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Understanding the complex structure of karst networks is a challenge. In this work, we

characterize the fractal properties of some of the largest coastal karst network systems in

the world. They are located near the town of Tulum (Quintana Roo, Mexico). Their fractal

dimension df , conductivity exponent µ̃ and walk dimension dw are estimated using real

space renormalization and numerical simulations.We obtain the following values for these

exponents: df ≈ 1.5, dw ≈ 2.4, µ̃ ≈ 0.9. We observe that the Einstein relation holds for

these structures µ̃ ≈ −df + dw. These results indicate that coastal karst networks can

be considered as critical systems and this provides some foundations to model them

within this framework.
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1. INTRODUCTION

Karst network structures are still poorly understood because of the lack of a general framework
to study them [1], even if modeling and characterizing karst networks has been a long standing
research topic [2–6].

It is estimated that karst features cover 20% of the globe’s land surface [7]. Therefore,
understanding karst structures is crucial for many practical purposes, from pollution issues to
ground stability assessment. Karst networks result from the dissolution of rocks by water through
chemical reactions [8]. Dissolution leads to the creation of complex connected structures (from
small conduits to caverns) where water flows and encounters less resistance due to friction than in
porous or fractured rocks.

In this paper, we focus on the analysis of karst networks located around the town of Tulum
(Quintana Roo, Mexico). They are natural, underground, coastal, networks transporting water
from inland to the sea. The area of Tulum hosts two of the largest water filled networks in the world:
Ox Bel Ha and Sac Actun (above 200 km of connected conduits for each one [9]). Due to their
large sizes and the relatively simple and homogeneous geology (horizontal carbonate platform)
of the underground, we expect that these networks exhibit a well marked statistical signature
characterizing the physical processes of their formation.

We analyze these networks (mapped by cave-divers) as spatially embedded graphs. The large
horizontal extension (about 10 km) compared to their vertical extent (around 12m) allows us study
these systems as embedded structure in plan view. Figure 1 shows Ox Bel Ha and Sac Actun
(proportionally rescaled such that the maximal vertical extension is 1). Water flows from the
upstream part (top of Figure 1) to the sea (bottom of the Figure).

In this paper, we propose a method to characterize karst systems using statistical mechanics
tools and show that they exhibit fractal properties. We use the Song, Havlin, and Makse (SHM)
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renormalization scheme [10] to the study these networks.
To our knowledge, this is the first application of the SHM
renormalization scheme to compute the fractal dimension
of spatially embedded networks. We then analyze the
network transport properties in terms of diffusion (random
walk simulation) and conductivity (solving Kirchhoff
equations).

Fractal concepts are not new to karst systems, with previous
studies characterizing karst structures as fractal objects. However,
these studies were limited to estimating fractal dimensions of
relatively small networks (1–10 km of connected conduits [11–
14]). Reported fractal dimension range from 1.043 to 1.67.
However, a clear, physically based overall picture is still missing,
with no attention paid to the study of transport properties
(conductivity and diffusion) that complete the characterization
of karst networks as “standard” fractal structures.

We show through numerical experiments that the
conductivity scales as a power law of the Euclidean distance
between two points of the network for both Ox Bel Ha and Sac
Actun. The two networks share a similar structure, in terms of
fractal dimension df , randomwalk exponent dw and conductivity
exponent µ̃. This is not surprising as they result from the same
physical process in the same environment. The Einstein relation
µ̃ = −2 + d − df + dw (we work in 2 dimensions, d = 2) holds
in the 95% confidence intervals, and notice that µ̃ is quite robust
through renormalization. These results highlight the deep fractal
nature of karst network around Tulum.

The structure of the paper is as follows. Section 2 presents
the study of the fractal dimension of Tulum’s karst networks
and the network renormalization scheme. Section 3 describes the
determination of the value of the conductivity exponent using
Einstein relation and the numerically computed walk exponent
for both networks. Section 4 investigates the validity of the scaling
law hypothesis for conductivity and the Einstein relation. We
finish with a discussion and perspectives for future work.

A B

FIGURE 1 | Cave divers’s maps of (A) the Ox Bel Ha system and (B) Sac

Actun.

2. FRACTAL DIMENSION OF OX BEL HA
AND SAC ACTUN

To apply standard box counting algorithms on a network, it
is first necessary to convert it to a binary image. However,
significant information about network’s topology may be lost
during this conversion, resulting in coarse-grained images of
the network and lost connectivity information of the underlying
structure. In this paper, we employ a different approach.

Ox Bel Ha and Sac Actun networks are planar spatial graphs.
Distributions of link lengths1 and node degrees are narrow for
both networks, see Figure 2. Thus, in terms of degree distribution
and links sizes both networks are quite homogeneous. Some basic
properties of these networks are listed on Table 1.

We apply the renormalization procedure proposed by Song et
al. [10] to compute the fractal dimension of Ox Bel Ha and Sac
Actun networks. Especially, we employ the Maximun-Excluded-
Mass-Burning version of the scheme [15], which is adapted to
the study of homogeneous networks. The procedure is illustrated
in Figure 3. The network is tiled with boxes. A box is centered
on a node of the network and contains all neighboring nodes

A

B

FIGURE 2 | Links lengths size distribution and node degree

distribution. Line (A) Ox Bel Ha, line (B) Sac Actun. Links length is computed

on rescaled network hence it is a renormalized length.

TABLE 1 | Basic networks properties for Ox Bel Ha and Sac Actun

rescaled such that the maximal vertical extension is 1.

Number Number Sum of Mean links Mean

of nodes of links links length size λ degree

Ox Bel Ha 19016 21478 31 1.4 10−3 2.26

Sac Actun 30200 35974 26 7.46 10−4 2.4

Notice that λ ≈ Sum of links length/number of nodes.

1A link does not represent a conduits but rather is the path between two sampled

points in the network (a conduit can be mapped with N points and hence is

represented by N − 1 links).
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FIGURE 3 | SHM renormalization scheme (the Maximun-Excluded-Mass-Burning version) illustrated on a generic network for a box of size lB = 2. (A)

the initial network and (B) the first renormalization step. For example, on (A) renormalization of the yellow box (centered on the node 2) gives on (B) the yellow node

labeled by a. The renormalized node, a, is located at the barycenter of the parents nodes 1, 2, 3, and 4. The procedure is repeated until the network collapse into an

unique node. We can notice that the mean of links sizes grows from (A) to (B).

FIGURE 4 | Sierpinski gasket and the corresponding number of nodes.

separated, from the center, by a maximal chemical (topological)
distance less than lB (the chemical distance between two nodes is
the minimum number of links needed to go from one node to the
other one). The parameter lB is named the box size. To build the
renormalized network, each box is replaced by a single node. Two
renormalized nodes (a and b) are linked if a link is connecting at
least one node belonging to the box corresponding to a with one
node of the box corresponding to b in the original network.

As we are dealing with spatial networks, a box (renormalized
node) is located at the mean position of nodes that constitute
it. At each renormalization step, we compute the mean of the
distribution of link lengths and we take this as the characteristic
length scale λ of the network. We notice that

N(Gλ) ∝ λ−df , (1)

where N is the number of nodes needed to tile the network Gλ

and df is its fractal dimension. As lB has no physical significance

in our study (due to cave divers mapping procedure), we take λ

as the relevant length scale.
To illustrate the procedure, consider, as an example, the

iterative building process of the 2 dimensional Sierpinski gasket
as an inverse renormalization process (Figure 4). The number of
nodes N(t) (i.e., the number of vertices) at the building step t is
N(t) = 3(3t + 1)/2. Meanwhile, the links length λ(t) (the edge
length) is reduced (compared to the t − 1 step) by a factor 2t .
Therefore, assuming Equation (1) and t ≫ 1 we have,

df ≈
(t + 1) log 3

t log 2
≈

log 3

log 2
(2)

which is the well-known Sierpinski gasket fractal dimension in 2
dimensions.

Figure 5 shows that the SHM renormalization scheme applied
to spatially embedded planar networks succeeds (in the 95%
confidence interval) to estimate the dimension of well-known
fractal structures such as diffusion limited aggregate, percolation
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A

B

C

FIGURE 5 | Fractal dimension computed through renormalization for (A) DLA, (B) percolated cluster, and (C) space filling networks.

cluster and random space filling lattice. Computed fractal
dimensions and reference values from Ben-Avraham and Havlin
[16] are presented in Table 2. This gives us confidence on the
relevance of the computed dimension for Ox Bel Ha and Sac
Actun networks.

Figure 6 illustrates four steps of the renormalization
procedure applied to Ox Bel Ha. The renormalization scheme
allows studying the large scale behavior of the network and how
it evolves with scale. This procedure reveals the main structure
of the network (analogous to its skeleton). One observes for
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TABLE 2 | df are fractal dimensions computed with the SHM’s scheme

(the estimated errors correspond the 95% confidence intervals).

df dref
f

DLA 1.7± 0.1 1.71± 0.07

Percolating cluster 1.88± 0.07 91/48 ≈ 1.896

Space filling network 2.11± 0.15 2

d ref
f are reference values from Ben-Avraham and Havlin [16].

A B

C D

FIGURE 6 | Renormalization scheme applied to Ox Bel Ha for lB = 2. (A)

original network, (B–D) renormalized network after 2, 4, and 7 iterations.

example, in Figure 6 how large loops and main paths are
highlighted.

Figures 7A,B show the results of the application of this
procedure for the computation of the fractal dimensions for Ox
Bel Ha and Sac Actun. Fractal dimensions of the two networks
are quite close (considering the 95% confidence interval) and are
around df ≈ 1.5. It is not surprising that these two networks are
characterized by almost the same fractal dimension since they
formed from the same physical processes, acting in the same
environment at the same time.

3. CONDUCTIVITY EXPONENT FOR OX
BEL HA AND SAC ACTUN

The results of the previous Section encourage further exploration
of the fractal properties of Tulum’s karst networks. It is
well-known, see Ben-Avraham and Havlin [16], that the
conductivity σ between two points of a fractal structure (e.g., a
percolating cluster) follows a scaling law. The conductivity σ is a

function of the Euclidean distance between these two points

σ (L) ∝ L−µ̃ (3)

with µ̃ the conductivity exponent, L =
∥

∥x− x′
∥

∥, x, x′ the location
of two nodes of the network, and ‖·‖ the Euclidean distance. The
conductivity exponent can be related to the structural properties
of the fractal object (its fractal dimension and walk exponent)
using the Einstein relation.

The Einstein relation links the conductivity to the diffusion
coefficient D and the density n of the substrate (see again Ben-
Avraham and Havlin [16])

σ ∝ nD (4)

Here, the substrate is the network which is embedded in the
plane. Therefore, n depends on the spatial length scale L through

the relation n ∝ Ldf−d, with d = 2. The diffusion constant
depends also on the length L of a walk of duration t and is

D ≡
〈r2(t)〉

t ≈ L2

t . Diffusion is characterized by the walk exponent

dw, and relates the mean square displacement 〈r2(t)〉 of a random
walker with the displacement time t and position r(t):

〈r2(t)〉 ∝ t2/dw (5)

with 〈r2(t)〉 = 1
t

∑t
i= 0

∥

∥r(i)− r̄
∥

∥

2
and r̄ is the time averaged

position of the walker.
Therefore, assuming Equation (4), we have the conductivity

exponent µ̃E

µ̃E = −2+ d − df + dw (6)

with

• d the dimension of the embedding space
• df the fractal dimension
• dw the random walk exponent

We compute dw on Ox Bel Ha and Sac Actun through random
walk simulations. A randomwalk of t steps on a network is simply
simulated taking a node randomly as the origin of the walk. From
the origin the walker moves to one of its connected neighbors.
The walk is stopped after t steps. Results are reported in Figure 7.
Assuming Equation (6) we are able to compute the conductivity
exponent µ̃E for Ox Bel Ha and Sac Actun, results are reported
on the last column of Table 3.

4. FLOW SIMULATION AND THE VALIDITY
OF THE EINSTEIN RELATION

To examine the validity of Equation (6) for karst networks, we
numerically investigate how the conductivity behaves between
two randomly sampled nodes, A and B. Thus, we solve Kirchhoff
equations [17] for Hagen-Poiseuille flow (or equivalently for a
linear Ohm law) for the sub-network connecting A to B by
imposing the inflow rate (we impose the same inflow rate for each
sampled sub-network).

As we have no accurate information about the distribution of
conduits radii (except a lower cut off, around 1 meter, due to the
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A B

C D

E F

FIGURE 7 | Numerical results for Ox Bel and Sac Actun respectively on the left column and on the right column. (A,B): fractal exponents. (C,D): walk

exponents. (E,F): conductivity exponents. The estimated errors correspond the 95% confidence intervals for the fitted scaling laws.

finite size of cave divers that mapped the network) we take it as
unity. Hence the resistance of a link depends only of its length
(which is peaked around λ).

Figure 7 shows plots of the conductivity with respect to the
Euclidean distance and the value of the computed conductivity
exponent are reported in Table 3. It is worth noticing that
Einstein relation holds (in the 95% confidence interval) for karst

networks around Tulum. It is not surprising as Ox Bel Ha
and Sac Actun networks exhibit well marked fractal features.
Moreover, the conductivity exponent seems to be invariant under
renormalization for small characteristic length scales λ. At large
scale, the value and the uncertainty on µ̃ is larger. Figure 8
shows results of the computation of the conductivity exponent
at different renormalization steps of Ox Bel Ha (a similar result
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TABLE 3 | Fractal dimension df , walk exponent dw , conductivity exponent

µ̃, and the conductivity exponent µ̃E given by Equation (6) for Ox Bel Ha

and Sac Actun.

df dw µ̃ µ̃E = −df + dw

Ox Bel Ha 1.51±0.03 2.39± 0.03 0.917±0.037 0.88±0.04

Sac Actun 1.49±0.03 2.40± 0.03 0.920±0.036 0.91±0.05

FIGURE 8 | Conductivity exponent computed for Ox Bel Ha and its

renormalizations at characteristic length scale λ. The line is the

conductivity exponent of the original network.

holds for Sac Actun). This observation gives us confidence for
modeling karst networks as a systems near criticality [18].

5. DISCUSSION

This study highlights the fractal properties of the karst networks
around Tulum, Mexico. They behave as fractal structures.
Networks are characterized by a scaling law for conductivity

and anomalous diffusion. The Einstein relation holds for these
structures.

We expect that these networks are not unique. Other coastal
systems in the world, such as the ones encountered in Florida
or in the Bahamas, are suspected to exhibit similar structures
since they developed in geological and climatic environments
(limestone platforms in a tropical and coastal area) similar to
Tulum’s karst networks.

Further analysis using data from such sites should be
conducted to test our numerical results. Additional investigations
(theoretical and numerical) should also conducted to determine
the influence of turbulent flow on the conductivity exponent, and
on the scaling hypothesis, because water flow in karst systems
often occurs at high Reynolds number.

Our results indicate that the coastal karst networks of Tulum
behave as self-similar structures, with well-behaved scaling
properties. This suggests that karst systems can be studied and

modeled in the framework of critical phenomena. Such models
should be able to reproduce observed exponents and help explain
the underlying process that results in the emergence of those
values.
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