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Employing the fermion unification model based on the intrinsic SU(8) symmetry of

a generalized Dirac equation, we discuss the fundamental interactions under the

SU(8)=SU(2)⊗SU(4) symmetry group. The physics involved can describe all fermions,

the leptons (electron and neutrino), and the colored up and down quarks of the first

generation in the standard model (SM) by a complex SU(8) octet of Dirac spinor fields.

The fermion interactions are found to be mediated by the unified SU(4) and SU(2) vector

gauge boson fields, which include the photon, the gluons, and the bosons Z and W as

well known from the SM, but also comprise new ones, namely three colored X bosons

carrying a fractional hypercharge of ±4/3 and transmuting leptons into quarks and vice

versa. The full covariant derivative of the model is derived and discussed. The Higgs

mechanism gives mass to the Z andW bosons, but also permits one to derive the mass

of the colored X boson, for which depending on the choice of the values of the coupling

constant, the estimates are 35 or 156 GeV, values that are well within reach of the LHC.

The scalar Higgs field can also lend masses to the fermions and fix their physical values

for given appropriate coupling constants to that field.

Keywords: SU(8) and SU(4) symmetry groups, fermion unification, generalized Dirac equation, colored massive

gauge bosons, Higgs mechanism

1. INTRODUCTION

The idea to unify the strong, weak and electromagnetic forces into a single force encompassing
them all has been around for more than half a century, after what is now called the standard model
(SM) of elementary particle physics (see e.g., the modern textbooks [1, 2]) was conceived in the
the second half of the past century. Many attempts were since then made to extend the symmetry
groups defining the SM, which is the amalgam of three gauge groups, SU(3)⊗SU(2)⊗U(1). Among
the seminal works by Pati and Salam [3, 4] were the first to unify lepton-hadron symmetry and
to consider the leptons as the fourth “color” within the SU(4) group. The influential theory by
Georgi and Glashow [5] conjectured that strong, electromagnetic, and weak forces arise from a
single fundamental interaction based on the symmetry gauge group SU(5). These early works and
many others thereafter were reviewed by Salam in his Nobel lecture [6] addressing gauge unification
of fundamental forces. It is not our intention here to review the ample subsequent work, but we refer
to the recent paper (of which the present one is the continuation) by Marsch and Narita [7]. They
developed a fermion unification model based on the intrinsic SU(8)=SU(2)⊗SU(4) symmetry of a
generalized Dirac equation, which can accommodate and unify the eight basic stable fermions of
the first family of the SM.
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The SU(8) symmetry in that model comes from the intrinsic
(combinatorial and representation-related) symmetry of the
Dirac equation [8]. It is not a chiral theory but includes a
single fermion mass, and thus breaks chiral symmetry by this
mass term. Thus, it differs markedly from other unification
scenarios based on the SU(8) group, such as the boson-fermion
balanced SU(8) unification scheme incorporating graviton and
gravitinos as suggested recently by Adler [9], or the earlier SU(8)
unification model including flavors [10] and being designed for
chiral families [11, 12], or the previous SU(8) unification theory
including even supersymmetry by Leon et al. [13]. Yet it is worth
noting that the generalized spinor in the Marsch-Narita model
is constructed similarly than that proposed recently by Yablon
[14], who discussed a grand unified SU(8) gauge theory based on
baryons which are Yang-Mills magnetic monopoles. In the work
ofMarsch andNarita [7], the SU(4) subgroup of SU(8) plays a key
role. Its associated hypercharge operator Y = diag( 13 ,

1
3 ,

1
3 ,−1),

which is defined by the generator λ15 of the SU(4) symmetry
group, gives the fractional charge of the quarks in a natural way,
and SU(4) is genuinely associated with a single lepton and three
quarks.

Grand Unified Theory (GUT) [3, 5] invoked at the outset
new vector bosons which mediate the interactions (among them
hypercharge and color-charge transfers) between the quarks and
leptons. Historically speaking, these bosons were estimated to
be not in reach of the working particle accelerators. Yet after
the detection of the W and Z bosons (for the recent results
see [15]) of the weak interaction in the late eighties of the past
century, the future looked much more promising, and even
more so today after the revelation of the Higgs boson with
an energy of about 125 GeV at the LHC in Geneva [16–19].
The search for new particles beyond the SM has already started
[20]. From the theoretical point of view, for example in their
technicolor model, Doff [21] and Doff and Natale [22] estimated
the masses of vector gauge bosons in extensions of the SM. Many
other extensions of the SM predict new scalar or vector bosons,
called leptoquarks (LQs), which carry color-charge and fractional
electric charges. Examples of such SM extensions include the
above cited GUT models. Leptoquarks can decay, for instance
into a pair of quark and lepton, and therefore experimental
searches were already suggested to focus on such pair production
caused by leptoquarks [23].

Employing the fermion unification model based on the
intrinsic SU(8) symmetry of the generalized Dirac equation
[7], we discuss here in detail the gauge fields under the
SU(8)=SU(2)⊗SU(4) symmetry group. This unified gaugemodel
can describe the electron, the neutrino, and the three colored
up and down quarks of the first generation in the SM, as an
SU(8) octet of Dirac spinor fields. Consequently, the fundamental
fermion interactions are found to be mediated by the SU(4) and
SU(2) vector gauge boson fields, which include the bosons Y and
U like the bosons Z and W of the SM, but which also comprise
three new colored X bosons, which carry a fractional hypercharge
of ±4/3 and can transmute leptons into quarks and vice versa.
TheHiggsmechanism then givesmass to these gauge bosons, and
can also lend mass to the fermions. Given appropriate coupling
constants to the Higgs field, the physical masses of all eight

fermions can be fixed. The measured electron mass serves as
a reference setting the spatial scale of the spinor fields by its
Compton wavelength.

The main goal of this paper is to work out the above
mentioned characteristics of the unified SU(2)⊗SU(4) gauge
theory, and thereby to estimate the masses of the associated
vector gauge bosons. After a short introduction to the generalized
Dirac equation, we study the covariant derivative under
SU(2)⊗SU(4) and discuss the Higgs mechanism.

2. THE GENERALIZED DIRAC EQUATION

In this first introductory paragraph, we present the Dirac
equation [7, 8] in an appropriate algebraic form, and provide
some of the necessary mathematics required for the discussion
in the subsequent sections. We use standard symbols, notations
and conventional units as in Schwartz [1] and Kaku [2] for the
Dirac equation [8], and set h̄ = c = 1. According to quantum
mechanics the relativistic covariant four-momentum operator
can be denoted as Pµ = (E,−p) = i∂µ = i(∂/∂t, ∂/∂x), which
acts on the space-time variables of any spinor field ψ(x, t). The
fermion mass is denoted by m and the same for any species
identified later. We may also abbreviate the contravariant space-
time location vector xµ = (t, x) as x. The Dirac equation [8] for a
four-component standardDirac spinor fieldψ(x) reads as follows

iγ µ∂µψ = mψ . (1)

We are free to choose the so-called Weyl [24] representation as
our standard. Then the Dirac matrices can be written as

γ µ = (β12, γσ ), (2)

where the symbol 12 stands for the 2 × 2 unit matrix. We
introduce the matrices α, β , and γ as

α =
(

−1 0
0 1

)

, β =
(

0 1
1 0

)

, γ =
(

0 1
−1 0

)

. (3)

They obey α = βγ . In Equation (2) the Pauli matrices [25]
have their standard form, which is given by the fundamental
representation of the SU(2) group generators (see Appendix).
The chiral (matrix) operator is defined as γ 5 = iγ0γxγyγz in any
representation. Using the fact that σxσyσz = i12, it takes in the
Weyl representation the form γ 5 = −βγ 312 = α12, and obeys
(γ 5)2 = 14, where 14 stands for the 4× 4 unit matrix.

Following the recent work of Marsch and Narita [7] on the
intrinsic SU(8) symmetry of a generalized Dirac equation, we
can assemble, respectively, the neutrino and the red, green, blue
up quarks into a large four-component spinor, a quadruplet of
the SU(4) symmetry group, and similarly the red, green, blue
down quarks and the electron into another large four-component
spinor, which read

ψu =









ψr

ψg

ψb

ψl









, ψd =









ψR

ψG

ψB

ψL









. (4)
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Here we use lower and upper case letters to indicate the Dirac
spinor fields for the up and down hyperspin states. The Dirac
equation [8] for both spinors reads as follows

iγ µ∂µψu,d = mψu,d. (5)

These fermion quadruplets have the adequate form that is
conveniently employed in the Yang-Mills theory [1, 2, 26, 27].
Given the number of four fermion degrees of freedom, we see
that the SU(4) symmetry group unifies leptons with up and down
quarks, and consequently SU(8) serves as a candidate for the
grand symmetry group unifying the eight fermion species all
together [7].

When considering each fermion on its own, for example the
electron, we may choose its hypercharge to be either y = 1
or y = −1, but apparently SU(4) group theory prefers −1. The
opposite charge is implied automatically for the antiparticle by
the charge conjugation symmetry of Dirac’s equation. Since there
is an equality among the leptons and quarks, these four fermions
are allowed to mix among themselves. The corresponding
unifying symmetry group is SU(4) [2, 7, 28], which is unitary and
four-dimensional in its fundamental representation. Thus, we
can define a related hypercharge operator Y as a purely diagonal
4 × 4 matrix, which has the fermion hypercharges on its trace
and can conveniently be written as Y = diag

(

1
3 ,

1
3 ,

1
3 ,−1

)

.
Consequently, the trace of Y must vanish as required by SU(4)
group theory. The fractional charges of the quarks simply reflect
the fact that there are three quark species, and thus the dimension
of their subspace is 3, in association with the SU(3) group in its
fundamental representation. SU(3) is a subgroup of SU(4), which
has 15 generators [2, 28]. For the sake of completeness, and since
we need them frequently, we quote the SU(4) generators in the
Appendix.

We can now further combine the two large spinors of

Equation (4) with an SU(2) doublet 9† = (ψ†
u , ψ

†

d
), and write

the grand-multiplet Dirac equation in octet form in the Weyl
representation after Equation (2) as

iγ µ∂µ9 = m9, (6)

which includes an eight-component SU(8) vector built of Dirac
spinors (Equation 6), and describes the kinetics of the eight free
fermions of the first family or generation of the standard model
(SM). The corresponding symmetry group is SU(8), which has

the decomposition SU(2)⊗SU(4). The doublet 9† = (ψ†
u , ψ

†

d
),

with the indices u (up) and d (down) referring to hyperspin,
encompasses two four-component spinors as given in Equation
(4) with the indices u = (r, g, b, l), and d = (R,G,B, L) given
explicitly. Note that the lower-case indices refer to the electric
charges (2/3, 2/3, 2/3, 0) for the three colored up quarks and
the neutrino, and upper-case indices refer to the electric charges
(−1/3,−1/3,−1/3,−1) for the three colored down quarks and
the electron [7].

3. COVARIANT DERIVATIVES

Here we provide and discuss the mathematics associated with
the covariant derivative for the SU(4) symmetry group. It has

the generators Ta = 1
2λ

a in conventional normalization [1, 2],
where the early-alphabet letters such as a and b are used to index
the 15 generators of the SU(4) algebra as super- or subscript
(see Appendix). According to the Yang-Mills theory [26] each
generator is associated with a four-vector real gauge field which
we name Va

µ. Then the so-called connection field Vµ = TaVa
µ

(summation convention over the index a is assumed) defines the
covariant derivative

Dµ = 14∂µ − ig′Vµ, (7)

which replaces the normal derivative term in the Dirac Equation
(5). Note that Vµ is a 4 × 4 four-vector matrix containing 15
independent gauge fields as elements. The coupling constant
is conventionally named g′. Yet, note that the hypercharge
group U(1) and SU(3) are now included in SU(4) as subgroups.
Therefore, the SU(4) coupling constant should be that of SU(3)
for the strong interaction. Thus, quantum hypercharge dynamics
(QYD) and quantum chromodynamics (QCD) must have the
same coupling constant at the outset.

It turns out to be advantageous to combine the generators
(or lambda matrices) pairwise to obtain the ladder operator
concerning the color and electric charges. We combine the
real non-diagonal lambda matrices to obtain six matrix pairs,
such as λ±1,2 = 1

2 (λ1 ± iλ2). The six possible combinations
are given appropriate names and are listed in the Appendix.
Correspondingly, we may define the gauge fields, for example
by introducing V±

1,2 = V1 ∓ iV2. To ease the notation, we
omit the relativistic index µ at all gauge fields. Inspired by the
work of Georgi and Glashow [5], the gluon gauge fields with
index pairs (1, 2), (4, 5), (6, 7) are given the new names Grḡ =
V+
1,2,Grb̄ = V+

4,5, and Ggb̄ = V+
6,7 for the plus superscript,

respectively, and their hermitian (complex) conjugates (Grḡ)
† =

Ggr̄ = V−
1,2, (Grb̄)

† = Gbr̄ = V−
4,5, and (Ggb̄)

† = Gbḡ =
V−
6,7, corresponding to the minus superscript. These gluons

transfer or change color charge. The gauge fields with index pairs
(9, 10), (11, 12), (13, 14) are given the new names X+

r ,X
+
g ,X

+
b

for the plus superscript, which have the hermitian conjugates
(

X+
r

)† = X−
r̄ ,
(

X+
g

)†

= X−
ḡ , and

(

X+
b

)† = X−
b̄

for the minus

superscript. Thus, we have the following definitions: X+
r = V+

9,10,

X+
g = V+

11,12, X
+
b

= V+
13,14, and X−

r̄ = V−
9,10, X

−
ḡ = V−

11,12,

X−
b̄

= V−
13,14. The X vector gauge bosons connect leptons with

quarks, and transfer or change the electric as well as color charges.
The possible transfer processes are illustrated in Table 1.

By making use of the above construction of the gauge
bosons and associated lambda matrices, we can now rewrite the
connection field (for the sake of simplicity we omit again the
relativistic indexµ at all vector gauge fields) in the following way:

Vµ =
1

2
( λ+rgGrḡ + λ+rbGrb̄ + λ

+
gb
Ggb̄ + λ

−
rgGgr̄ + λ−rbGbr̄ + λ−gbGbḡ

+λ+
rl
X+
r + λ+

gl
X+
g + λ+

bl
X+
b
+ λ−

rl
X−
r̄ + λ−

gl
X−
ḡ + λ−

bl
X−
b̄

+λ3G3 + λ8G8 + λ15B ). (8)

Here we have renamed the gauge fields connected to the diagonal
matrices as V3 = G3 and V8 = G8, indicating their nature as
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TABLE 1 | SU(4) representation for exchange of lepton with quarks by help

of the colored X gauge boson.

Fermion qr qg qb l Hypercharge

Red quark Grḡ G
rb̄

X+r qr 1/3

Green quark Ggr̄ G
gb̄

X+g qg 1/3

Blue quark Gbr̄ Gbḡ X+
b

qb 1/3

Lepton X−
r̄

X−
ḡ

X−
b̄

l −1

X+ has hypercharge +4/3, and X− hypercharge −4/3.

a gluon belonging to SU(3), and V15 = B. This hypercharge
gauge field B is related to the diagonal hypercharge operator
Y =

√
2/3λ15. Note that the connection is a hermitian operator,

i.e., Vµ = V
†
µ, owing to the properties of the lambda matrices and

the complex gauge fields. Using the lambda matrices given in the
appendix, we write Vµ as a 4×4matrix, key elements of which are
arranged in Table 1. Although the fractional hypercharge ±4/3
of the X bosons appears somewhat unusual, yet it is natural
when considering that this value corresponds to the hypercharge
difference between quarks and lepton. The fractional hypercharge
is an unavoidable consequence of the SU(4) symmetry.

The coupling of the hyperspin doublet to gauge fields is
described and inspired by the theoretical scheme of the well-
known theory of the weak interactions after Weinberg [29],
Glashow [30], Salam [31], which is a key component of the SM.
By noting that the hyperspin (indicated in (9) by an arrow) should
not be confused with the normal fermion spin (intrinsic angular
momentum) which is not relevant for the gauge interaction
discussed here, we apply the scheme of Weinberg-Glashow
rotation to relate the fundamental or free fermion octet state9free

with the interaction state9int as

9free =

























qr↑(1/3)
qg↑(1/3)
qb↑(1/3)
ll↑(−1)
qr↓(1/3)
qg↓(1/3)
qb↓(1/3)
ll↓(−1)

























−−−−→
rotation

9int =

























ur(2/3)
ug(2/3)
ub(2/3)
ν(0)

dR(−1/3)
dG(−1/3)
dB(−1/3)
e−(−1)

























.

(9)
The covariant derivative for the hyperspin gauge field Uµ =
τ aUa

µ is (by using U instead of W to avoid confusion in the
nomenclature):

Dµ = 12∂µ − igUµ, (10)

where the three generators of the SU(2) group symmetry
are given by the three normal vector components, τ =
1
2σ . We introduce the conventional ladder operators as

σ± = 1
2

(

σx ± iσy
)

, and the related complex gauge fields
U±
µ = Uxµ ∓ iUyµ. Then the connection reads Uµ =

1
2

(

σzUzµ + σ+U+
µ + σ−U−

µ

)

. Therefore, the covariant derivative
including both the SU(4) and SU(2) gauge fields can be written
concisely as

TABLE 2 | SU(2) representation for exchange of neutrino with electron by

help of the U gauge boson.

Fermion ν e− Electric charge

Neutrino U+ ν 0

Electron U− e− −1

U+ has electric charge +1, and U− charge −1.

TABLE 3 | SU(2) representation for exchange of up quark with down quark

by help of the U gauge boson.

Fermion u d Electric charge

Up quark U+ u 2/3

Down quark U− d −1/3

U+ has electric charge +1, and U− charge −1.

Dµ = 18∂µ − (igUµ)14 − 12(ig
′
Vµ), (11)

where the symbols 12, 14, 18 refer to the two-, four-, and eight-
dimensional unit matrices, respectively. The quantities on the
right hand are understood to be multiplied, element by element,
with the matrices on their left side. For the sake of transparency,
we express the matrices connected with SU(2) explicitly as

Dµ =
(

14∂µ−ig′Vµ − i14(
g
2Uzµ) −i14(

g
2U

+
µ )

−i14(
g
2U

−
µ ) 14∂µ −ig′Vµ + i14(

g
2Uzµ)

)

.

(12)
The complex operator Dµ in Equation (12) replaces ∂µ in the
generalized Dirac equation (Equation 6), and acts on the octet
spinor field9free.

Following the procedures used in the SM for unifying
the hypercharge and weak-charge interactions to form the
electroweak interactions, we combine the terms involving the
gauge field Bµ in SU(4), which is coupled to the hypercharge
operator Y , with the gauge field Uzµ of SU(2) and mix them
by the Weinberg-Glashow rotation as illustrated in Equation
(9). The effects of these gauge fields on the charges of the
fermions are further shown in the Tables 2, 3. We abbreviate the
corresponding term in the matrix operator (Equation 12) as Mµ

which is given by

Mµ = −
i

2

(

fYBµ + g14Uzµ 0
0 fYBµ − g14Uzµ

)

. (13)

Here we redefined the coupling constant for the SU(4) interaction
into f =

√
3/2g′ by including the factor in front of the original

matrix λ15. We recall that Y = diag
(

1
3 ,

1
3 ,

1
3 ,−1

)

is a non-trivial
diagonal matrix. We now introduce two new fields Aµ and Y0

µ by
the Weinberg-Glashow rotation [29, 30] as

(

Aµ
Y0
µ

)

=
(

cos θ sin θ
− sin θ cos θ

)(

Bµ
Uzµ

)

. (14)
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Here θ is the associated rotation angle that is still to be
determined. We abbreviate c = cos θ and s = sin θ . By replacing
the old by the new fields in the operatorMµ, we obtain

iMµ =
1

2









fY(cAµ − sY0
µ) 0

+g14(sAµ + cY0
µ)

0 fY(cAµ − sY0
µ)

−g14(sAµ + cY0
µ)









. (15)

or using 8× 8 matrices Q and R

iMµ = Q(Y, θ)Aµ + R(Y, θ)Y0
µ, (16)

where the Q and Rmatrices are

Q(y) =
1

2

(

Yf cos θ + 14g sin θ 0
0 Yf cos θ − 14g sin θ

)

, (17)

and

R(y) =
1

2

(

−Yf sin θ + 14g cos θ 0
0 −Yf sin θ − 14g cos θ

)

.

(18)
Close inspection of Equations (17) and (18) shows that, if
f cos θ = g sin θ = e (with e being the electric charge unit) for
the particular angle θU, the matrices Q and R can become more

transparent. The condition implies that tan θU = f
g = g′

√
3

g
√
2
,

which defines the SU(2)⊗SU(4) equivalent to the Weinberg-
Glashow [29, 30] angle tan θW of the SU(2)⊗U(1) electro-weak-
interaction theory of the SM. The empirical values are sin θW =
0.4722 and cos θW = 0.8815 [1]. The coupling constant f is
related to the hypercharge operator of the U(1) gauge field in
the SM, whereas it is related to the hypercharge operator Y of
the SU(4) gauge field in our model associated with the unified
strong and hypercharge interactions. The SU(4) gauge field has
the common coupling constant g′ = f

√
2/3 between strong and

hypercharge interactions. In the SM we have gSM = e/ sin θW =
2.118e and g′SM = e/ cos θW = 1.134e, as obtained from
measurements.

In our model there is no plausible reason to assume that the
coupling constants g and g′ are different.We follow the ingenious
intuition of Georgi and Glashow [5], “...that all elementary
particle forces (strong, weak, and electromagnetic) are different
manifestations of the same fundamental interaction involving a
single coupling strength, the fine-structure constant.” In agreement
with this statement we assume g = gSM and f = g′SM.
Consequently, the values of our strong and weak coupling
constants are then chosen as g′ = 0.923e and g = 2.118e.
Therefore, we identify the U boson with theW bosons of the SM
although we do not have a chiral theory. The finite fermion mass
breaks chiral symmetry. In our unified field model we are always
dealing with massive Dirac spinor fields and not two-component
massless Weyl spinor fields. We will continue using the symbol
U for the gauge bosons in order to indicate the difference from
the W boson appearing in the chiral weak-interaction theory of
the SM.

Once the rotation angle is fixed by the ratio of the coupling
constants f and g, the entity Q turns out to be the SU(8)
electromagnetic charge operator given by

Q(Y) =
e

2

(

Y + 14 0
0 Y − 14

)

, (19)

with the electric charge obtained as e = fg/
√

g2 + f 2. Of course
the field Aµ then is the electromagnetic field. Similarly, we get for
the effective weak charge operator in association with the neutral
field Y0

µ the formula

R(Y) =
1

2
√

f 2 + g2

(

−Yf 2 + 14g
2 0

0 −Yf 2 − 14g
2

)

. (20)

For the fermion octet we thus obtain the diagonal-matrix electric
charge operator

Q = e diag

(

+
2

3
,+

2

3
,+

2

3
, 0,−

1

3
,−

1

3
,−

1

3
,−1

)

, (21)

corresponding to three charged up quarks and the uncharged
neutrino, and to the three charged down quarks and the electron.
The electric charges of the three color variants of up and down
quarks are the same, as was expected. Obviously, the trace of
the charge operator Q sums up to zero, which expresses charge
conservation among the eight fermions assembled in the SU(8)
octet.

Another key trait of the present model is that the three up
quarks and neutrino and the three down quarks and electron
also carry what we call gray charge. We use this new term to
indicate the charge that is associated with the operator (20)
and originates from the SU(2) doublet (with hyperspin up and
down corresponding to white and black). Upon insertion of
the hypercharge operator Y into Equation (20), we obtain the
diagonal-matrix gray-charge operator

R = diag
(

q+, q+, q+, l+, q−, q−, q−, l−
)

. (22)

The corresponding gray charges are defined as

q± =
±3g2 − f 2

6
√

g2 + f 2
(quarks); l± =

±g2 + f 2

2
√

g2 + f 2
(leptons). (23)

With their gray charges all fermions couple to the gauge field
Y0
µ (corresponding to the Z0

µ vector boson field of the SM)
of the unified strong and weak interaction [7]. We like to
stress that the traces of the Q and R matrices vanish, in
compliance with the general property of the SU(8) symmetry-
group generators, consisting of the 63 traceless 8 × 8 unitary
matrices. Consequently, 3(q+ + q−) + l+ + l− = 0, which is
obvious from (23). The gray charge brings about a new force
(yielding what we may call Quantum Gray-Charge Dynamics,
QGD) acting on the fermions, but differs essentially from the
electromagnetic (QED) and strong (QCD) forces, which both are
mediated by massless vector bosons (photons and gluons) related
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with the symmetry groups U(1) and SU(3) that is a subgroup of
SU(4) considered here.

Returning to the initial expression (Equation 11) and using the
full symbols for SU(4), we can write the covariant derivative as

iDµ = 18i∂µ + 12
g′

2

8
∑

a=1

λaVa
µ + Q(Y)Aµ + R(Y)Y0

µ

+
g

2
(σ+U

+
µ + σ−U−

µ )14 + 12
g′

2

14
∑

a=9

λaVa
µ. (24)

We may rewrite the covariant derivative again explicitly in terms
of the gluons G, the photon A, the Y boson, the U bosons, and
the X bosons as follows:

iDµ = 18i∂µ + 12
g′

2

(

λ+rgGrḡ + λ+rbGrb̄ + λ
+
gb
Grb̄ + λ

−
rgGgr̄

+λ−
rb
Gbr̄ + λ−gbGbḡ + λ3G3 + λ8G8

)

+ Q(Y)Aµ

+R(Y)Y0
µ +

g

2
(σ+U

+
µ + σ−U−

µ )14 + 12
g′

2

(

λ+
rl
X+
r

+λ+
gl
X+
g + λ+

bl
X+
b
+ λ−

rl
X−
r̄ + λ−

gl
X−
ḡ + λ−

bl
X−
b̄

)

. (25)

The second bracket term corresponds to QCD, the third term
to QED, the fourth and fifths terms to weak interactions, and
finally the sixth to the strong interactions associated with the
exchange of color-charge and hypercharge. The last six terms
are of genuine SU(4) nature and do not exist in the SM! The
covariant derivative in Equation (24) represents the unification
of the strong interactions with the weak ones in our model.
The link between the strong and the weak interactions leads to
electromagnetism through SU(4) symmetry unifying QCD with
QYD. SU(8) is the merger of the SU(4) interactions with the weak
interactions associated with the hyperspin degree of freedom of
the fermions. Apparently, the photon represented by Aµ and
the associated electromagnetism emerge by the amalgamation of
SU(4) with SU(2), which yields the unifying symmetry given by
SU(8)=SU(2)⊗SU(4).

4. HIGGS MECHANISM AND MASSES OF
BOSONS AND FERMIONS

According to the paradigm described by the Higgs mechanism
[1, 2, 32, 33] the vector gauge bosons of the SM acquire mass
through the symmetry breaking introduced by the scalar Higgs
field. Here we also rely on this mechanism for giving mass
to six of the fifteen vector bosons stemming from Va

µ (a =
9, · · · , 14) of the symmetry group SU(4). The eight gluons Ga

µ

(a = 1, · · · , 8) associated with SU(3) will not be affected
by this procedure and remain massless. So will the photon,
described by the electromagnetic vector potential Aµ (related
with V15

µ ). We define, in connection with the Higgs field, in
SU(4) the quadruplet φ and in SU(8) the octet as 8 of scalar
boson fields. Unlike in the SM, the Higgs field carries color-
charge and hypercharge and thus electric charge, but we aim
at a chargeless boson breaking SU(8) symmetry. We define the

quadruplet φ†
0 = (0, 0, 0, 1) that is normalized to unity as

well as the octet 8†
0 = (0, 0, 0, 1, 0, 0, 0, 0). They turn out to

be of key importance for the subsequent calculations because
of the construction Q80 = 0, i.e., 80 is the eigen-state (for
charge zero) of the charge operator (Equation 21) coupling to the
electromagnetic field. Close inspection of the lambda matrices as
given in the appendix shows that

λaφ0 = 0 (a = 1, .., 8);
λ2aφ0 = φ0 (a = 9, .., 14); (26)

φ
†
0λaφ0 = 0 (a = 1, .., 14).

Moreover, the lambda matrices have the property that

λ9λ10 + λ10λ9 = λ11λ12 + λ12λ11
= λ13λ14 + λ14λ13 = 0. (27)

φ
†
0λaλbφ0 = 0 for all pairs (a, b)

6= (9, 10), (11, 12), (13, 14), (28)

where a and b may run from 9 to 13. The matrix products have
a zero in the lowest right corner, and thus their expectation value
vanishes. Furthermore, there are relations that help us to simplify
the subsequent calculations involving the sigma matrices (see
Appendix). For example, we find that

8
†
0(σ±14)80 = 0; (σ+14)(σ−14)+ (σ−14)(σ+14) = 18. (29)

In the Lagrangian density [1] of the Higgs octet with the single
boson field h(x), the kinetic term reads

Lh = (Dµh(x)80)
†(Dµh(x)80), (30)

where the covariant derivative (Equation 24) has to be inserted.
As we are only interested here in the lowest order term,
we assume the Higgs field to be represented by its vacuum
expectation value that is traditionally named v = 〈h(x)〉 in the
SM. Operation of the covariant derivative on h(x)80 yields

iDµh(x)80 = ν

(

Y0
µR(Y)+

g

2
(σ+U

+
µ + σ−U−

µ )14 (31)

+12
g′

2

14
∑

a=9

λaVa
µ

)

80.

Here use has been made of λaφ0 = 0 (a = 1, · · · , 8) for the
gluons, Q80 = 0, and that ∂µv = 0. As iDµh(x) is a hermitian
operator, the lowest-order contribution to (Equation 30) is just
given by the expectation value of the squared operator between
the brackets in the above expression. When evaluating it all the
linear mixing terms between the various boson fields vanish, and
just their squares remain. The Lagrangian is then:

Lv = ν2

(

Y0
µY

0µ(8†R28)+
( g

2

)2
(U+
µU

−µ) (32)

+
(

g′

2

)2 14
∑

a=9

Va
µV

aµ

)

.
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The coupling constant of the neutral colorless gauge field Y0
µ is

given by the expectation value of the operator R(Y) as defined
in (Equation 20). Note that Yφ0 = −φ0, and then detailed
calculation yields the simple result that R(Y)80 = 1

2

√

f 2 + g280.
Thus, the squared coupling constant is given by (f 2 + g2)/4,
like in the SM, yet note again that f =

√
3/2g′, and here g′ is

the coupling constant of the strong interaction. From the above
equation we can readily read off the masses of the vector gauge
bosons:

MY =
ν

2

√

3

2
(g′)2 + g2 ; MU =

ν

2
g ; MX =

v

2
g′ . (33)

Recalling the definition of the X, Y , and U bosons, we can finally
write the boson mass terms generated by the symmetry-breaking
Higgs mechanism in the Lagrangian as

Lν = M2
YY

0
µY

0µ +M2
UU

+
µU

−µ

+M2
X

(

X+
rµX

−µ
r̄ + X+

gµX
−µ
ḡ + X+

bµ
X
−µ
b̄

)

. (34)

Remember that there are three X bosons because there are three
kinds of colored quarks, but only one U boson, since there is
merely one sort of lepton. Concerning the SM, our Y conforms
to Z and ourU corresponds toW. The massesMZ andMW of the
famous SM gauge bosons have been measured well [1, 2, 29].

Let us estimate the possible masses of the U bosons.
IdentifyingW for the moment as U, and taking the known weak
interaction coupling constant as g, we obtain mU = mW =
80.4 GeV, and further predict that the X boson mass should be
larger than that of the U boson by the ratio of the coupling
constants involved here, i.e., by the factor g′/g =

√
αs/αw and

MX =
√
αs/αwMU. With the typical value αw = 0.032 for the

weak and αs = 0.12 for the strong interaction (e.g., [1]), we
obtain a ratio of 3.75 with the coupling constants taken at electro-
weak scale of about 100 GeV. By the square root of 3.75, yielding
1.94, the X should be heavier than the U. As a result we derive
an estimate of MX = 156 GeV, which is clearly within the reach
of the LHC providing energies of several TeV. Similarly, we can
estimate the mass of the Y boson from formula (33), yielding
MY =

√

1+ (3αs)/(2αw)MU, and thus obtain MY = 207 GeV.
This is more than twice as large as the Z boson mass of the
SM, which is MZ = 91.2GeV. The reason is that the strong
interaction coupling constant g′ is here assumed to be about twice
as large as the weak coupling constant g. However, the Z boson,
although it has already been measured, would have no place in
such a scenario, but it is replaced by the heavier Y boson.

On the other hand, its seems in the spirit of unification more
adequate to assume the values g′ = 0.923e and g = 2.118e, as we
calculated previously under the assumption that f = g′SM and g =
gSM. This gives a ratio of g′/g = 0.436, and leads to a less massive
X boson with MX = 35 GeV. In that case the masses of the U
and W, and of Y and Z are of course the same by the choice of
the coupling constants. One wonders, however, that such a small
boson has not yet been detected by the LHC or previous particle
accelerators. Concerning the assumed approximate equality of
the coupling constants we may cite Georgi and Glashow [5]
again, saying that “... the essential thing about a theory of strong
interactions based on an unbroken non-Abelian gauge symmetry

is that the strength of strong interactions no longer depends on the
existence of a large coupling constant. Even if the gauge coupling
constant is small, say of order e, the infrared divergences of the
theory can lead to phenomenological interactions strong enough to
keep the quarks bound. What we want is not asymptotic freedom
but infrared slavery.”

Let us finally address the problem of the fermion masses. In
the Dirac equation (Equation 6) a single mass m is assumed for
all fermions of the octet. Following the conventional procedure
of the Yukawa coupling [1] as employed in the SM, we can
give different physical masses to the fermions of the SU(8) octet
by adding an apt term in the corresponding Lagrangian. The
coupling constants of the up and down quarks are λu,d and the
same for all colors, the one for the electron and neutrino are λe,ν .
The related masses are determined by the Higgs field vacuum
expectation value v, and thus we obtain the diagonal fermion
mass matrix mv = diag(λu, λu, λu, λν, λd, λd, λd, λe)v. Unlike
the original mass matrix m18 appearing in the Dirac equation
(Equation 6), which involves the unit matrix, the Higgs-field-
induced mass matrix mv is non-trivially diagonal, and therefore
breaks the original SU(8) symmetry. After symmetry breaking the
fermion mass term in the Lagrangian density reads

LYukawa = −9̄(m18 +mv)9 . (35)

If we choose m to be the electron mass me and the electron
coupling constant with the Higgs field to be zero (for the reason
that the electron mass is the only directly measurable), λe = 0,
we are then left with three free parameters, λν , λu, and λd, in
the mass term in order to adjust all fermion masses of the first
generation to their measured or inferred values.

5. DISCUSSION AND CONCLUSIONS

We presented a non-chiral fermion unification model based on
the SU(8)=SU(2)⊗SU(4) symmetry group. The eight fermion
species (i.e., the neutrino, the electron, and the colored up and
down quarks) of the first generation of the SM are assembled
into an SU(8) octet of massive Dirac spinor fields. The fermion
interactions are mediated by the unified SU(4) and SU(2) vector
gauge boson fields, which include not only the photon, the gluons
and the massive bosons Y and U (which correspond to the Z and
W of the SM) but also the three colored massive X bosons as new
particles. The X bosons carry a fractional hypercharge of±4/3 or
electric charge of ±2/3, and can transmute leptons into quarks
and vice versa. The full covariant derivative of this gauge model
was derived and discussed. The Higgs mechanism can give mass
to all charged vector bosons, to the uncolored Y and U as well as
to the three colored X bosons.

The SU(4) subgroup treats the fermions on an equal footing.
The related coupling constant (here named g′) could range
between ge = e and gs ≈ 4ge (for αs = 0.118 and αe = 0.0073),
which corresponds roughly to the two values of the boson mass
MX as given above. Yet in the spirit of unification, it seems most
reasonable to assume the values g′ = 0.923e and g = 2.118e,
as we calculated them previously under the assumption that f =
g′SM and g = gSM. This leads to a mass MX = 35 GeV of the X
boson. In that case the masses of the U and W, and of Y and Z
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are of course the same by the choice of these coupling constants.
In fact the vector field Y0

µ is akin to Z0
µ, and U±

µ akin to W±
µ

of the SM. The related assignment of coupling constants is our
preferred choice. Consequently, the SU(2) interaction sector of
our non-chiral model is similar to the chiral weak interaction of
the SM, with the corresponding gauge bosons having the same
measured mass.

A common coupling constant seems quite plausible when
one asks the question “Why should the physical mechanism
of exchanging color-charge and hypercharge within the unified
SU(2)⊗SU(4) symmetry have vastly different boson energies
being associated with it?” Within the conventional GUT
paradigm, the mass of the related hypothetical X boson turns
out to be very large, about 1015 GeV when it is based on the
logarithmic extrapolation by many orders of magnitude of the
running coupling-constants involving the SM beta functions
[1, 2]. However, our unification model suggests that the effects of
color-charge transfer between quarks and leptons should already
be relevant and acting below the 100 GeV scale. The covariant
derivative (Equation 25) includes co-equal mathematical terms,
involving photon (QED) and gluons (QCD) alike, of about
the same order, and thus unifies these two gauge-field theories
with massless vector bosons. Given that key trait of our model,
electromagnetism (QED) is expected to play a more significant
role in the formation of hadrons andmesons than the one usually
ascribed to it by the SM.

The color-charge-exchange interactions will, like the weak
interactions in the SM, be also very short-range while being
mediated by the massive X gauge bosons. To provide a
phenomenological analysis of the consequences of the presence
of the X bosons requires detailed quantum-field-theoretical
calculations on the basis of our new SU(2)⊗SU(4) model, a
task that is left for future work. In addition to the X boson,
we established here the Quantum Gray-charge Dynamics (QGD)
as the consequence of SU(2) and SU(4) unification. QGD
materializes due to the very short-range force associated with the
massive vector gauge boson field Y0

µ, which is coupled to the
gray charge represented by the operator R, and which mediates
interactions between the eight fermions since they all carry that
gray charge. Therefore, quarks and leptons can interact with each
other not only through their electric but gray charge as well,
and thus may likely form hitherto unknown bound states. In
particular the electrically neutral and colorless neutrino can still
interact with the electron and quarks via its gray charge. This
offers new perspectives for the understanding and interpretation
of fermion interactions. To evaluate the physics of QGDdemands
further detailed algebraic calculations which are beyond the
limits of the present fundamental work.

Given an X-boson of mass 35 GeV, one may wonder why
it, when having such a relatively small mass, has not yet been
detected by the LHC or previous particle accelerators. According
to Table 1; a colored X-boson transmutes a colored quark into a
colorless lepton, or vice versa, and thus may decay into such a
quark-lepton pair. As free quarks do not exist but immediately
hadronize, the result of the X-boson decay will be hadron-lepton
pairs which should be directly observable. The search for pair
production of third-generation scalar leptoquarks in proton-
proton collisions at LHC beyond 200 GeV up to 8 TeV has

recently been reviewed [23]. There are probably many possible
X-boson decay channels, given the multitude of hadrons and
leptons of the three generations, and thus the decay signature
expected near 35 GeV may in all not be clean and easily
discernable. But the X-boson decay is expected to contribute
to a wide event background way below 100 GeV. For example,
in the search for signatures of the Higgs boson decay, the
dilepton invariant mass data was recently found at LHC to peak
broadly at the energy of 35-40 GeV (in [19] Figure 7) and at
the energy of 30 GeV (in [17] Figure 1) in the background data
accumulated from various decay modes. Similary, a broad peak
in the background data of the dilepton invariant mass of the Z
boson decay was, already long time ago, found by SPS at CERN
around an energy of 30–40 GeV (as cited in [34] Figure 7.26, and
[35] Figure 1). After the decay signatures of the X-boson have
theoretically been clearly defined, a dedicated search for it, with
careful background evaluation, should be carried out with the
existing or future LHC data.

Finally, we like to mention that we did not treat here explicitly
fermions of the second and the third generation, but just of the
first generation as obtained from the generalized Dirac equation
involving SU(2)⊗SU(4) symmetry and a single mass [7]. Our
model should of course be expanded to describe additional
fermions with higher masses, because particle colliders and other
experiments showed and confirmed their existence. The simplest
extension of our model would be to just add four more flavors
(two generations) for the strange, charm, bottom and top quarks
and the muon, tauon and their associated neutrinos, with the
same basic massm but complemented by corresponding Yukawa
coupling terms with additional specific constants like in the
SM. This model would be similar to yet more comprehensive
than the SM, while being unified and encompassing the joint
SU(2)⊗SU(4) symmetry groups, and therefore we plan to explore
in the future its characteristic phenomenology in detail.

To add further new interactions to the model is another future
aim. For example, the consideration (also going beyond the SM)
of the prevailing topics of massive neutrino oscillations, or of the
presumed and debated charged lepton flavor violation (CLFV, see
e.g., [36]) of course requires to account for the two known heavier
fermion families, but is beyond the scope of our paper. Like the
SM, also the present model must be further developed to address
such ongoing research topics. By doing this one may come up, for
instant, with new constraints on the nature of cosmological dark
matter, or on the genesis of baryons and leptons.
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Marsch and Narita SU(2) and SU(4) Gauge Fields

APPENDIX

SU(2) and SU(4) matrices
The generators of the SU(2) group are determined by the Pauli matrices which read

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

. (A1)

The sigma ladder operators are defined as σ± = 1
2

(

σx ± iσy
)

. They read explictly as follows:

σ+ =
(

0 1
0 0

)

, σ− =
(

0 0
1 0

)

. (A2)

The generators of the SU(4) group are given by the fifteen subsequent 4× 4 matrices. Apparently, the group SU(3) is a subgroup of
SU(4). Its eight generators can be read off from the lambdas and are contained in the upper left 3× 3 submatrices of λ1 to λ8.

λ1 =









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









, λ2 =









0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0









, λ3 =









1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0









,

λ4 =









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









, λ5 =









0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0









, λ6 =









0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0









,

λ7 =









0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0









, λ8 =
1
√
3









1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0









, λ9 =









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









,

λ10 =









0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0









, λ11 =









0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0









, λ12 =









0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0









,

λ13 =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









, λ14 =









0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0









, λ15 =
1
√
6









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3









. (A3)

The λmatrices are hermitian, satisfy tr(λ2) = 2, and yield λ† = λ. It is appropriate to combine pairs of the non-diagonal matrices to
form ladder operators (as it is usually done above for the Pauli matrices). Thesematrices are real, and so the hermitian conjugate is equal
to the transposed matrix. Thus, we have (σ±)† = σ∓. We can define similar combinations of the real nondiagonal lambda matrices
to obtain the six matrix pairs λ±rg = 1

2 (λ1 ± iλ2), λ
±
rb

= 1
2 (λ4 ± iλ5), λ

±
gb

= 1
2 (λ6 ± iλ7), λ

±
rl
= 1

2 (λ9 ± iλ10), λ
±
bl
= 1

2 (λ11 ± iλ12),

λ±
gl
= 1

2 (λ13 ± iλ14). By construction we have, e.g., (λ±rg)
† = λ∓rg , and similarly for all the others. Therefore, out of 12 we only quote

here 6 of these matrices explicitly:

λ+rg =









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, λ+
rb
=









0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0









, λ+
gb

=









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









,

λ+
rl

=









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









, λ+
gl
=









0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0









, λ+
bl
=









0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0









. (A4)

The diagonal matrices λ3,8,15 remain unchanged.
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