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We compare experimental observations of a slow interfacial crack propagation along

an heterogeneous interface to numerical simulations using a soft-clamped fiber bundle

model. The model consists of a planar set of brittle fibers between a deformable

elastic half-space and a rigid plate with a square root shape that imposes a non-linear

displacement around the process zone. The non-linear square-root rigid shape combined

with the long range elastic interactions is shown to provide more realistic displacement

and stress fields around the crack tip in the process zone and thereby significantly

improving the predictions of the model. Experiments and model are shown to share a

similar self-affine roughening of the crack front both at small and large scales and a similar

distribution of the local crack front velocity. Numerical predictions of the Family-Viscek

scaling for both regimes are discussed together with the local velocity distribution of the

fracture front.

Keywords: interfacial crack, asperity pinning, self-affine roughness, local crack velocity, Family-Vicsek scaling,

fiber bundle model

1. INTRODUCTION

Crack propagation in heterogeneousmedia is a rich problemwhich involves the interplay of various
physical processes. The problem has been intensively investigated theoretically, numerically, and
experimentally, but a unifying model capturing all the experimental features has not been entirely
achieved [1, 2] despite its broad range of implications in engineering and Earth sciences problems
[3, 4].

During most regular fracture experiments, the fracture surface can only be observed post
mortem [5]. Since Mandelbrot’s discovery [6] of fracture surfaces in metal that display fractal
properties, there have been many attempts to understand the scaling relations of fracture [5]. In
particular, the self-affine nature of fracture surfaces have come under much scrutiny. A self-affine
surface h(x) has the following scaling relation [7]

h(x) ∝ λζh(λx), (1)

where λ is an arbitrary scaling factor and ζ is the roughness exponent.
The slow propagation of a crack front where long range elastic interactions are dominant, is

of crucial importance to fill the gap between experiments and models. In an attempt to study the
in-situ properties of this process, Schmittbuhl and Måløy [8–10] developed an experiment where
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they forced the fracture to advance along a weak heterogeneous
plane embedded in a transparent medium (Plexiglas). In such
an experimental configuration, the propagation of the fracture
front can be monitored in great detail using high resolution
optical devices from which different properties characterizing the
fracture dynamics can be inferred. For instance, the distribution
of the local fracture velocities [11] or the multi-scale morphology
of the fracture front [12] can notably be measured and are found
to be robust parameters when tested against several experimental
conditions.

Several theoretical and numerical studies have been devoted
to quasi-static models [1, 13]. Such models give rise to an
intermittent local activity characterized by a depinning transition
and can be viewed as a critical phenomenon [2, 14, 15]. However,
thesemodels do not provide a completemodeling of the system as
they fail to reproduce all the experimental observations. Notably
the front morphology in these models does not display a cross-
over length scale with two different roughness exponents above
and below it. Such a cross-over was observed experimentally
in 2010 by Santucci et al. [12]. They found that the in-plane
fractures also had a scale-dependent roughness exponent. At
small scales they obtained ζ− = 0.60, while at large scales
they showed that ζ+ = 0.35. Attempts to model the behavior
of the in-plane fracture process had a long time resulted in
only the large scale roughness exponent [16, 17], or the small
scale roughness exponent in the context of a stress-weighted
percolation [18]. Moreover, the scaling relations for fractures
have now been established as being both scale and direction
dependent [19–22].

Recently, Gjerden et al. [23, 24] presented for the first
time roughness exponents compatible with both the large scale
and small scale values found in the experiments. Their model
was a development of the soft clamp fiber bundle model
[25, 26] first introduced by Batrouni et al. [27]. Gjerden
et al. implemented this model with a linear spatial gradient
in the threshold distribution thereby creating a crack front
whose dynamics and morphology could be compared to the
experimental observations [24].

Even though the characteristics of the crack front that was
created in the soft clamp fiber bundle model through the
introduction of a linear gradient matched the experimental
observations well, it cannot be ignored that the crack front was
generated in a very different way in the experiment. It is therefore
important to implement the same boundary conditions in the soft
clamp model as was used in the experiments to test whether this
change does lead to different results. This is the primary aim of
this paper.

We also push further the comparison between theory and
experiments, by focusing essentially on (i) the roughness
exponent ζ that characterizes the geometry of the front at some
given time (ii) the dynamic exponent κ that characterizes the
time evolution of the crack front roughness and (iii) the statistics
of the velocity fluctuations that show a scaling behavior with an
exponent η that is still poorly understood. We note in particular
that κ was not measured directly by Gjerden et al. [24], but
rather inferred from assuming that the Family-Vicsek scaling
assumption holds.

In the following, we first review in Section 2 the main
aspects of the experimental setup. In Section 3, we give
details on the numerical model based on the soft clamp
fiber bundle approach but modified to include both long
range elastic interactions owing to the elactically deformable
clamped block and a non-linear imposed displacement around
the process zone. In Section 4, we compare the experimental
observations and numerical results. The predictions of the
transient and steady-state scaling of the front morphology is
discussed in the light of the experimental evidences. Finally
the comparison of the local crack front velocity distribution is
presented.

2. EXPERIMENTAL SETUP

We compare our numerical results to experimental results
obtained with the following setup. It consists of two transparent
welded plexiglas (PMMA - poly methyl methacrylate) plates
[e.g., 8, 11, 28, 29]. Disorder in the strength of the interface
between the two plates is introduced by sandblasting using glass
beads of variable diameters (180–300µm), the opposite surfaces
of the two plates that are to be welded together. Welding of
the two plates is then achieved by imposing a normal load on
the assembled plates while heating the system at 190◦C. This
thermal annealing produces a cohesive interface weaker than
the bulk, along which the sample will break apart under normal
opening loading. When the system is loaded from one side, a
propagating crack—a fracture front—evolves that moves away
from the loaded side. It is this crack we focus upon.

The dimensions are typically 20 cm long, 3 cm wide and 5
mm thick for the bottom plexiglas plate and 1 cm thick for the
upper plate. The upper plate is attached to a stiff aluminum frame
while a load is applied over the top side of the bottom plate in a
direction normal to the plate interface. The vertical displacement
imposed on the bottom plate induces stable mode I propagation
of a planar fracture along the prescribed weak interface (mode
II and III components related to the finite size of the sample
and friction along the loading rod are neglected). A sketch of the
experiment is given in Figure 1.

The fracture front creates an optical contrast between the
broken and unbroken sections of the interface [28]. This fracture
front is then tracked by an optical digital camera (a Nikon D700
with a resolution of 4256×2832 pixels at up to 5 images/s for slow
monotoring or an Optronis Camrecord 600 with a resolution
of 1000 × 1000 pixels at 1000 images/s for fast tracking) in
order to extract its position through time [29–31]. The front
propagates along the y axis where the origin is defined at the
loading point and is positive in the direction of crack propagation
(see Figures 1, 2). The x axis is perpendicular to y and defines
the coordinate of a point along the front. The large scale bending
of the plate at the sample size is well reproduced by the elastic
beam theory [29]. At a smaller scale i.e., at the scale of the
process zone, the elastic beam theory might however not be
any more valid in describing the shape of the plate and typical
crack solutions eventually provide more a realistic description as
discussed below.
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FIGURE 1 | Sketch of the experimental setup. Two PMMA plates of

thickness h1 and h2 are welded and a mode I fracture propagates at the

interface between the two plates. Fracture propagation is caused by the

opening, M, between the two plates. The distance between the loading point

and the crack front is noted La. The crack front propagates along the y

direction. The gray rectangle marks the area around the crack front (see

Figure 2) we will reproduce in our simulations.

FIGURE 2 | Picture of the crack front area obtained during an

experiment. The crack is propagating from top to bottom, the gray part refers

to already broken part and the dark area to the unbroken part. The optical

contrast between this two parts defines the fracture front. The dimension of

the picture in the x-direction is 4 mm.

3. MODEL

The soft clamp fiber bundle model was first introduced by
Batrouni et al. [27] in 2002. We use this model in order
to reproduce the phenomena occurring at the process zone
scale around the fracture front by introducing the appropriate
boundary conditions. We are indeed interested in describing the
behavior of the fracture front on a short range from its edge. We
thus consider our model as a square of dimension Lf ×Lf around
the fracture front. This area of the system is illustrated in Figure 1
by the dark square covering a part of the fracture front. This
area is divided into N × N sub-squares, each of them containing
a single fiber. A discretization size is then dl = Lf /N. The
two facing Plexiglas plates are represented as infinite facing half-
spaces, and act as clamps attached to theN2 fibers. The half spaces
are supposed to have an elastic behavior with a Youngsmodulus E
and a Poisson ratio of ν. An equivalent simpler configuration can
be obtained by assuming that one of the half spaces is infinitely
stiff. Thus, E will only describe the elastic response of the other
half-space. The system is periodic along the x-axis.

The fibers are linearly elastic up to a strength threshold where
they break irreversibly and can no longer support any load. On
the contrary to Gjerden et al. [24], the thresholds are uniformly
spatially distributed between f tmin and f tmax, where we have set
f tmin = 0 and f tmax = 1. The force, fi, experienced by each
individual fiber is given by the Hooke’s law:

fi = −k(ui − Di), (2)

where i is the index of the fiber, k is the spring constant, equal
for all the fibers, Di is the local position of the rigid plate (e.g.,
constant for all fibers if the plate is plane and horizontal), ui is
the local displacement of the facing soft elastic half-space created
by the strain around the fiber by of this elastic half-space. When
Di = ui, i.e., the imposed displacement is balancing the strain
in the elastic half-space, the force in the fiber is nil. The spatially
dependent deformation is calculated by Love’s law [32]:

ui =
N2
∑

j 6= i

Gjfj (3)

where j runs over all the fibers in the array (except the self-
induced contribution). The Green function Gj is given by:

Gj =
1− ν2

πEdl2

∫ +dl/2

−dl/2

∫ +dl/2

−dl/2

dx′ dy′

|Eri(0, 0)− Erj(x′, y′)|
, (4)

Integrals in Equation (4) run over each dl2 square associated with
the fiber j. The x′ and y′ coordinates have their origin in the
middle of the discretization area. The vector Eri(x′, y′) represents
the position of the fiber i. E and ν are respectively the Young and
Poison coefficients.

During loading in the experiments, the large scale mode I
opening, induced by the imposed displacement of the bottom
plate, is well reproduced by an elastic beam model [30]. On
the contrary, at the process zone scale around the crack tip, the
opening is strongly influenced by the fracture mechanics [3]. The
opening of the crack δ(y) is then expected to have a square root
shape behind the crack front [33]:

δ(yc − y) = 8(1− ν2)√
2π

(

K

E

)

√

yc − y (5)

where yc is the average position of the crack tip and K is the stress
intensity factor.

Since our investigations focus on the small scales around the
fracture front, we assume that elastic crack opening is dominant.
Accordingly, we introduced a square root shape of the rigid
plate (see Figure 3). The imposed displacement D(y) to the fiber
bundle is then proposed to be proportional to the square root of
the distance yc − y to the fracture front [33].

We tested the approach using a non-linear shape of the rigid
plate by considering a system with half of the fibers broken (see
insert of Figure 4) and computing the resulting opening δ(y) =
D(y)−u(y) in the domain of broken fibers, in the limit of infinite
strength of the surviving fibers in the rest of the domain. We

Frontiers in Physics | www.frontiersin.org 3 May 2016 | Volume 4 | Article 18

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Stormo et al. Interfacial Crack Propagation

FIGURE 3 | Sketch of the loading of the fiber-bundle model. Individual

fibers are represented by dark vertical lines and can be broken or unbroken.

The upper plate is the soft elastic block with a Young modulus E. The shape of

the rigid bottom plate follows the displacement D ∝
√

Lf − y, as given by

Equation (5).

FIGURE 4 | Insert: sketch of the half broken configuration considered

in the figure in the case of a flat rigid plate (gray) facing a soft elastic

block (white). Fibers in red are only set in the right half of the system. For this

test, there are supposed to have an infinite strength, i.e., no possible failure).

Main figure: Crack tip opening, δ(y), as a function of the distance to the first

intact fiber, yc. Two cases are considered for the imposed shape of the rigid

plate: a flat shape in red and a crack-like shape in blue. A square-root crack fit

is displayed as a black line.

compared the configuration of a flat shape D(y) = D0 and a
square root shape D(y) = D0

√

Lf − y of the rigid plate (see
Figure 4). The red line shows the opening field δ(y) between the
rigid and the elastic clamps as a function of y for a system of size
N = 256. The linear crack tip fracture front is at yc = 129.

When we fit the opening δ(y) with a square root shape
similar to Equation (5), we see the difference between both
configurations. In the case of a flat plate, the relation only holds
in the immediate vicinity of the crack tip. As we increase the

FIGURE 5 | Profile of the force f(y) applied on the fibers ahead of the

crack tip for two shapes of the rigid plate (flat in red or square root in

blue) in a configuration similar to Figure 4.

distance back to the front, δ(y) soon deviates from the theoretical
crack tip opening. This deviationmostly results from the periodic
property of the flat shape. With a square root shape illustrated by
the blue line in Figure 4, the resulting crack tip opening is nicely
fitted by Equation (5) and holds for a much larger portion of the
system, over all the process zone of the front.

The force experienced by the fibers ahead of the crack tip for
the different loading scheme is shown in Figure 5. We observe,
for both the flat and square-root rigid plate shape that the force on
the fibers, depends on the distance from the crack tip as an inverse
square root profile consistently with elastic crack theory [3].
As we can see from the figure, the imposed square-root shape
improves significantly the system compliance except at very large
distance ahead of the crack front preventing failure of the fibers
in this domain.

We see from both Figures 4, 5 that the loading and
the respond of the model become non-physical close to the
boundaries of the system. In order to keep the process zone
around the fracture tip away from the boundaries, we used the
“conveyor belt” technique [34]. Since only the surviving fibers
matter in the force field calculations and fibers fail irreversibly, we
remove the first broken (i.e., left side in Figure 3) row from our
calculations and add a fully intact one at the last (i.e., right side)
row. nc is the number of times a new intact row is introduced
during the computation.

We prevented the last (1/2)N log(N) rows of fibers from
breaking in order to prevent wrap-around of the failed fibers due
to the periodic boundary conditions. For L = 256, this meant
that four rows were unbreakable.

During the computation of the crack front advance, the system
is updated iteratively and quasistatically by removing the fibers
one by one following en event-driven algorithm [16]. At each step
we compute a new prefactor D0 that will correspond to a force
field where only one of the fibers is experiencing a force equal
to its strength threshold. This fiber is actually the closest one to
failure and thus requires the least increase of D0 to break. The
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fiber is then removed and the procedure is continued until there
is no intact fiber left.

When the distances are measured in units of the discretization
size dl, the relative influence of the elastic interactions with
respect to the global loading has been found to be described by
a single parameter named the reduced Young modulus [35]

e = Edl

N
. (6)

where E is the Young modulus, N the number of fibers per
system length Lf . Indeed, the contribution of the Green function
in the force computation of each fiber can be turned on or
off, depending on the value e. In the stiff regime, i.e., large
e, the fracture process is dominated by a diffusive damage
controlled by the strength heterogeneities in the system. When e
decreases, the system goes through a cross-over regime where the
influence of the elastic forces rises. When e is sufficiently low, the
competition between the elastic redistribution and the strength
heterogeneities are balanced and the system enters a so-called
soft regime. This regime is dominated by localized damage. As
we can see from Equation (6), decreasing E, while increasing N
in a way that keeps e constant is not affecting the influence of the
Green function. We will thus associate the soft systems with large
length scales. Similarly, we will associate the stiff systems with
short length scales.

4. RESULTS

4.1. Front Morphology: Self-Affine Scaling
and Cross-Over Length Scale
Previous experimental studies reported that an interfacial crack
front in the present configuration is self-affine with a roughness
exponent ζ ≃ 0.6 [e.g., 8, 28]. More recent data extracted
from numerous experiments and at various scales show that
actually two distinct regimes emerge depending on the scale of
investigation: at small scales the scaling regime is characterized
by a roughness exponent ζ− ≃ 0.60 while at large scale the
exponent is lower and is found around ζ+ ≃ 0.35 [12]. We
aim at a direct comparison of the scaling properties of the
simulated crack front and the experimental observations. For
this, we identify the fracture front as the interface between the
cluster of broken fibers spacially connected (i.e., in the sense of
a link between first neighbors) to one side of the system and
the cluster of surviving fibers connected to the other side. When
this interface is identified, it is approximated as a function of
the x-coordinate for each time step t: h(x, t) by using a solid-
on-solid (SOS) algorithm. The front line is indeed deduced by
taking the first y-value hit when searching along the y-axis
from above or below. An example of this front is given by the
red line in Figure 6 for stiff systems, and in Figure 7 for soft
systems.

We investigated the scaling properties of the crack front
morphology in our simulations in a similar way to the
experiments. In order to find the roughness exponent (cf
Equation 1) of the fracture fronts produced by our model, we
analyzed them using the average wavelet coefficient method

FIGURE 6 | Example of process zone during a simulation for a stiff

system (e = 62.5). The dark points refer to broken fibers while yellow points

are intact fibers. The system size is N = 32.

FIGURE 7 | Same as Figure 6 for a soft system (e = 7.6 · 10−6).

which is shown to be very efficient for data over a limited
range of scales [36]. The average wavelet coefficient W(a) is
defined as:

W(a) = 〈W(a, b)〉b (7)
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where a is the scale factor of the wavelet transform and b is the
translation factor. It scales for a self-affine front as

W(a) ∝ aζ+1/2. (8)

In Figure 8, we see the average wavelet coefficient (using
Daubechies wavelets of order 4) for the stiff regime for different
system sizes. We find the roughness exponent of the small
systems by making a fit over the three smallest coefficients. We
exclude the very smallest, as the discretization size begins to
influence the results. This gives us a roughness exponent of ζ− =
0.53± 0.02.

It is clear from Figure 8 that the estimated roughness
exponent is size dependent. Nevertheless, as the system size
increased we observe a convergence of the roughness exponent
toward the experimental value represented by the dashed line.

We also performed simulations in the soft regime, which
is equivalent to simulating the system on large length scales.
We extracted front positions and applied the average wavelet
coefficient method to the front morphology. We obtained the
roughness exponent by fitting the four largest coefficients for
L = 128. This gives: ζ+ = 0.35 ± 0.01. In Figure 9, we see the
wavelet coefficient scaling for this long range regime.

As opposed to the short scale regime, the estimated value of
ζ+ is nearly insensitive to the system size. We also observe that
the experimental roughness exponent observed at large length
scale [12] is similar to the one we obtained from our simulations.

4.2. Family-Vicsek Scaling
As the fracture front progresses through the system, the memory
of the earlier positions fades progressively. We explore this
process by creating a differential front hm with respect to the
fracture front at time t0:

hm(x, t) = h(x, t)− h(x, t0). (9)

FIGURE 8 | Wavelet analysis of the crack front morphology for different

systems sizes (color circles). Results are obtained for stiff systems (i.e.,

small scale systems) (e = 62.5). The blue line represents the best fit over the

obtained points and gives an exponent ζ− = 0.53± 0.02. The black dashed

line refers to the scaling found in the experiments in for small scales:

ζ = 0.60± 0.05 [12].

The front width is defined as the root mean square (rms):

σ (L, t) =

√

√

√

√

N
∑

x= 0

(hm(x, t, t0)− 〈hm(x, t, t0)〉x)2. (10)

We chose to use the Family-Vicsek (FV) scaling [37] framework
to describe the transient evolution of the differential front:

σ (t, L) ∝ Lζ f

(

t

Lκ

)

(11)

where

f (x) =
{

xζ/κ x → 0,

constant x → ∞.
(12)

and κ is the dynamic exponent.
Since there is no inherent time in the model equations, we

have to introduce a a posteriori time definition in order to be
able to compare our results to the properties deduced from the
experimental setup. We propose to use a simple definition: the
average position of the front hm as a proxy of the time t. Using
this time definition, Figures 10 and 11 show the best FV fit for
both stiff and soft regimes respectively. It corresponds to the
evolution of the rms σ (L, 〈hm〉) of the front of a system of width
L after an average propagation 〈hm〉. Curves for different system
sizes L have been superimposed at best, adjusting the roughness
exponent ζ , the dynamic exponent κ and fulfilling the related
slope condition: β = ζ/κ .

In both stiff and soft systems, we find the roughness exponent
ζ in very good agreement with the results from the average
wavelet coefficient method (see Figures 8, 9). The best collapses
of the roughness growth curves σ (L, 〈hm〉) give: κ = 0.85 and
β = 0.71 for the stiff regime and κ = 0.6 and β = 0.7 for the soft
regime.

FIGURE 9 | Same as Figure 8 for the soft regime (large scale system)

(e = 7.6 · 10−6). The experimental value of the roughness exponent for this

long range regime is ζ = 0.35± 0.05 in agreement with the values obtained

from our simulation ζ+ = 0.35± 0.01.
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FIGURE 10 | Family-Vicsek scaling for stiff systems i.e., small scale

systems (e = 62.5). ζ− = 0.6, κ− = 0.85 and β− = 0.71.

FIGURE 11 | Family-Vicsek scaling for soft systems i.e., large scale

systems (e = 7.6 · 10−6). ζ+ = 0.35, κ+ = 0.6 and β+ = 0.58.

4.3. Distribution of Local Velocity
A direct way for studying the dynamics of the fracture
propagation is to measure the distribution of the local velocity
along the crack front. To obtain this we use the waiting time
matrix technique developed by Måløy et al. [11] on experimental
data. The waiting time matrix W gives at each sub-squared (i.e.,
pixel), the time spent by the crack front at this location. This
waiting time is measured in our simulations, by identifying the
fracture front at each time step (i.e., each broken fiber) and
increasing each element ofW covered by the crack front by one.
After doing this for the entire fracture propagation, we obtain
the final estimate of W. From W, we can create the velocity
matrix V . Each element of V is indeed the inverse element of

FIGURE 12 | Comparison of the local normalized velocity maps

obtained for an experiment at two scales (top): at large scale (top

right), and a detail at small scale (top left); and two simulations: in the

soft regime (bottom right) and in the stiff regime (bottom left) (bottom).

White dots correspond to areas where the local velocity was not measurable,

i.e., too fast for the local waiting time method.

W times the discretization length dl1. This creates a map of the
local velocities of the fracture front. Examples of velocity maps
are given in Figure 12 for both regimes together with a map at
two scales from experimental measurements [31]. It provides a
direct visual observation of the pinning of the crack front in our
simulation. Comparisons with experimental data show a good
agreement and confirm that the stiff regime describes the details
of the propagation at small scales and the soft regime at large
scales.

Experimentally the distribution of the local velocities v have
been found to follow the relation:

P(v/〈v〉) ∝ (v/〈v〉)−η, for(v/〈v〉) > 1, (13)

where η = 2.55 ± 0.15 and is found to be a robust feature over
many experiments [11, 31, 38].

We see that both regimes (small and large e) produce a power-
law decay of the velocity distribution above the average crack
velocity consistently with experimental results. The best power
law fits for the two regimes, stiff and soft regimes, give η− = 2.9
and η+ = 2.1 respectively.

5. DISCUSSION

To better capture the physical meaning of the controlling
parameter e, it is of interest to rewrite e as: e = dl2/L2

f
· Lf · E

which reads as: e = Lf ·E/N2 whereN2 is the number of fibers in
the system. If one has in mind that Lf · E is the effective stiffness

of the elastic medium and N2 · 1 is the effective stiffness of the
set of fibers in parallel (when they are all present and considering
a unit stiffness of each fiber), one realizes that e is the ratio of
the stiffness of the bulk to the stiffness of the interface: e =
Lf · E/(N2kf ) with kf the stiffness of each fiber. The controlling
parameter is then the dimensionless ratio of the two stiffnesses:
that of the bulk to that of the interface. When the bulk is very stiff
compared to the interface (large e), everything is dominated by

1When W = 0, we replaced the inverse by 9999.9999 in order to ensure that they

are indeed treated as large velocities by the program.
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the elastic bulk and when the interface is very stiff compared to
the bulk, one has a so called soft system.

Using a similar numerical approach, Gjerden et al. [23]
obtained advances of the fracture front by introducing a linear
gradient in the breaking thresholds with a flat rigid plate. The
scaling behavior they found was consistent with a gradient
percolation modeling at small scales (large e): ζ− = 2/3 and with
the contact line model at large scales (small e): ζ+ = 0.39. In
the present problem where there is no gradient in the breaking
thresholds but at non-linear displacement loading (a square root
profile), we obtained slightly different results. Indeed, the non-
linearity may change the scaling exponents in the same way as the
introduction of non-linear gradients in the percolation problem
[39]. We will pursue this issue in a future publication.

The roughness exponent at small scales with the present
model is ζ− = 0.60 both from a direct measurement along
the fronts using the average wavelet coefficient method and
the Family-Vicsek scaling from finite size scaling. This value is
very close to the experimental estimate: ζ− = 0.60 ± 0.05. At
large scales, also both numerical and experimental values match
well: ζ+ = 0.35. Interestingly a recent study [22] reports on a
crossover between two scaling regimes of the fracture roughness
but invoking a very different mechanism: the porosity of the
medium. Below the pore scales, it is argued that the roughness
exponent is isotropic with a value close to ζ− = 0.8 but at large
scale, the roughness exponent is anisotropic with a roughness
exponent in the range [0.27 − 0.35]. Actually, it would be of
interest to see how the porosity change of the medium is affecting
the stiffness of the medium or of the interface and therefore the e
modulus.

In Gjerden et al. [24], the dynamical exponent is κ− = 1.47
at small scales and κ+ = 0.75 at large scale. Here we obtained
κ− = 0.85 and κ+ = 0.6 which are rather different. Estimates of κ
are however not obtained in the same way. In Gjerden et al. [24],
they are deduced from a collapse of the front width for different
gradients of the strength but not from the finite size scaling.
This might explain the discrepancy together with the difference
between a linear and a non-linear force perturbation around the
fracture tip. κ− has been measured in an earlier version of the
model [18]: κ− = 0.67 and κ+ with a different approach in
Duemmer and Krauth [40]: κ+ = 0.70.

Comparisons with experimental values of the dynamical
exponent κ is rather speculative since there is no experimental
measures of κ− (e≫ 1) and κ+ (e≪ 1) but of an effective κ for an
intermediate e modulus (e ≈ 1). An example of an experimental
measure is κ = 1.2 reported by Måløy and Schmittbuhl [41].
An on-going work is devoted to the analysis of the role of the
emodulus on the Family-Vicsek scaling and the possible onset of
anomalous scaling [42].

The local velocity distribution has also been measured by
Gjerden et al. [24] using a linear gradient in the threshold
distribution to create the crack front. They followed the same
procedure for computing the waiting time matrix as we have
done here, and found that, at large scale i.e., for soft systems,
the velocity distribution is well fitted by an equation of the form
of Equation (13) with an exponent η+ = 2.53 close to the
experimental value.

FIGURE 13 | Local velocity distributions from experimental data and

stiff and soft models. The best power law fits of the velocity distributions

provide estimates of the power law exponents: η− = 2.9 (stiff system in red)

and η+ = 2.1 (soft system in blue). For the stiff regime, only velocities in the

pinning zones are considered.

In Figure 13 we can see the experimental data for the velocity
distribution [31], as well as the distribution for the stiff and
soft regimes in our model based on a non-linear loading of the
system.

6. CONCLUSIONS

By introducing a physical loading into the fiber bundle model
using a rigid square root shaped plate facing a fully elastic
half-space, we obtain very similar results to the experimental
values. The square root shape is shown to mimic the elastic
opening behind the fracture tip. The scaling of fracture front is
shown to exhibit two self-affine regimes using the average wavelet
coefficient method (AWC): at small scale (i.e., stiff regime),
the roughness exponent is ζ− = 0.60 and at large scale (i.e.,
soft regime), ζ+ = 0.35 very similarly to the experimental
measures reported by Santucci et al. [12] (ζ− = 0.60 and
ζ+ = 0.35). The cross-over between both regimes is controlled
by the reduced e modulus which is shown to be related to
the ratio of the stiffness of the bulk and the stiffness of the
interface.

Transient roughening is studied in the Family-Viscek scaling
framework. We measured the evolution of the root mean square
of the fracture front roughness from a reference front as a
function of the average position of the front. We obtained good
collapses of the roughness growth for different system sizes using
a roughness exponent ζ consistent with the direct measurements
and a dynamical exponent κ . For the small scale regime, i.e.,
the stiff regime, we measured: κ− = 0.85. For the large scale
regime, i.e., the soft regime, we estimated: κ+ = 0.60. Both
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values are consistent with the independently measured β = ζ/κ :
β− = 0.71 for the stiff regime and β+ = 0.58 for the soft
regime. Our roughness exponents are close to that of Gjerden
et al. [23]. The Gjerden analysis for the hard case was based
on the assumption that the problem was in the universality
class of ordinary percolation. The dynamical exponents κ are on
the contrary rather different which is expected to be related to
the differences in loading: linear gradient of the fiber strength
vs. non-linear imposed displacement. The dynamical exponent
seems accordingly more sensitive to the difference in the models.
Comparisons with experiments of the dynamical exponent is
difficult since there is no measure of the dynamical exponents
for the extreme case e ≪ 1 and e ≫ 1 but only for intermediate
cases. An interesting forthcoming study will deal with the effect
of the e modulus on the dynamical scaling of the fracture
front.

We also compared the local velocity distribution of our model
to the distribution found in experiments. Both are consistent with
a power law distribution: P(v/〈v〉) ∝ (v/〈v〉)−η with ηexp = 2.55

for the experiment, η− = 2.9 for the stiff regime and η+ = 2.1
for the soft regime.
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