajeunesse [21] suggest that
the volumetric effect is dominated by spreading of the granular
mass relative to COM, while Heim’s ratio for COM,HCOM/LCOM
is volume independent. Yet, no quantitative estimation of the
two contributions (COM runout and spreading length) has been
given.

Experiments and simulations regarding flow on an inclined
plane revealed scaling of steady flow velocity with flow thickness
h as ∼ h3/2 [13, 14, 22, 23]. Later, this scaling was explained by
dimensional analysis for friction coefficient [12, 23]. This opens
a possibility that larger (thicker) slides achieve larger kinetic
energy, which would result in longer runouts. However, unsteady
flows, i.e., acceleration and deceleration and flow with varying
thickness, have not been studied enough yet. In particular, the
time scale over which landslide accelerate has not been derived.
Consequently, it is not clear whether or how kinetic energy
depends on landslide volume.

Another class of experiments is collapse of granular columns
on a flat surface. A granular column that is initially supported
by walls is suddenly released and spreads. Lajeunesse et al. [24]
showed that the spread of the deposit is controlled by aspect ratio
of the initial column, and that the slope angle at the foot of the
deposit saturates at 5◦ (much lower than the angle of repose) for
columns with large aspect ratios. Similar results were obtained in
experiments by Lube et al. [25] and simulations by Utili et al. [26].
Granular column collapse experiments shed light on the role of
spreading of landslide mass relative to COM. During their flow,
landslides change their shape. They become thinner and spread
along fronts and flanks as surface grains fall down or are squeezed
out. As a consequence, total runout might be considerably larger
than that due to COM.

In this work, we study kinematics of granular materials
flowing down an inclined plane and decelerating on a flat plane
thereafter. We solve the runout distance in two steps. First, we
derive COM runout based on an analytical solution for velocity
profile in granular flow of constant thickness. The prediction
is compared to numerical simulations. Second, we account for
the longitudinal spreading of the collapsing body. Finally, we
compare the resulting runout to field data for natural landslides.

2. Methods

2.1. Simulations
The numerical simulations were used as a benchmark for
analytical calculation of COM evolution. They employ the

discrete element method (DEM) [27], in which the Newtonian
equations of motion for a set of grains are solved in discrete steps.

Grains are modeled as disks with rotational and translational
degrees of freedom. They interact via visco-elastic contact forces
according to Hertz-Mindlin contact model [28, 29]

Fnij =
√
2E

3(1− η2)

√

Rijξijξij − γ

√

Rijξijξ̇ij ,

Ftij = min

[

2
√
2E

(2− η)(1+ η)

√

Rijξij1s, µggF
n
ij

]

, (2)

where Fnij and F
t
ij are normal and shear components of the contact

force between grains i and j. Rij is the harmonic mean of the
grains radii and ξij is the overlap between the two grains. Elastic
moduli E = 1.31 × 1010 Pa and Poisson’s ratio η = 0.235
were chosen to simulate quartz grains with density ρp = 2.5 ×
103 kgm−3. Energy dissipation is governed by a normal damping
(the second term in Fnij) with damping coefficient γ = 0.8 and by

the tangential friction Ftij. Restitution coefficient is not constant,

but depends on velocities of colliding grains [28]. The tangential
force is initially elastic, calculated from shear displacement1s on
contacts of the grains from the instant the contact was formed.
Once the spring force exceeds the Coulomb friction criterion, the
contact starts sliding with a constant shear force, Ftij = µggF

n
ij ,

where the grain-grain friction coefficient is µgg = 0.5. Note
that the grain-grain friction coefficient is not the same as the
macroscopic dynamic friction coefficient, which is investigated
below and found shear rate dependent.

Grain diameters were randomly drawn from a Gaussian
distribution with both mean value and standard deviation equal
to d. The distribution is however cut, so that all diameters fall
within 0.8–1.2 d.

Periodic boundary conditions were applied in the direction of
the flow, which is equivalent to constant thickness flow boundary
condition used in the theory described below. The width of the
simulation box along the flow direction was 96 d (no size effects
due to this scale were observed), while thickness of the flow varied
among different simulations between h = 12 − 96 d to test the
volumetric scaling.

Equations of motion were integrated using the velocity Verlet
algorithm [30] with a time step 0.1d

√

ρp/E small enough to
resolve elastic waves due to grain-grain collisions.

Granular systems are initiated as layers with random loose
packing, standing on a flat horizontal surface made of grains with
the same properties that are glued together and whose positions
are fixed. Subject to vertical gravitational acceleration the grains
sediment. Then we turn the slope at an inclination angle θ =
17 − 25 ◦. The selected range can accommodate steady flows,
see Silbert et al. [13] and Pouliquen [14] for a phase diagram of
flow regimes. For lower inclination angles no flow is initiated,
while larger inclination angles lead to unstable acceleration and
breakdown of the “liquid” flow regime.

Velocity and density profiles were monitored during the
run of simulations. The distance traveled by a landslide was
calculated as a running integral of COM velocity. Once the
traveled distance reached the length of the slope available for
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COM sliding,HCOM/ sin θ , for givenHCOM and θ , the simulation
was continued for θ = 0, i.e., on the flat plane, until the COM
velocity decayed to zero.

2.2. Theory
In this section, we solve kinematics of granular flow in the
geometry depicted in Figure 1 in order to obtain flow profiles
and predict COM motion. For the derivation to be analytically
tractable, we impose that thickness of the flow is constant and
uniform. Driven by gravity, landslides preferentially spread along
the slope direction rather than laterally. As a consequence, the
flow is essentially two-dimensional with an elongated central
homogeneous region. Assuming that this homogeneous region
dominates the overall landslide momentum, its velocity average
represents the COM velocity.

The longitudinal spreading reduces landslide’s thickness,
which is therefore not constant in time. It will be shown below
that the COM runout does not vary significantly with thickness.
Therefore, the prediction derived for the flow of constant
thickness provides a good estimate for a general flow with an
extensive homogeneous region.

The equation of motion for a two-dimensional flow of
constant thickness is

ρ
∂v

∂t
= ρg sin θ −

∂τ

∂y
(3)

where y is depth inside the flow measured from the top surface,
t is time, v(y, t) is velocity along the flow direction, τ (y, t) is
shear stress, g is gravitational acceleration and ρ is flow mass
density (of a representative volume). The first term on the right
hand side is the gravitational force, the second term is friction
force that resists acceleration. ρ is considered uniform [13] and
constant (a very week dependence on flow velocity has been
found [12, 23, 31]).

To form a closed set of equations we need another relation
between τ and v, i.e., a rheological law. Friction is known from
physics and geophysics to depend on sliding velocity. The only
local dimensionless quantity for dry granular flow that dissipates
energy through visco-elastic collisions is the so-called inertial
number I

I(y, t) =
γ̇ d

√

N/ρp
, (4)

where γ̇ (y, t) = − ∂v
∂y is shear rate (the negative sign is because

y axis is pointing downwards), N(y, t) is normal stress, d is grain
size and ρp is mass density of the grain material (2.5×103 kgm−3

for sand). The friction coefficientµ (also dimensionless) can then
be expressed as an expansion in I. The linearized version of the
friction law is

µ(y, t) ≡
τ

N
= µ0 + βI , (5)

where µ0 and β are material parameters (µ0 ≈ 0.55 and β ≈ 0.5
for sand [23]). This type of rheology, in which µ is a function of
I, has been suggested and verified in laboratory experiments and
simulations [12, 16, 23, 31] for variety of systems and boundary

conditions. Since β has been found positive, friction increases
with shear rate under constant normal stress, provided plastic
processes are negligible.

The observed uniform and constant density ρ implies
constant and linear normal stressN = ρg cos θy. This gives shear
stress

τ = µ0ρg cos θy+ ρβd

√

1

ν
g cos θy γ̇ , (6)

where ν ≡ ρ/ρp ≈ 0.55 is solid fraction [13]. The first term
in Equation (6) is rate independent, and controls the flow under
low shear rate. Neglecting the other term would, according to
Equation (3), lead to uniform acceleration g(sin θ−µ0 cos θ). The
second term accounts for increase of friction with shear rate. As
a result, flow becomes steady once the friction force balances the
driving force.

We seek a solution of Equations (3) and (6) along with
boundary conditions

(a) τ = 0 for y = 0 ,

(b) v = 0 for y = h , (7)

(c) v = v0(y) at t = 0 ,

where h is flow thickness. The boundary conditions say that: (a)
the top surface of the slide is free of stresses, (b) the velocity at the
bottom of the sliding mass is zero (the ground surface is rough),
and (c) the initial velocity is v0.

The solution for velocity satisfying boundary conditions
Equations (7a,b) is [Parez et al., under review]

v(y, t) = vp +
16

9
h2

∑

n>0

bn

κ2
n

d

dy

[

√
yJ2/3

(

κn

( y

h

)3/4
)]

e−t/Tn ,

where vp =
{

2
3B(θ)

√
gh3/2

d

[

1−
( y
h

)3/2
]

for θ > θr

−g(µ0 cos θ − sin θ)t for θ < θr
(8)

Tn = C(θ)
h3/2

κ2
n
√
gd

,

in which J2/3(z) is a Bessel function of the first kind [32],
constants κn are given in Table 1 for a few n and

B(θ) =
√

ν(sin θ − µ0 cos θ)

β
√
cos θ

, (9)

C(θ) =
16
√

ν

9β
√
cos θ

.

The coefficients bn in the expansion are determined from
the initial condition Equation (7c) using the orthogonality

relation [32]
∫ h
0

√
yJ2/3

(

κi
( y
h

)3/4
)

J2/3

(

κj
( y
h

)3/4
)

dy ∼ δij.

Note that the solution Equation (8) is different depending
whether θ is greater or lower than angle of repose θr (≈ 30◦ for
sand). The first applies for acceleration down a slope while the
latter for deceleration on the flat plane.
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TABLE 1 | Constants κn and Tn/T1 used in the expansion in Equation (8).

n κn Tn/T1

1 1.87 1

2 4.99 0.14

3 8.12 0.053

2.2.1. Acceleration down a slope
The down-slope flow starts when θ > θr. In that case,
Equation (8) predicts acceleration toward a steady velocity given
by the vp term, which is consistent with the Bagnold flow
profile [13, 22]. The second term is the transient toward the
steady velocity. Because T1 is sufficiently larger than the other
Tn’s (see Table 1), it dominates the time evolution after the very
initial period. Keeping only the T1 ≡ T term (we drop the
subscript in the following) and imposing v0 = 0, velocity can
be approximated as

v(y, t) =
2

3
B(θ)

√
gh3/2

d

[

1−
( y

h

)3/2
]

(

1− e−t/T
)

. (10)

Note that T has the meaning of the acceleration duration scale.
The COM velocity is calculated as the depth averaged velocity

vCOM(t) =
1

h

∫ h

0
v(y, t)dy =

2

5
B(θ)

√
gh3/2

d

(

1− e−t/T
)

.

(11)
The time ts the landslide’s COM takes to reach the bottom of the
slope is set by the length of the slope HCOM/ sin θ available to
COM sliding

HCOM

sin θ
=

∫ ts

0
vCOM(t)dt =

2

5
B(θ)

√
gh3/2

d

[

ts − T
(

1− e−ts/T
)]

.

(12)
This time determines the velocity vs(y) = v(y, ts) and kinetic

energy per unit mass ǫks = 1
2h

∫ h
0 v2(y, ts) dy reached at the

bottom of the slope. We can calculate their values analytically
for the following two limiting cases. If ts >> T, i.e., if the slide
reaches a steady flow on the slope,

vs = vp =
2

3
B(θ)

√
gh3/2

d

[

1−
( y

h

)3/2
]

,

ǫks =
1

10
B2(θ)

gh3

d2
(ts >> T). (13)

On the other hand, if ts << T, i.e., the time to reach a steady
flow is much larger than the time actually spent on the slope, then

Equation (12) can be simplified as HCOM
sin θ

≈ 1
5B(θ)

√
gh3/2

d
t2s
T =

κ21
5 g

B(θ)
C(θ)

t2s and we get

vs =
2
√
5κ1

3

√

B(θ)

C(θ)

gHCOM

sin θ

[

1−
( y

h

)3/2
]

,

ǫks =
κ2
1

2

B(θ)

C(θ)

gHCOM

sin θ
(ts << t) . (14)

Note that kinetic energy per unit mass (and the same can be
shown for COMvelocity and other kinematic properties) reached
at the bottom of the slope does not depend on thickness h (or
volume) of the slide if ts << T. This is in agreement with
Campbell’s et al. large scale simulations, see Figure 9 in Campbell
et al. [20].

The origin of the independence of flow properties on slide
thickness for ts << T can be seen from the Taylor expansion of
flow velocity Equation (11). Since both steady flow velocity and
transient time T (see Equation 8) grow proportionally to ∼ h3/2,
the average flow acceleration vCOM(t → ∞)/T is independent of
thickness. Therefore, all slides satisfying ts << T have the same
evolution and reach the same depth-averaged properties (vCOM,
ǫks ) at the slope end.

We have seen that acceleration of the landslide’s COM is
determined by relative magnitudes of ts and T. Since T is
controlled by h, we can redefine this relation in terms of
thickness. Using Equations (8) and (12) we can define a threshold
thickness hthr for which ts = T

h3thr =
45κ2

1β
2

16ν(sin θ − µ0 cos θ) tan θ
HCOMd2 . (15)

Hence, flow down a slope of length H/ sin θ is thickness-
independent for slides with h > hthr, corresponding to the case
ts < T.

2.2.2. Deceleration on a Flat Plane
Once a slide reaches the flat plane it decelerates, because no
driving force acts in the direction of motion. The evolution of
velocity during deceleration is predicted by Equation (8) with
θ = 0 and vp = µ0gt̄, where t̄ = t − ts. The initial velocity is
chosen to match the final velocity on the slope, v0 ≡ v(t̄ = 0) =
vs. Neglecting higher order terms than T1 ≡ T̄, velocity becomes

v(y, t) = vs(y)e
−(t−ts)/T̄ − µ0g(t − ts) , (t > ts) , (16)

where the transient time T̄ is related to T derived for the
acceleration on the slope inclined at θ as T̄ = T

√
cos θ .

Once the velocity at given depth decays to zero, the layer
becomes locked due to static friction and v = 0 thereafter. This
happens at time tf(y), given by

vs(y)e
−(tf(y)−ts)/T̄ − µ0g(tf(y)− ts) = 0 . (17)

The distance L̄COM that COM of the slide travels on the flat
plane is

L̄COM =
1

h

∫ h

0

∫ tf

ts

v(y, t)dtdy . (18)

While we can solve Equations (17) and (18) numerically, we
can easily evaluate the maximum possible runout distance by
assuming that friction has its minimum value µ0. In that case,
velocity decreases with a constant and uniform rate, v(y, t) =
vs(y)− µ0g(t − ts), resulting in the breaking distance

L̄COM =
1

2µ0gh

∫ h

0
v2s (y)dy =

ǫks

µ0g
. (19)
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Hence, L̄COM is proportional to kinetic energy per unit mass ǫks
reached at the bottom of the slope, which ranges between the
limiting values given by Equations (13) and (14).

2.2.3. COM Runout and Heim’s Ratio
The COM runout is the total horizontal distance traveled by
COM of a slide LCOM = HCOM/ tan θ + L̄COM. Depending on
relative magnitudes of h and hthr, the runout varies between the
following two values

LCOM =



























HCOM
tan θ

[

1+ 0.98
(

tan θ
µ0

− 1
)

h3

h3
thr

]

≈ HCOM
tan θ

if h << hthr ,
HCOM
tan θ

[

1+ 0.98
(

tan θ
µ0

− 1
)]

≈ HCOM
µ0

if h >> hthr ,

(20)

where we used Equations (19), (13), (14), and (15).
Corresponding limiting values of Heim’s ratio are

HCOM

LCOM
=

{

tan θ if h << hthr ,
µ0 if h >> hthr .

(21)

Note that tan θ > µ0 because the mass starts moving on a
slope exceeding the effective friction angle arctan(µ0). Assuming
θ = 30◦ − 40◦, Heim’s ratio decreases from tan θ = 0.58 − 0.84
for small slides to µ0 = 0.55 for large slides. This range of values
cannot explain the span observed for field data (see Figure 2),
particularly the limiting value≈ 0.1.

2.2.4. Spreading
Landslides change their shape during their flow. They become
thinner while they spread along their perimeter, as grains on
the surface fall down or are squeezed outwards. As a result, the
horizontal extent of landslides, denoted as spread, changes. In
this section, we estimate the spread of the final deposit based
on the experiment by Lajeunesse et al. [24] and full landslide
computer simulations by Campbell et al. [20].

Lajeunesse et al. performed experiments with granular
columns that were suddenly released onto a flat plane and
allowed to spread. The shape of the final deposit was conical with
foot angle α depending on the aspect ratio a of the initial column.
α decreased from angle of repose for a → 0 to a saturated value of
αthr = 5◦ for a > 3. The core of the conical deposit with base area
identical to the original column was almost undisturbed. Grain
size and ground surface had a little effect on the spread.

Similar results were found by Campbell et al. for slides flowing
down a slope in the same geometry as here (see Figure 1). The
shape of final deposits was conical with foot angle αthr ≈ 1.5◦

independent of slide volume for large slides. The order of strata
inside the slide was preserved as in the initial state.

Note that in both experiments the angle of the deposited pile
is much lower than the angle of repose (≈ 30◦) if enough energy
is provided for spreading.

Based on these results we might assume that natural landslides
spread conically from their surface while the central region flows
undisturbed, i.e., approximately described by Equation (11). We
suggest that the foot angle is not a function of the initial aspect

ratio, but more generally of energy per unit mass since it directly
controls spreading even when the aspect ratio is low.

Assuming that deposits of large, long runout landslides
studied here attain the threshold value αthr, volume V of their
deposit is V = πR3

f
tanαthr/3, where Rf is the spread of the

deposit, i.e., radius of the cone base. Inversely, the spread depends
on the landslide volume as

Rf =
(

3

π tanαthr
V

)1/3

. (22)

Deposits of natural landslides are not always conical. Sometimes,
they are piled against the foot of the hill, or they are constrained
by the landscape morphology. Yet, it is reasonable to expect that
these constraints only change the pre-factor in Equation (22)
while the V1/3 scaling is still valid.

3. Results

3.1. COM Evolution
Figure 3 shows COMvelocity evolution for landslides of different
thickness. The quality of analytical prediction, Equation (11)
(dashed lines), is tested against DEM simulations (solid lines) for
θ = 17 ◦, d = 0.1m and g = 9.81ms−2. The slight difference
between the two sets of curves is due to non-zero slip velocity
observed in simulations. Note that larger landslides reach larger
final steady flow velocity, but in progressively longer time.

On reaching the flat plane, landslides decelerate. In Figure 4,
the decay of velocity profile is shown. The two sets of lines are
simulation (solid lines) and analytical (Equation 16, dashed lines)
results for h = 9.6m, θ = 17 ◦, d = 0.1m, and g = 9.81ms−2.
Since deep layers have lower velocity compared to the top of the
landslide, they stop first. Consequently, the flow is confined to
a gradually thinner layer near the top surface. The simulation
profiles show a formation of a creeping layer at the depth where
the flow stops. This is a non-local effect described in Kamrin
et al. [33].
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FIGURE 3 | Center of mass velocity during acceleration down a slope

for landslides of thickness h = 2.4 − 9.6m. Simulation results (solid lines)

are compared to analytical prediction (dashed lines) after Equation (11). Note

that larger landslides reach larger steady flow velocity. However, it takes them

correspondingly longer time.
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FIGURE 4 | Velocity profiles at various time instants during

deceleration of the h = 9.6m thick slide on a flat plane. Simulation

results (solid lines) are compared to the analytical prediction (dashed lines)

after Equation (16). The flow depth is gradually reduced.

During the flow on the flat plane, landslides dissipate the
kinetic energy achieved on the slope. Figure 5 shows how the
kinetic energy is transformed into the distance reached on the
flat plane, L̄COM. Points denote simulation results, in which
the kinetic energy was varied by changing HCOM, θ , h, d, or
g. The line denotes the analytical prediction, Equation (19),
derived for constant friction coefficient µ0. For low kinetic
energies, the simulation data follow the analytic solution. With
increasing kinetic energy, shear rate increases, and, according
to Equation (5), friction also increases. As a consequence, the
resulting runout L̄COM is lower than predicted by Equation (19).

3.2. Runout and Heim’s Ratio
To calculate total runout we have to sum up the horizontal extent
of the initial mass, COM runout and the spread of the final
deposit (see Figure 1)

L = Ri + LCOM + Rf . (23)

The initial extent can be estimated as Ri = (H − HCOM)/ tan θ .
As shown in Equation (20), LCOM attains values between
HCOM/ tan θ (thin slides relative to hthr) and HCOM/µ0 (thick
slides relative to hthr). Since for typical slopes (θ = 30 ◦ − 40 ◦)
tan θ = 0.58 − 0.84 is comparable to µ0 = 0.55, we can
approximateRi+LCOM ≈ (H−HCOM)/µ0+HCOM/µ0 = H/µ0.
Adding Rf from Equation (22) we arrive at

L =
H

µ0
+

(

3

π tanαthr
V

)1/3

. (24)

Note that the first term is identical to runout that would be
achieved by COM of a rigid block sliding from height H with
friction µ0. Runout of landslides is predicted to be longer by the
spread length given by the second term.

In Figure 6, runout predicted from Equation (24) is compared
to field observations. The field data (squares) is taken from Lucas

FIGURE 5 | Center of mass runout on the flat plane as a function of the

kinetic energy achieved on the slope. Simulation results (points) were

obtained for various slope lengths H/ sin θ = 10− 100m and landslide

thicknesses h = 1.2− 9.6m. The line denotes Equation (19), i.e., a

deceleration distance derived for rate independent friction coefficient µ0.

et al. [2], and include values of H, L, and V for largest
landslides observed in different planetary bodies. Circles denote
the prediction of Equation (24) using the measured values
of H and V for each landslide. The prediction matches the
field observations over the whole range spanning 11 orders of
magnitude.

The solid line in Figure 6 is 2Rf(V), i.e., as if L was
equal to spread of a deposit resulting from a granular column
collapse onto a horizontal surface. In the calculation of Rf from
Equation (22), αthr = 1.5◦ was used, based on the shape of
deposits reported in Campbell et al. [20]. Since the 2Rf line fits the
circles, calculated as H/µ0 + Rf, the two terms in Equation (24)
are comparable. Thus, spreading of grains makes the toe of a
landslide separated from the COM by a same-order distance
as COM is separated from the head of the scarp left from the
landslide on the hill. In other words, the runout is a few times
longer than that of a rigid block sliding from the same height, i.e.,
≃ H/µ0.

The fact that both terms of Equation (24) are of the same
order of magnitude can be viewed as a relation between H and
V1/3. A closer examination of field data reveals thatH = 1.5V1/3

for landslides with V < 105 (for larger landslides the power
is lower than 1/3). In other words, landslide linear dimension
V1/3 is comparable to the fall height H. This allows the following
interpretation: Long runout landslides are likely to remove mass
along an entire slope from the top at elevation H down to
the valley at elevation 0, as sketched in Figure 1, i.e., not only
the top of the slope as often assumed in simulation works.
Furthermore, the relationH ∼ V1/3 implies, using Equation (24),
L ∼ V1/3, which was found empirically in previous
works [2, 3, 21].

Finally, Figure 7 shows Heim’s ratio H/L. The field
observations (squares) are compared to the prediction based on
Equation (24) (circles) for the values of H and V observed for
the same collection of landslides. Despite the general agreement,
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FIGURE 6 | Runout as a function of landslide volume. Full squares are

field observations taken from [2]. Open circles denote Equation (24), in which

H and V are taken from the same field observations and αthr = 1.5◦. Solid line

is 2Rf (V ) (see Equation 22), i.e., a total spread of a deposit resulting from a

granular column collapse.
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FIGURE 7 | Heim’s ratio as a function of landslide volume. Full squares

are field observations taken from Lucas et al. [2]. Open circles are prediction

based on Equation (24), in which H and V are taken from the same field

observations and αthr = 1.5◦.

predicted values are systematically lower for landslide with
V < 106m3. This might be because (a) relatively small landslides
did not spread enough to achieve the minimum foot angle αthr

of their deposits and thus their spread is overestimated, or (b)
the approximations leading to the term H/µ0, i.e., exchanging
µ0 and tan θ , are too crude.

4. Discussion

Large landslides (V > 108) exhibit low Heim’s ratio and
corresponding long runout distance compared to sliding of a
rigid body. This has traditionally been ascribed to processes that
decrease friction coefficient (friction weakening), such as shear
heating, flash weakening or fluidization [4–11]. These concepts
require plastic processes or presence of pressurized pore fluids to

reduce the frictional resistance, and achieve higher velocity and
longer runout.

Natural landslides are likely subject to various processes
that contribute to their runout distance. In this work, we
study kinematics of granular flow, considering only granular
mechanics. Yet, this simplest model, which does not require
presence of fluids or rapid shearing, is consistent with field
observations. In addition, many landslides are dry, and do
not show evidence for rapid shearing or large scale melting
of grains [34]. Deposits of many large landslides consist of
sharp edged boulders of a similar size as in the original
deposit, indicating granular flow rather than melting and plastic
deformation.

Kinematics of landslides can be divided into COM motion
and spreading relative to COM as the granular mass collapses.
Analytical derivation, compared against DEM simulation,
showed that the COM runout is nearly volume independent, and
equal to H/µ0 for large slides. Therefore, (a) increase of steady
state velocity with landslide thickness, vp ∼ h3/2 (see Equation 8),
cannot explain increase of COM runout, and (b) a common
friction coefficient µ0 ≈ 0.55 is too large to achieve Heim’s ratio
of 0.1. In previous works [2, 5–11, 20], long runout landslides
have been explained by reduction in friction coefficient µ0, so
that COM runout H/µ0 is longer (and Heim’s ratio is lower).

In contrast, the spreading length has not been quantified yet.
Based on experiments with collapsing granular columns and
computer simulations of landslides, we suggest that the spread
of a landslide deposit is given by Equation (22), i.e., the radius
of a shallow angle cone with volume identical to that of the
landslide. Using the field observations ofH andV for long runout
landslides, the spreading length turns out to be the same order
of magnitude as the COM runout, often being the dominant
contribution. As a results, the calculated Heim’s ratio drops to
values as low as ≈ 0.1, in line with field observation, without the
need for a reduced friction coefficient. In addition, the volumetric
dependence of the spreading length accounts for the empirical
scaling of landslide runout with volume L ∼ V1/3 [2, 3, 21].

While the long runout of large landslides can result from
both friction weakening and spreading of granular mass, we
can distinguish between the two mechanisms based on landslide
velocity. The drop in friction coefficient leads to enhanced
COM velocity, which is eventually transformed into long runout
distance. On the other hand, spreading of grains takes place
roughly evenly in all directions and does not affect the COM
velocity. Therefore, we can compare maximum COM velocity
of an actual landslide to the prediction assuming no friction
reduction, i.e., Equation (11) at t = ts taken from Equation (12).
Within the approximation ts << T (large landslides typically do
not reach steady flow) the predicted velocity is

vsCOM = 1.25

√

(

1−
µ0

tan θ

)

gHCOM . (25)

If the observed maximum velocity of a landslide is larger than
Equation (25), friction weakening operates. For example, for a
slope with H = 100m and θ = 35◦ frictional weakening
processes would lead to velocity exceeding 18ms−1.

Frontiers in Physics | www.frontiersin.org 8 October 2015 | Volume 3 | Article 80

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Parez and Aharonov Long runout landslides

The prediction of landslide spread is derived for conical
deposits with a shallow, volume independent, foot angle αthr.
Existence of such angle was observed in column collapse
experiments, where deposits have self-similar shapes regardless
of their volume for large enough aspect ratios of the original
column. Why this angle saturates or what physical parameters
control it if granular mass is collapsed on an inclined plane has
not been investigated yet.

The present analytical solution might facilitate development
of natural hazard assessment, and may be extended in the
future to explore granular flows in different configurations
and different rheologies. The model might be applied to study
shaking of ground during earthquakes, liquefaction [29] or
granular avalanches, e.g., those found to shape dunes on different
planetary bodies [35].

5. Conclusions

Large landslides exhibit long runouts, exceeding several times
the distance that would be achieved by a rigid block sliding
from the same height. This has been traditionally explained
by processes leading to frictional weakening, i.e., reduction of
frictional resistance resulting in high velocity and long runout.
We show that correct runout distance can be achieved by
accounting for spreading of landslide mass without assuming
any frictional weakening processes. Kinematics of a landslide
can be divided into center of mass motion and spreading of
the collapsing mass. We derive the center of mass motion

analytically based on a frictional law valid for flow of dry granular
materials, without frictional weakening. The resulting center of
mass runout approaches H/µ0, where H is the fall height and µ0

is friction coefficient, similarly to rigid block sliding. Maximum
center of mass velocity is 1.25

√

gH(1− µ0/ tan θ), where θ is
the slope angle. If a landslide reach higher velocity, friction
weakening processes are likely to operate. The distance between
the toe of a landslide and its COM is due to spreading associated
with flattening of the flowing mass. The spreading distance grows
with landslide volume as (3V/π tanαthr)

1/3, where αthr is the foot
angle of the deposit. The spreading distance might exceed the
center of mass runout several times, and thus allows for the long
runouts observed for large natural landslides.
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