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We consider a fluid of spherical particles with a pair potential given by a hard core
repulsion and a tail, and show that the isothermal compressibility of liquid water is
determined by the degree of steepness of the soft repulsion near the hard-core contact.
This helps us understand the thermodynamic mechanism that causes the compressibility
anomaly of liquid water.
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1. INTRODUCTION

It is well-known that the properties of liquid water at low temperatures change in much different
ways than those exhibited by most other liquids under similar conditions [1]. These properties
are determined by the interactions between water molecules, which can be derived by using
thermodynamics and statistical mechanics. Therefore, it is important to study the relationship
between the shape of the intermolecular interaction and each anomalous property of liquid water.

The development of realistic water models has recently shown great progress. Many of the
experimentally observed anomalies of water have been reproduced in molecular dynamics or
Monte Carlo simulations that use empirical force fields, albeit with significant differences in the
predictions given by different models [2–11]. Among these, TIP4P/2005 probably gives the best
agreement with experiment for a wide range of states and water properties [12–19]. However,
no realistic models put forward up to now explains what characteristics of the intermolecular
interactions determine the properties of liquid water. Realistic models can provide a description of
the density and compressibility anomalies and reproduce a number of the other anomalies of water.
However, the direct causes remain obscure and difficult to elucidate because such models include
a number of properties of water, not all of which are related to the immediate causes. Therefore,
it is impossible to capture the essential physics via the study of realistic models that include the
miscellaneous properties of water, even if they can reproduce all of water’s anomalies.

To capture the physics underlying a water anomaly, one should use simplified or core-softened
models that include only the properties crucial to explaining that anomaly. It is important to
address the mysteries individually, accumulate knowledge, and develop ideas. It is impossible
to illuminate the direct causes of all the anomalies of water simultaneously. Toward this aim,
a number of core-softened and simplified models have been put forward and used to perform
numerical simulations. None of them [20–32]., however, has quantitatively reproduced any
anomaly of liquid water or elucidated the thermodynamic mechanisms that cause the anomaly.
The author believes that the self-consistent Ornstein-Zernike approximation (SCOZA) with hard-
core repulsion plus Yukawa tails is presently the most useful. The SCOZA is known to describe
the overall thermodynamics of liquids very well and provides a remarkably accurate critical point
and coexistence curve. This scheme is entirely self-contained, which means that no supplementary
thermodynamic or other input is necessary [33–40].
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Recently, we have determined many functional
representations of intermolecular interactions between water
molecules that reproduce the experimentally measured density-
temperature relation at 1 bar with a reasonable accuracy by
using the SCOZA [39]. Numerous similar descriptions of pair
interactions will be increasingly discovered in the coming
years, which will help us to understand why solid water has
polymorphic structures and liquid water has a large number of
anomalies.

We have also elucidated the thermodynamic mechanisms
that cause the density anomaly of liquid water [40]. Our model
exhibits an unusual negative thermal expansion when the value
of the potential tail at the hard-core contact is in some specific
range, otherwise, the density anomaly does not occur in the
system. The range depends on the shape of the attraction. The
thermodynamic properties of liquid water can be derived from
the excess internal energy. The negative thermal expansion of
liquid water below 4◦C is induced by the behavior of excess
internal energy, which is mainly determined by the large positive
value of the soft repulsive tail near the hard-core contact.

Russo and Tanaka [19] used a two-state model to describe
the behavior of liquid water over a wide region of the phase
diagram. The first state is denoted as the S state, in which
local structures have low energy, high specific volume, and
low degeneracy. In contrast, structures in the second state are
thermally excited, characterized by a high degree of disorder
and degeneracy, and have low specific volume and high energy.
These structures are labeled as the ρ state. However, Russo and
Tanaka [19] do not explain what causes the decomposition of
water into the two states. We can explain the decomposition
based on the thermodynamic mechanisms described in the above
paragraph [40] as follows: Cooling of water generates the higher
density ρ state structures and increases their excess internal
energies because of the high values of the soft-repulsive potential
near the hard-core contact due to condensation. This causes
the derivative α of the pressure with respect to temperature at
constant density to be negative, resulting in negative thermal
expansion, which generates the S state structures. In this
way, we can understand that the decomposition of water into
the two states is not the cause of the anomaly but just an
accompanying effect. Furthermore, no idea put forward up to
now tells us anything about what induces negative thermal
expansion. However, we can explain the cause in the same
way. Cooling of water may generate denser proper water
complexes [41], a denser quartz-like structure [42], hydrogen
bond bending [43], or the filling of cavities [44, 45]. Their
excess internal energies become higher because of the high
values of the soft-repulsive potential near the hard-core contact
due to condensation. The coefficient α becomes negative,
resulting in negative thermal expansion, which may generate
less dense and ice-like complexes [41], less dense tridymite-
like ones [42], stretching of the hydrogen bond bending [43],
or preventing the cavities from filling and causing negative
expansion [44, 45].

It is well-known that almost none of the ideas put
forward [41–54] explain what causes the negative thermal
expansion at temperatures below 4◦C. For example, one claim is

that the tetrahedral structure of ice causes the density anomaly,
but there is no evidence for this. As a counter analogy, consider
a folding umbrella. To open or close it, one pushes or pulls the
base of the frame with hand power. The frame has no power to
open or close itself without human intervention. In the case of
the umbrella, the direct cause of its expansion and contraction
is human hand power and not the frame itself. To clarify the
thermodynamic mechanism that causes the density anomaly, it
is necessary to find what acts as an attractive force to condense
water at temperatures above 4◦C, but acts as a repulsive force
to expand water below 4◦C with reducing temperature. Such a
force (hereafter referred to for simplicity as the “anomaly force”)
is the immediate cause of the density anomaly of liquid water.
It is difficult to imagine how the tetrahedral structure could
create an “anomaly force”analogous to the case of the folding
umbrella.

Another suggestion is that hydrogen bonding causes the
density anomaly. However, hydrogen bonding is attractive at
any temperature and has the tendency to reduce the distance
between molecules in thermodynamic equilibrium to condense
liquid water. Therefore, it is difficult to consider how hydrogen
bonding could turn into a repulsive force below 4◦C and cause
negative thermal expansion.

Regarding the network or clathrate models [10, 20–23], even
though it may be plausible that isolated water molecules go
into cavities as the temperature lowers to cause liquid water to
condense, the models do not explain what makes isolated water
molecules leave the filled cavities at temperatures below 4◦C with
reducing temperature and induce negative expansion.

Lactic acid was long believed to be the substance that causes
muscle fatigue because it increases with fatigue, but lactic acid
was recently found to be a substance that assists in recovery
from fatigue. It is now known that active oxygen is the substance
responsible for fatigue. Similarly, it cannot be claimed that the
density anomaly is caused by some phenomenon just because it
accompanies the density anomaly. We can apply this principle to
almost every idea put forward until now.

Here, we present the idea that the thermodynamic mechanism
found by Yasutomi [40] induces negative thermal expansion. This
is accompanied by rearranging orientations of molecules and
results in polymorphic structures of solid water depending on the
shape of the orientation-dependent potential, or is accompanied
by a second critical point, two-state structures, or clathrate
structures. In this way, although our study is blind to freezing
and, more generally, to the solid phases of the system, it presents
significant insights into the thermodynamic properties of water
in these phases. We expet that our main remarks may be
applicable to a density anomaly in any liquid [39, 40].

We believe that mysteries in thermodynamic phenomena in
nature are solved when the intermolecular interactions and the
thermodynamic mechanisms that induce the phenomena are
elucidated. From this point of view, we show in the present paper
that the isothermal compressibility of liquid water is determined
by the degree of steepness of the soft-repulsion near the hard-
core contact. This helps us to understand the thermodynamic
mechanism that causes the compressibility anomaly of liquid
water.

Frontiers in Physics | www.frontiersin.org 2 May 2016 | Volume 4 | Article 21

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Yasutomi The Compressibility of Liquid Water

2. MODELS AND NUMERICAL RESULTS

We consider a fluid of spherical particles with a pair potential
given by a hard-core (HC) repulsion and some tail φ(r) that is
expressed as

φ(r) =











∞ r < 1

−

N
∑

n=2

an
exp[−zn(r − 1)]

r
r ≥ 1

(1)

where N is an arbitrary integer and zn and an are arbitrary
constants. We consider three cases of tails φi(r) (i = 1 − 3) and
refer to the model with tail φi as “Model φi.” The parameters an
are listed inTable 1. The parameters zn are given by 0.6395(n−1),
1.18(n− 1), and 0.6[1+ 8(n− 2)] for φ1, φ2 and φ3, respectively.
Figure 1 shows these potential tails. The diameter σu of the hard
core and the depth εu of the potential are used as units of length
and energy, respectively, and are shown in Table 2.

We obtain the thermodynamic properties of the models by
using the SCOZA [33–40]. We express the physical quantities
by the same symbols, and the numerical computations are
performed as described in Yasutomi [39, 40]. Table 2 shows
the density grid 1ρ, the temperature grid 1β , the density
ρ0 at which we made use of the so-called high-temperature
approximation [55] and βf . Nnumerical computations are
performed in the range of 0 < β < βf .

TABLE 1 | Parameters an for φ1, φ2, and φ3.

n φ1 φ2 φ3

an an an

2 +39.5839 +73.1654 +1.86973

3 −433.906 −320.979 −53.9562

4 +1478.56 −7597.99 +415.834

5 −1906.08 +64001.9 −1189.08

6 +791.644 −134345 +1456.07

7 −652.705

FIGURE 1 | Potential tails. Dashed, chain double-dashed, and solid lines
exhibit φ1, φ2, and φ3, respectively.

All three of the Models φ1-φ3 reproduce reasonably well
the experimentally measured density-temperature relationship
of liquid water at 1 bar as shown in Figure 2. The isothermal
compressibilities are shown as a function of temperature at
1 bar in Figure 3. The plot demonstrates that the isothermal

TABLE 2 | Parameters used in numerical computations for Models φ1 − φ3.

φ1 φ2 φ3

1ρ 0.001 0.001 0.0005

1β 2× 10−10 − 10−3 10−5 − 2× 10−4 10−7 − 10−4

ρ0 0.748 0.827 1.0175

βf 0.310 0.244 0.332

βc 0.108 0.103 0.145

ρc 0.084 0.158 0.2165

εu(K) 74.65 59.92 78.97

σu(Å) 1.965 2.156 2.402

FIGURE 2 | Density-temperature relation of liquid water at 1 bar.

Asterisks, triangles, open, and closed circles show those for φ1 (r), φ2 (r), φ3 (r),
and experimentally measured data, respectively.

FIGURE 3 | Isothermal compressibility-temperature relation of liquid

water at 1 bar. Dashed, chain double-dashed, solid lines, and open circles
show those for φ1 (r), φ2 (r), φ3 (r), and experimentally measured data,
respectively.
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compressibility reduces with increasing degree of steepness of the
potential tail near the hard-core contact.

3. DISCUSSION

Thermodynamic quantities can be derived from the excess
internal energy u per unit volume defined by

u = 2πρ2

∫ ∞

1
dr r2φ(r)g(r)

where g(r) is a distribution function. The excess internal energy
is useful for studying the relationships between the shape of the
intermolecular potential and the behavior of a thermodynamic
quantity. We have illuminated the thermodynamic mechanism
which causes the density anomaly of water through the excess
internal energy in our previous paper [40].

The integrand in the above equation shows that the excess
internal energy is given by the product of intermolecular
interaction φ(r) and distribution function g(r). This suggests that
there are an infinite number of combinations of φ(r) and g(r) that
result in the same u, and we have determined many potential tails
that reproduce the experimentally measured density anomaly of
water at 1 bar in our recent paper [39].

Besides those, we also determined three pair interactions
between water molecules (Figure 1), all of which reproduce

the experimentally measured density anomaly at 1 bar with
reasonable accuracy (Figure 2). Figures 2, 3 show that the
degree of steepness of the tail near the hard-core contact
determines the isothermal compressibility of a liquid. Among
the models, Model φ3 best reproduces the experimental data
for liquid water. Therefore, tails steeper than φ3 will likely
reproduce the experimental data with even better accuracy.
It will take much more calculation time to determine the
functional representations of such potential tails because the
steeper tails should be expressed with a smaller radial distance
grid. In addition. numerical computations should be performed
with smaller density and temperature grids to attain a more
optimal accuracy. Nevertheless, in the comming years we should
increasingly be able to discover potential tails that will reproduce
the experimental data of both the density-temperature and
compressibility-temperature relations at 1 bar with reasonable
accuracy. These potential tails will help us to illuminate the
physics underlying the numerous anomalies of liquid water. Our
main remarks may be applicable to a density anomaly and a
thermal compressibility in any liquid [39, 40].
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