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In karst systems, hydraulic conduits called solution pipes (or wormholes) are formed as

a result of the dissolution of limestone rocks by the water surcharged with CO2. The

solution pipes are the end result of a positive feedback between spatial variations in

porosity in the rock matrix and the local dissolution rate. Here, we investigate numerically

the effect of rock stratification on the solution pipe growth, using a simple model system

with a number of horizontal layers, which are less porous than the rest of the matrix.

Stratification is shown to affect the resulting piping patterns in a variety of ways. First of

all, it enhances the competition between the pipes, impeding the growth of the shorter

ones and enhancing the flow in the longer ones, which therefore grow longer. This is

reflected in the change of the pipe length distribution, which becomes steeper as the

porosity contrast between the layers is increased. Additionally, stratification affects the

shapes of individual solution pipes, with characteristic widening of the profiles in between

the layers and narrowing within the layers. These results are in qualitative agreement with

the piping morphologies observed in nature.
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1. INTRODUCTION

The processes leading to the dissolution of a porous or fractured rock by a reactive fluid depend
on a subtle interplay between the chemical reactions at mineral surfaces and fluid motion in the
pores [1–3]. Strong, non-linear couplings between flow and dissolution may lead to the appearance
of instabilities resulting in the formation of a variety of different geological patterns. Particularly
relevant for the present study is the so-called reactive-infiltration instability [4, 5]: a relatively
small change in pore geometry due to the dissolution may result in a variation of permeability,
focusing the flow and leading to further changes in erosion. As a result, small inhomogeneities
have a tendency to grow and get transformed into highly permeable, finger-like flow channels,
which go by several different names depending on the field. In the petroleum industry, they are
called “wormholes” [6] due to the resemblance with the tunnels dug by worms. Geologists call them
“solution pipes,” “karst funnels,” or “geological organs” [1, 7, 8], whereas pedologists call them “soil
tongues” [9].

Once formed, the channels continue to grow, focusing an ever-increasing portion of the flow, but
also competing with each other: since the larger flow in the channel leads to increased dissolution—
this again generates the positive feedback loop resulting in fast growth of the longer pipes and
starvation of the shorter ones.
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The flow-focusing instability has been known for a long time
in the petroleum industry [10], where it was used to increase the
effectiveness of reservoir stimulation techniques. In that context,
it has also been studied experimentally [6, 11] and numerically
[12–15]. In the physics community, the interest toward these
systems has been sparked by classical papers of Daccord and
Lenormand, which analyzed the patterns formed in a dissolving
plaster and related them to other pattern-forming systems, such
as diffusion-limited aggregation [16, 17]. In earth sciences, the
understanding of the profound role that flow-focusing plays in
karst development came with the pioneering works of Ewers [18],
who has analyzed a number of analog models of karst formation
made of sand or plaster of Paris. This has provided him with a
number of important insights on the process of cave formation,
and the role played in these processes by the competition between
evolving flowpaths. Further insight into these effects has been
provided by the numerical modeling of early stages of karst
development [19–25].

Recent years have seen a growing number of experimental
studies of dissolution-induced morphology evolution [26–29],
many of them in the context of CO2 sequestration [30–38].
Since many of the potential reservoirs for CO2 storage are in
carbonate strata, it is crucial to understand how the flow of CO2-
acidified brine impacts the long-term changes in porosity and
permeability of the reservoirs and how it affects the caprock
properties. Most of the systems analyzed in these studies are
relatively small (1 − 10 cm scale), however even at that scale
a strongly non-uniform character of the dissolution manifests
itself in a profound way, with the appearance of wormholing
patterns. Due to the self-similar character of the flow-focusing
process [24, 39], one expects to find the dissolution channels at
all scales, up to the system size. And this is indeed the case, with
the karst solution pipes appearing in many places throughout the
world [1, 7, 8, 40, 41], most of them on 1–10 m scale, although
much longer structures, up to kilometer length, have also been
reported [42].

In this paper, we focus on solution pipes in karst systems,
analogous to the ones depicted in Figure 1. In particular, we
investigate the influence of rock stratification on the solution
pipe growth. As it turns out, the presence of low-porosity layers
impacts the shapes of the solution pipes, which tend to narrow as
they cut through the layers and then widen up to form bulbous
caverns. These features are visible in the pipes in Figure 1 and
their detailed investigation is the goal of this study.

So far, the shapes of wormholes have been analyzed mainly
in the context of acidization [11–13, 43, 44], where it has
been established that they strongly depend on the flow rate
and reaction rate. At low injection rates the growth of the
dissolution channels is significantly influenced by diffusion and
the resulting wormholes are conical-shaped. At higher flow rates
the channels become more elongated—this regime is called in
the acidization literature a “dominant wormhole” regime. In the
geomorphological context, a systematic analysis of the lengths of
solution pipes has been carried out by De Waele et al. [8], who
have measured a collection of more than 200 solution pipes in
the coastal areas of the Mediterranean and analyzed their length
distribution, suggesting that it follows an exponential law. This

data has been subsequently re-analyzed in Ref. [45], which led to
the conclusion that—if one discards the partially buried pipes the
full length of which remain unknown—the length distribution
is found to be consistent with a power-law. Such scale-invariant
distributions are a characteristic feature of a large number of
hierarchical growth processes [46], observed experimentally e.g.,
in some of the viscous fingering systems [47, 48], dendritic side-
branches growth in crystallization [49] or crack propagation in
brittle solids [50].

To the best of our knowledge, the shapes of the solution
pipes in the layered porous medium have not been analyzed in
the literature. However, some of the insight into these questions
can be gained from studying of the related problem of the
growth of karst cutters [51, 52], i.e., solutionaly enlarged joints.
The dissolution of cutters is somewhat different from that of
solution pipes. In the former case the flow is focused from
the very beginning within the joints, whereas in the latter the
dominant flow pathways are created spontaneously due to the
reactive-infiltration instability and the subsequent competition
between the emerging wormholes. Nevertheless, some of the
morphological features of the cutters and pipes seem to be
similar. In particular, Howard [51] observes undulations on the
sides of the cutters, which correlate with the strata and notes that
cavernous widenings have the tendency to form predominantly
beneath the layers. Analogous morphological characteristics are
observed in the case of solution pipes (cf. Figure 1 and the
numerical results of Section 3). Understanding of the mechanism
underlying the formation of these features is one of the goals
of this study. Additionally, we will also go beyond the scale
of a single pipe and analyze the impact of the layering on the
competition between different pipes for the available flow.

The paper is organized as follows. In Section 2 the Darcy-
scale mathematical model of a dissolving porous rock is briefly
recalled. In Section 3 we introduce the model of a stratified
medium and analyze numerically its impact on the dissolution
patterns. Finally, the conclusions are drawn in Section 4.

2. GOVERNING EQUATIONS

Let us briefly recall the equations for the dissolution of a porous
matrix [53]. The rate of groundwater flow through the porous
medium is taken to be proportional to the pressure gradient
(Darcy’s law)

u = −K(φ)

µ
∇p (1)

where u is the Darcy velocity, K-the permeability, µ-the viscosity
of the fluid, φ-the porosity, and p-the fluid pressure. Here we
will adopt the Carman-Kozeny relation for the permeability
dependence on the porosity, K(φ) ∼ φ3. We also assume that
the Darcy velocity field is incompressible,

∇ · u = 0, (2)

neglecting contributions to the fluid volume from reactants
or dissolved products. Under typical geophysical conditions,
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FIGURE 1 | Examples of the solution pipe morphologies in stratified systems. (A) Solution pipes in gravel with limestone clasts: gravel-pit, west of Rauceby

Station, UK. Photo by J. Rhodes courtesy British Geological Survey (catalog no. P206264). (B) Solution pipe in Ramallah, Israel, cutting through stratified dolomites

with marl beds. The photograph is courtesy of Sebastian Schmidt of University of Göttingen. (C) Solution pipe cutting through layered limestone rock at Cape

Bridgewater, Victoria, Australia (D) three pipes with cemented rims in limestone formations at Burns Beach, Perth, Australia. Pipe no. 3 cuts through the more

resistant bed in the lower portion of the photo.

dissolution is slow in comparison to flow and transport processes;
we can therefore assume a steady state in both the flow and
transport equations.

The concentration of the solute, c is calculated through the
convection-diffusion-reaction equation

∇ · (uc)− ∇ · (Dφ · ∇c) = R(c), (3)

where D is the diffusion coefficient and R(c) is the reactive flux
into the matrix. Finally, the erosion equation, which gives the
increase of the porosity as a result of the dissolution, is

csol∂tφ = R(c) (4)

where csol is the mineral concentration of the solid species and
R(c) is the reaction rate. Here, we assume a linear kinetic equation
for the reaction rate

R(c) = ks(csat − c) θ(φmax − φ) (5)

where k is the kinetic rate and s is the specific reactive surface
area per unit volume that we assume to be constant, s = s0.
Next, csat is the saturation concentration at which adding further

solute results in precipitation. In the context of karst formation, c
corresponds to the concentration of calcium ions, which controls
the dissolution at moderate to large pH [54]. The Heaviside step
function, θ(φmax − φ) guarantees that the reaction term vanishes
in the region where all of the soluble material has dissolved
(which corresponds to the porosity φ = φmax). In this region
Equation (3) reduces to a convection-diffusion equation.

The above equations are supplemented by boundary
conditions on the velocity and concentration field. Along the x
direction (parallel to the flow):

p(x = 0, y) = p0 c(x = 0, y) = 0, (6)

and

p(x = Lx, y) = 0 c(x = Lx, y) = csat, (7)

which accounts for the applied pressure drop p0 and the inflow of
unsaturated solution imposed at the inlet. In the case of solution
pipes, the flow is mostly due to gravity. In the simulations, we
keep the total volumetric flow rate through the system constant,
and p0 is changed dynamically as the permeability of the system
evolves. Along the y direction periodic boundary conditions are
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imposed. The above equations are solved numerically using a
finite difference method, described in more detail in Ref. [23].
The initial porosity field is sampled from a lognormal distribution
characterized by the standard deviation σ and the correlation
length λ. In most of the simulations presented here, we choose
a relatively small standard deviation of the initial porosity field,
σ = 10−3.

The inverse of the specific surface area, s−1
0 is a characteristic

length in our system, which will be chosen as a unit of length in
all the reported data, with the dimensionless coordinates x̂ and ŷ
defined as

x̂ = xs0 ŷ = ys0 (8)

On the other hand, the time is scaled by a characteristic
dissolution time:

t̂ = t/τ (9)

τ = csol

ks0csat
. (10)

Finally, the dimensionless concentration is defined as

ĉ = csat − c

csat
(11)

which is constrained to be in the interval (0,1). We also scale
porosity by its maximum value, φmax,

φ̂ = φ

φmax
. (12)

The relative importance of convective, diffusive and reaction
processes in the system are measured by the Péclet number and
Damkölher number. The former is defined as [23]

Pe = u0

Ds0φ0
(13)

and measures the ratio of the convective fluxes to the diffusive
fluxes. Here u0 is the average Darcy flux in the initial system
whereas φ0 is an initial porosity of the system. On the other hand,
the Damkölher number

Da = k

u0
(14)

relates the surface reaction rate to the fluid flux.
As shown in a number of studies [11–13, 43, 55] the wormhole

patterns depend strongly on the values of these two numbers. In
particular, it has been shown that the Péclet number needs to
be large enough for the instability to occur. This is why piping
is often observed in unconsolidated rock and gravel, where the
permeabilities (and thus flows) are large [56].

FIGURE 2 | Schematic of a model of stratified medium: alternating

layers of porosities φa and φb.

3. DISSOLUTION OF A STRATIFIED
MEDIUM

To study the influence of stratification on pipe shapes and
dynamics, we have adopted a simple conceptual model of a
stratifiedmedium (see Figure 2). The porous medium is assumed
to consist of alternate layers of higher and lower porosity, φa (of
depth La) and φb (of depth Lb), respectively. The two parameters
characterizing such a setup are the porosity ratio C = φa/φb and
the length ratio κ = La/Lb. In the following, we limit ourselves to
two dimensions. However, the same methodology can be applied
to the analysis of the 3D system, which will be the subject of a
further study.

Figure 3 presents the results of the dissolution simulations for
such a system for Pe = 100, Da = 0.5 with a porosity contrast
of C = 2 and length ratio κ = 5. The characteristic undulations
in the shape of the dissolution pipes are clearly visible here—the
pipes become narrower in the less porous layers and widen up in
between the layers. Another effect, clearly observed in Figure 3

is that the less porous layer acts as a dissolution barrier, which
stops the growth of shorter pipes, as there is not enough reactant
transported through their bodies to be able to break through the
layer. As a result, the tips of the shorter pipes often coincide
with the layer boundary. This effect can also be observed in
Figure 1D, where only the longest pipe (pipe no. 3) has succeeded
in breaking through the packed layer.

3.1. Flow and Concentration Fields Near
the Tips of the Pipes
Some insights into the mechanisms underlying this behavior
can be obtained by the analysis of the flow and concentration
fields in the vicinity of the tip of the pipe. These are shown in
Figures 4, 5 for three different positions of the tip with respect to
the layers: the pipe terminating in a porous region between the
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layers (left panels), the pipe terminating within the packed layer
(center panels), and the pipe emerging from the packed strata
(right panels).

There are several things to be noted here. First of all, since
the permeability of the pipe is much larger than that of the
surrounding medium, the tip of the pipe is a local pressure
maximum, distributing the flow to the porous matrix, both in the
axial and in lateral direction (cf. Figure 4). However, due to the
small permeability of the matrix in the packed layers, the lateral

FIGURE 3 | Solution patterns at Pe = 100, Da = 0.5, the porosity

contrast C = 2 and length ratio κ = 5 for a domain of the size

Lx = Ly = 1000s−1
0

. The colors represent rescaled porosity, φ̂, as indicated in

the colorbar on the right.

flows are diminished when the pipe enters a layer (center panel of
Figure 4) with respect to the situation when the tip find itself in
a more porous layer (left panel of this Figure 4). Smaller lateral
flows give rise to a narrower region of elevated concentration (cf.
Figure 5), which decreases the diameter of the pipe as it enters
the packed strata.

Next, as the pipe emerges from the layer, the flow is distributed
almost uniformly over a semi-circle in the downstream direction
with the tip as its center, analogously to the flow created by the
point source at the wall (right panel of Figure 4). The unsaturated
solution is carried deeper into thematrix (right panel of Figure 5)
which gives rise to a significant widening of the pipes as they
emerge from the layer. However, as the pipe tip moves away from
the layer, this effects weakens and the pipe comes back to its
original width.

As observed in Figure 5, the undersaturated solution is
concentrated along the length of the pipe with a halo around
the tip. However, since the inside of the pipe is fully dissolved
(with φ = φmax), the reaction term vanishes there and the
concentration is simply transported along the length of the
pipe. The situation changes in the vicinity of the tip, where
strong lateral currents push the undersaturated solution into
the undissolved matrix. This is amply illustrated in Figure 6,
where we plot the time derivative of the porosity field, dφ̂/dt̂,
which marks the regions of the active reaction. Comparing
Figure 6 with the corresponding concentration field (right panel
of Figure 5), we see that the dissolution is mainly taking place
around the tip and in a thin layer along the perimeter of the pipe.

3.2. Comparison with Natural Systems
The characteristic undulations of the solution pipes observed
in the simulations are consistent with the features observed in
natural systems. Figure 1A presents a number of spontaneously
formed solution pipes in gravel with limestone clasts.

FIGURE 4 | The Darcy flow field around the tip of the pipe before hitting one of the layers (left), with the tip located within the layer (center), and after

emerging from the layer (right). The colors represent the magnitude of the flow scaled by v0. The lengths of the vectors in the overlaying vector plot has been

scaled to v(x, y)1/5 to aid visualization.
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FIGURE 5 | The concentration field, ĉ(x, y), around the tip of the pipe at the same times as in Figure 4.

FIGURE 6 | The porosity change, dφ̂/dt̂, corresponding to the

concentration field in the right panel of Figure 5.

Undulations in different pipes are spatially correlated, which
suggests the presence of at least three layers in this system. The
dark rims along the perimeter of the pipes are most likely the
result of clay and iron oxide accumulation due to the illuviation
processes [57]. The clay particles are transferred by water
from the upper parts of the soil and then flocculated at the
clay-limestone boundary, where the pH changes from mildly
acidic to alkaline. Such rims are commonly seen in solution pipes
in which the infill is still present [7, 58].

In Figure 1B we see a solitary solution pipe, which might
have been triggered by the presence of the tree. In fact,
stemflow is usually significantly more acidic than incident
precipitation [59] and thus it is often considered as one of
the factors speeding up solution pipe formation [40, 41]. The
pipe in Figure 1B cuts through several dolomite layers, with
characteristic widenings, very similar to those observed in the
numerical simulations. Finally, Figures 1C,D show the pipes
formed in beach calcarenites in southern and western Australia.
Again, the narrowings and widenings of the pipes as they cut
through the layers are clearly visible here.

3.3. Hierarchical Growth of the Pipes and
Their Length Distribution
The value of porosity contrast has a profound impact on the
patterns, as it affects the intensity of the competition between
the growing pipes. As observed in Figure 7, as C gets larger the
number of long pipes in the system diminishes and the number
of short ones increases. This means, however, that the longest
pipes are getting significantly more flow in these systems (since
the flow is then distributed between a smaller number of pipes).
As a result, the longest pipe grows faster in the stratified systems
with a large porosity contrast.

These observation can be quantified by the analysis of the
distribution of the lengths of the pipes. As shown in a number
of studies [24, 39, 45] a strong screening between the dissolution
channels usually leads to the power-law distribution of their
lengths,

N(Lp) ∼ L−α
p , (15)

where N denotes a number of pipes longer than Lp. In a
homogeneous system, the exponent α is close to unity [24, 39,
45]. Figure 8 shows the length distributions corresponding to
the patterns presented in Figure 7. In the homogenous case
(C = 1) the results are in full agreement with the earlier
studies, indicating L−1

p distribution over the entire length range.
However, the situation is different for the layered system. The
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FIGURE 7 | Piping patterns for C = 1 (no layers, left), C = 2 (center), and C = 4 (right) for Pe = 100, Da = 0.1, and κ = 5.

FIGURE 8 | The cumulative distribution N(L) of solution pipe lengths for

the patterns presented in Figure 7 with C = 1 (red points), C = 2 (blue),

and C = 4 (green). The solid lines have slopes of 1.02 (red), 1.95 (blue), and

2.45 (green).

region characterized by the power-law distribution is now much
narrower followed by a clearly visible shoulder in the distribution
extending up to the location of the first layer (at 100s−1

0 ), which
corresponds to the surplus of pipes which have been stopped
in their growth by the presence of the layer. Additionally, the
power-law exponents for the layered case are significantly larger
than 1, which confirms that the stratification indeed increases the
screening between the pipes.

A quantity directly linked to the length distribution is the
mean spacing between adjacent active pipes (i.e., pipes which
continue to grow due to the presence of undersaturated solution).
The initial spacing between the spontaneously formed pipes
is determined by the spectral characteristics of the reactive-
infiltration instability [4, 23, 60], which triggers the pipe
formation process. Soon, however, the competition between the
pipes for the available flow leads to the starvation of the shorter
ones and the spacing between active pipes increases. Note that
for the power-law length distribution (15) the characteristic
separation between pipes of length Lp is equal to Ly/N(Lp) ∼ Lα

p ,
where Ly is the width of the domain. Hence, the increase of α

exponent in the stratified case results in a larger spacing between
the active pipes.

Before we move on, let us analyze the impact of the amplitude
of the initial noise on the dissolution patterns. Figure 9 presents
the same systems as in Figure 7 but with a much higher standard
deviation, σ = 0.15. As observed, the pipes are now much more
irregular and winding, but the overall patterns are very similar
to those in Figure 7. This conclusion agrees with a more detailed
analysis of Upadhyay et al. [45] which shows that the statistical
properties of the dissolution patterns are only weakly sensitive to
the parameters governing the randomness in the initial porosity
field. In the remainder of the paper, we focus on the low-noise
regime, since a more regular geometry of the pipes in this case
allows us to better discern the effects of the stratification of the
porous matrix.

3.4. Two-Pipe Case
To get more insight into the nature of the competition process,
we have considered a case in which two pipes grow symmetrically
at equal distances from the centerline of the system. To trigger
the growth of the solution pipes at these places, small regions
of increased porosity (“pipe seeds”) have been placed in an
initial porosity field. These seeds have a length of 3% of the
system length and are placed at Ly/4 and 3Ly/4, respectively.
Although the seeds are equal at the beginning, small noise in
the initial porosity field triggers the instability which eventually
leads to one of them outcompeting the other, as shown in
Figure 10.

An intriguing observation inferred from Figure 10 is that in
the low porosity layers the speed of the pipe growth increases.
This is connected with the narrowing of the pipe in the packed
layers and the related increase of the axial fluid velocities. This is
a strong effect, which allows the pipe tip to advance faster, even
though locally, at each specific point of the packed strata, the total
amount of rock to dissolve is larger than at a corresponding point
in the less porous layers.

Another observation is that—in the stratified case—just after
the growth of the shorter pipe is stopped, the longer pipe starts
to grow faster, since it is getting a larger fluid flux. Its speed
is higher than that in the case of non-stratified medium (for
example, at t̂ = 200 it reaches x̂ = 540 whereas the tip of pipe in
a non-stratified medium is located at x̂ = 480 at the same time).
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FIGURE 9 | Same as in Figure 7 but for a larger value of the initial noise.

FIGURE 10 | The positions of the pipe tip vs. time in a two-pipe system in non-stratified (left) and stratified case. Red color marks the faster, winning pipe,

and blue - the slower one. The 2d contour-plots show the corresponding dissolution patterns.

With time, however, the growth of the longer pipe in a stratified
medium becomes impeded.

To understand the origin of such a slowdown of the
dissolution in the stratified case, we have analysed the
concentration profiles along the centreline of the winning
solution pipe. Figure 11 presents such profiles for non-stratified
medium at Pe = 8 and Pe = 100 and for stratified
medium (C = 10, κ = 5) at Pe = 100. As observed, the
undersaturation gradually decreases along the centreline. Since
there is no reaction inside the pipe (the material there is fully
dissolved), such a decrease must be connected with the diffusion
of the calcium ions from the sides of the wormhole (where the
reaction takes place) toward its center. This is further confirmed
by the fact that the centreline concentration profile is strongly
dependent on the Péclet number, with a characteristic lengthscale
which is a function of the flow rate and diffusion within the pipe
(cf. the left and center panel of Figure 11). In fact, the influence
of Péclet number on the flow within the pipe is twofold. First, the
total fluid flux through the cross-section of the pipe is smaller as
Pe decreases. Second, the characteristic value of the local Darcy
velocity within the pipe is further diminished, since the pipe
diameter gets larger with the decreasing Pe.

Interestingly, in the stratified case, such a “diffusive” effect
within the solution pipes is significantly stronger, and the profile
at Pe = 100 (right panel of Figure 11) has now a decay rate
similar to than in the Pe = 8 case in non-stratified medium.

Although the quantitative model of this behavior still needs to
be developed, the most plausible explanation is connected to the
presence of widening in the pipe shape due to the stratification.
The undulated shape has amuch larger perimeter than its smooth
counterpart, which increases the total diffusive flux of the calcium
ions from the pipe walls.

3.5. Effects of the Layer Thickness,
Porosity Contrast, Péclet, and Damkölher
Number on the Dissolution Patterns
Let us now analyze the influence of the thickness of the packed
layer on the wormhole shape. Figure 12 compares the shapes
of the pipes which emerge in the system with a single packed
layer of two different widths. There are several things to be
noted here. First, the shape of a bulbous widening carved by
the pipe as it emerges from the layer is independent of the layer
thickness. Similarly, the width of the pipe at the end of the packed
layer, just before the emergence, again seems to be thickness-
independent. The main differences between the shapes are visible
in the upstream region: whereas in the thick-layer case the pipe
is seen to have a necking at the entrance of the packed strata,
its counterpart in the thin-layer case bulges out slightly, first
widening and then gently narrowing as it approaches the layer.

Next, let us investigate how the shapes of the pipes are affected
by the values of porosity contrast C and the Damkölher number,
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FIGURE 11 | Concentration (red) and porosity (blue) profiles along the line y = 3/4Ly , corresponding to the centreline of the winning pipe. Left:

non-stratified case at Pe = 8, center: non-stratified case at Pe = 100, right: stratified case at Pe = 100.

FIGURE 12 | Influence of thickness of the layer on the wormhole shape (Pe = 100,Da = 0.1, C = 10). The solution pipe in red corresponds to the case where

the layer extends from the red vertical line to the black vertical line. The solution pipe in blue corresponds to the case where the layer extends from the blue line to the

black line. Note that the aspect ratio of the plot has been altered to better visualize details.

Da. To this end we have carried out a number of simulations
on the 1000 × 400 system with Pe = 100 and Da = 0.1 with
different porosity contrasts (1 < C < 4) followed by a series of
simulations with fixed C = 10 and different Da. The resulting
wormhole shapes are presented in Figures 13, 14, respectively.

A porosity contrast is seen to affect the patterns in a significant
way. Whereas, in the non-stratified case the pipe has a very
regular, cigar-like shape, introduction of even a small porosity
contrast (C = 1.25) results in the appearance of pronounced
undulations. Their amplitude increases with C-the pipes narrow
down progressively in the packed layers and then widen up in
the next porous zone, following the rule that the greater the
narrowing, the more pronounced the subsequent widening. This
can be rationalized by noting that—due to mass conservation—a
small diameter of a pipe entails large flow velocities, which then
get diverted in the lateral direction as the pipe emerges from a
packed layer, resulting in larger cavities. Interestingly, after the
bulge, the pipes quickly come back to their original widths, which
do not seem to depend on the porosity contrast.

Furthermore, a close inspection of Figure 13 reveals that the
pipe begins narrowing already at some distance upstream from
the low porosity layer and the higher the contrast is, the earlier
the narrowing is taking place. It is particularly pronounced in the
space between the first and the second layer—e.g., the C = 10
pipe (marked by an orange curve) begins to narrow down just
after it has emerged from the bulge, whereas C = 2 and C = 1.25
pipes continue to grow for a while with a constant width, before
eventually narrowing.

Let us now analyze Figure 14, which shows the influence of
the Damkölher number on the pipe shapes. Strikingly, in this case
the wormholes seem to have the same basic shape and the effect of
Da comes down to the appropriate rescaling: the smaller the Da
number, the larger the widenings of the pipe. In order to quantify
these effects, we have measured the width and length of the
bulbous widening (W and L in Figure 14) starting from the point
where all of the pipe outlines overlap. BothW and L are plotted as
a function of the Damkölher number in Figure 15. Interestingly,
both seem to scale like 1/

√
Da, which can be understood in
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FIGURE 13 | Piping patterns for different contrasts of porosity (as marked) for Pe = 100, Da = 0.1. The aspect ratio of the plot has been altered to better

visualize details.

FIGURE 14 | Piping patterns for different Damkölher numbers for a stratification with a porosity contrast of C = 10. The aspect ratio of the plot has been

altered to better visualize details.

terms of a simple model in which we assume the tip of the pipe
emerging from the packed layer distributes the flow uniformly in
the semi-circle (−π/2 < θ < π/2). The Darcy flux near the tip
is then

u = Q

πr
er (16)

where r is the position vector in the polar coordinate system
centered at the tip and Q = v0Ly is the total fluid flux in the
system (which we assume to be focused in the pipe). Since the
flows within the pipe are high, we can neglect diffusion and

obtain from the transport equation (near the tip).

Q

πr

dc

dr
= k(csat − c), (17)

the solution of which reads simply

c(r) = csat

(

1− e−
πkr2

2Q

)

(18)

with a characteristic decay length given by

l =
√

Q

πk
=

√

Ly

πDa
(19)
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which indeed gives the Da−1/2 scaling, as observed in the
simulations. Using Ly = 400 (which corresponds to the width
of the system in Figure 13), we get the coefficient of 11.3 in this
power-law. The difference between this value and the values
reported in the fits in Figure 15 (i.e., 6.5 and 41.5 respectively) is
connected with the highly simplified character of the model. In
reality, the outflow from the tip is expected to be anisotropic, with
a larger flux directed along the axial direction [which is in fact
reflected in a larger value of the coefficient of the L scaling (41.5)
with respect to that of the W scaling (6.5)]. Next, the scaling
Equation (19) has been derived for the concentration field.
Porosity increase, however, is proportional to a time integral of
the concentration [cf. Equation (4)]. Hence, in principle, one
would need to know the entire time evolution of the c field to
be able to estimate the respective porosity growth. However, as
illustrated in Figure 6, the dissolution is active almost exclusively
in a small region at the tip of the pipe. Hence, the cavern grows
over a relatively short time only, T = L/V , whereV is the growth
velocity of the pipe. Our approximation then corresponds
to neglecting the flow and concentration changes over
that time.

FIGURE 15 | The width (W) and length (L) of the widenings, as marked

in Figure 13, as a function of the Damkölher number. The points represent

the simulation data, whereas the curves are fit to 1/
√
Da dependencies:

L(Da) = 41.5/
√
Da (blue curve) and W(Da) = 6.5/

√
Da (red curve).

Moreover, the assumption that the flow from a pipe breaking
through the layer corresponds to a point source at the wall is
expected to hold only at large values of the porosity contrast,
C. There are two reasons for this. The first is that at large C the
narrowing of the pipes in the packed layers is more pronounced.
Second, the smaller C ratios mean that a larger portion of the
flow is transported through the porous matrix in the layer. By
performing the simulations at different porosity contrast we have
checked that the scaling (19) indeed deteriorates progressively as
C is decreased, with both L andW decreasing less pronouncedly
with Da.

It is worth noting that in three dimensions, an analysis
analogous to Equations (16–19) would yield Da−1/3 scaling, thus
the dependence on the dissolution rate is weaker in 3D.

Finally, let us discuss the influence of the Péclet number
on the patterns. Figure 16 presents the counterpart of Figure 7
for a relatively small value of the Péclet number (Pe = 1).
Arguably the most pronounced effect that the decrease of the
flow rate has on a dissolution patterns is the change of the overall
shape of the pipes. Instead of the linear structures, the pipes
are now more conical, with the diameter tapering toward the
tip. However, the effects of the stratification remain qualitatively
similar to those at higher Pe, with characteristic undulations
superimposed on the conical shapes of the pipes. Getting back
to the natural examples of Figure 1 we can infer that the pipe in
Figure 1C has been formed at a relatively small value of Pe, since
the tapering is clearly visible here, whereas more linear forms
of Figures 1A,B,D are probably associated with higher Péclet
numbers.

4. CONCLUSIONS

In this paper, we have been analyzing the formation of solution
pipes in stratified soluble rocks.We have shown that stratification
influences the dissolution patterns in a significant way. By serving
as a flow and dissolution barrier, the packed layers impede the
growth of the shorter pipes and direct the entire fluid flux into
the winning pipes. This affects the distribution of pipe lengths,
which becomes steeper as the porosity contrast between the layers
is increased.

FIGURE 16 | Piping patterns for C = 1 (no layers, left), C = 2 (center), and C = 4 (right) for Pe = 1, Da = 0.1 and κ = 5.
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Interestingly, the shapes of the pipes itself are also affected
by the stratification, with characteristic narrowings within the
packed layers and large bulbous widenings, carved by the pipes as
they emerge from the layers. We have connected the appearance
of these forms to the interplay of flow and dissolution in the
pipes. In particular, we have argued that as the pipe emerges
from a packed layer, the flow rate around its tip resembles that
produced by a point source near a wall. Large lateral currents
result then in a dramatic widening of the pipe. In two dimensions,
the radius of a cavity thus formed is, to a first approximation,
inversely proportional to the square root of the Damkölher
number.

The results presented here can help in the interpretation of
the natural patterns, such as those in Figure 1. For example, if
one can measure the porosity and permeability contrast between
the layers, as well as estimate the reaction rate based on the
petrography of the rock, then the diameters of the pipes in
the widest point can be used to estimate the flow conditions
under which these structures were formed. Conversely, if the flow

conditions can be guessed then these data can be used to calculate
the permeability contrast in the layers.
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