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Parameter Tuning for the NFFT
Based Fast Ewald Summation
Franziska Nestler *

Faculty of Mathematics, Technische Universität Chemnitz, Chemnitz, Germany

The computation of the Coulomb potentials and forces in charged particle systems under

3d-periodic boundary conditions is possible in an efficient way by utilizing the Ewald

summation formulas and applying the fast Fourier transform (FFT). In this paper we

consider the particle-particle NFFT (P2NFFT) approach, which is based on the fast Fourier

transform for nonequispaced data (NFFT) and compare the error behaviors regarding

different window functions, which are used in order to approximate the given continuous

charge distribution by a mesh based charge density. Typically B-splines are applied in the

scope of particle mesh methods, as for instance within the well-known particle-particle

particle-mesh (P3M) algorithm. The publicly available P2NFFT algorithm allows the

application of an oversampled FFT as well as the usage of different window functions.

We consider for the first time also an approximation by Bessel functions and show

how the resulting root mean square errors in the forces can be predicted precisely and

efficiently. The results show that, if the parameters are tuned appropriately, the Bessel

window function is in many cases even the better choice in terms of computational costs.

Moreover, the results indicate that it is often advantageous in terms of efficiency to spend

some oversampling within the NFFTwhile using a window function with a smaller support.

Keywords: Ewald summation, particle methods, nonequispaced fast Fourier transform, NFFT, P3M, P2NFFT,

ScaFaCoS

1. INTRODUCTION

In this paper we consider the computation of the Coulomb potentials and forces in charged particle
systems subject to 3d-periodic boundary conditions. Unfortunately, the underlying infinite sums,
which have to be evaluated, are very slowly and even conditionally convergent.

Nevertheless, there are already quite a lot methods for the efficient evaluation of the Coulomb
potentials and forces. Most of them, as for instance [1–5], are based on the so called Ewald
summation approach [6], which splits the slowly converging sum into two rapidly converging parts,
where the underlying order of summation takes a central role. The one part is a sum in spatial
domain and can be evaluated efficiently. The other part is a sum in Fourier space. An efficient
evaluation with only O(N logN) arithmetic operations, where N denotes the number of present
particles, is possible by applying the fast Fourier transform (FFT). Thereby, the sticking point is that
the particles are not distributed on a regular grid. Thus, the present continuous charge distribution
has at first to be approximated by a regular grid based charge density.

Algorithms which are based on such an approximation are commonly known as particle mesh
methods [1–4, 7, 8]. Most methods use B-splines in order to perform this grid based approximation
step, as for example the well-established particle-particle particle-mesh (P3M) method [1, 4]. Also
approximations via a Gaussian have already been considered, see Lindbo and Tornberg [5]. The
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particle-particle NFFT (P2NFFT) approach, which was suggested
in Hedman and Laaksonen [9] and Pippig and Potts [7], is
based on the FFT for nonequispaced data (NFFT) and allows
the usage of various types of approximating window functions,
as for example also (Kaiser-)Bessel functions besides B-splines
and Gaussian. In this context we remark that in a variety
of applications the results strongly depend on which window
function is applied. As an example, in the field of magnetic
resonance imaging Kaiser-Bessel functions seem most suitable,
see Fourmont [10].

Note that Arnold et al. [11] serves a detailed comparison
between different efficient methods for the 3d-periodic Coulomb
problem. The results show that the P3Mand P2NFFT solvers rank
among the best methods in this field. We further remark that the
P2NFFT method has already been generalized to mixed periodic
as well as open boundary conditions, see Nestler et al. [12] and
Nestler et al.[13]. The fast multipole method (FMM) [14–17],
which scales like O(N), can also handle all types of periodic
as well as open boundary conditions very efficiently, see Kudin
and Scuseria [18]. One advantage of Fourier based methods
over hierarchical methods, for instance, is the easy handling of
non-cubic box geometries. Furthermore, P2NFFT and P3M are
comparable to the FMM in terms of runtime as well as parallel
efficiency and in certain cases even outperform the FMM. For
more details see Arnold et al. [11].

In the present paper we consider the P2NFFT method and
discuss how all involved parameters can be tuned appropriately.
How do we have to set the NFFT parameters and which window
function do we have to choose in order to reach a certain
accuracy, while keeping the computational costs as small as
possible? In order to answer this question, we consider the root
mean square error (rms) in the forces, which is a common error
measure in the field ofmolecular dynamics simulations, and draw
some comparisons between different window functions.

The P2NFFT algorithm, which is part of the publicly available
ScaFaCoS library [19], allows the computation of an oversampled
FFT. The numerical results presented in this paper, see Section 4,
show that an appropriate tuning of the oversampling factor is
possible based on the presented error estimates. In order to reach
a certain accuracy different combinations of oversampling and
the support size of the NFFT window function are possible. The
results indicate that we can improve the performance of the
method by spending some oversampling combined with using
a window function having a smaller support. The usage of the
Gaussian or the Bessel windowmakes the tuning somewhat more
complicated, since also the shape parameter of the function has
to be tuned. If the shape parameter is chosen appropriately, we
can even achieve better results with the Bessel window than
by using B-Splines. In our numerical examples we could save
approximately fifteen percent of runtime via using the Bessel
window with oversampling, compared to using B-splines without
oversampling. We remark that the P2NFFT method based on
the B-spline window without oversampling is mathematically
equivalent to the classical P3M approach, see Pippig [20], for
instance.

The outline of the paper is as follows. In Section 2 we give an
introduction to the NFFT. In Section 3 we consider the Coulomb

problem for 3d-periodic boundary conditions and introduce the
corresponding Ewald formulas. We also discuss the estimation
of the rms force error which results from the truncation of
the Ewald sums. In Section 4 we describe the concept of the
P2NFFT method, present how the rms errors caused by the
NFFT approximations can be estimated a priori and draw some
comparisons between different window functions. In addition,
we present an efficient method to tune all involved parameters
automatically. An overall tuning, which in addition optimizes
the set of parameters with respect to runtime, should depend
on the used hard- and software. Thus, we may tune the method
with respect to runtime for a small particle system by comparing
the runtimes obtained for different parameter combinations in
order to apply the found optimal set of parameters also to larger
systems. We demonstrate the described parameter tuning with
the help of some examples, for which we use the ScaFaCoS library
[19]. In Section 5 we finish with some conclusions.

2. THE NONEQUISPACED FFT

In the following we give a short introduction to the NFFT in three
dimensions. Thereby, we make use of the following symbols and
notations. For some M = (M1,M2,M3) ∈ 2N3 we define the
index set IM by

IM := {−M1/2, . . . , M1/2 − 1} × . . .× {−M3/2, . . . , M3/2 − 1}.

For two vectors x = (x1, x2, x3) ∈ R
3 and y = (y1, y2, y3) ∈

R
3 we define the component wise product by x ⊙ y :=

(x1y1, x2y2, x3y3) ∈ R
3 as well as the inner product via x · y :=

x1y1 + x2y2 + x3y3 ∈ R. For a vector x ∈ R
3 with non vanishing

components we set x−1
:= (x−1

1 , x−1
2 , x−1

3 ) ∈ R
3.

Let the coefficients f̂k ∈ C for k ∈ IM,M ∈ 2N3, and some
arbitrary nodes xj ∈ T

3, where T := R/Z ≃ [−1/2, 1/2) and
j = 1, . . . ,N, be given. We are now interested in a fast evaluation
of the trigonometric polynomial

f (x) :=
∑

k∈IM

f̂ke
−2π ik·x (1)

at the given nodes xj, j = 1, . . . ,N.
The straightforward and exact algorithm for the evaluation

of such sums is called nonequispaced discrete Fourier transform
(NDFT) and requires O(N|IM|) arithmetical operations. The
NFFT algorithm [21–27] can be used in order to approximate the
sums very efficiently with only O(|IM| log |IM| + N) arithmetic
operations. In the following we will give an overview of the main
steps.

In principle, the function f is approximated by a sum of
translates of a one-periodic function ϕ̃, i.e.,

f (x) ≈ f̃ (x) :=
∑

l∈Iσ⊙M

glϕ̃
(

x− l⊙ (σ ⊙M)−1
)

, (2)

where we denote by σ ∈ R
3, σ ≥ 1 (component wise)

the oversampling factor. In the following we denote the
oversampled grid size shortly by Mo := σ ⊙ M. Increasing the
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oversampling factor means that the trigonometric polynomial
f is approximated based on a higher resolution of the interval
[−1/2, 1/2), i.e., we expect smaller aliasing errors. The function ϕ̃ in
Equation (2) is the periodization of a window function ϕ, which
is constructed via a tensor product scheme, i.e., we set

ϕ̃(x) :=
∑

r∈Z3

ϕ(x+ r), where ϕ(y) =
3
∏

j= 1

ϕj(yj) (3)

for y = (y1, y2, y3) ∈ R
3.

Thereby, ϕj(·) are univariate functions. A transformation of f̃ into
Fourier space gives

f (x)− f̃ (x) =
∑

k∈IMo

(

f̂k − ĝkck(ϕ̃)
)

e−2π ik·x

−
∑

r∈Z3\{0}

∑

k∈IMo

ĝkck+r⊙Mo (ϕ̃)e
−2π i(k+r⊙Mo)·x, (4)

where we denote by ck(ϕ̃) the analytical Fourier coefficients of ϕ̃
and {ĝk} are the discrete Fourier coefficients of {gl}.

The idea is now to choose the coefficients ĝk appropriately.
Then, the coefficients gl in Equation (2) can be computed via
the inverse FFT and the evaluation of the stated sums gives

the approximate function values f̃ (xj) ≈ f (xj). This might be
computationally demanding unless ϕ is compactly supported on
a comparable small domain or at least sufficiently small outside of
it. In the latter case we replace the window function ϕ̃ in Equation
(2) by a truncated version

ϕt(x) := ϕ(x) ·
3
∏

j= 1

χ[− m
σjMj

, m
σjMj

](xj)

=
{

ϕ(x) : x ∈
⊗3

j= 1[− m
σjMj

, m
σjMj

],

0 : else.
(5)

Thereby, we refer to m ∈ N as the support parameter. Note that
we could use different values for m in the single dimensions, but
for simplicity we choose the same for all three dimensions.

Considering Equation (4) shows that it is reasonable to set

ĝk :=









d̂k f̂k =
f̂k

ck(ϕ̃t)
: k ∈ IM,

0 : else,

(6)

for which the error measured in the L2-norm is given by

∥
∥
∥f − f̃

∥
∥
∥

2

2
=
∑

k∈IM

∣
∣
∣f̂k

∣
∣
∣

2 ∑

r∈Z3\{0}

c2k+r⊙Mo
(ϕ̃t)

c2k(ϕ̃t)
. (7)

Optimizing the error with respect to the L2-norm shows that

d̂k := ck(ϕ̃t)
∑

r∈Z3

c2k+r⊙Mo
(ϕ̃t)

(8)

is the optimal choice for the coefficients d̂k, see Duijndam and
Schonewille [28], Jacob [29], and Nestler [30]. We end up with

∥
∥
∥f − f̃

∥
∥
∥

2

2
=
∑

k∈IM

∣
∣
∣f̂k

∣
∣
∣

2

∑

r∈Z3\{0}
c2k+r⊙Mo

(ϕ̃t)

∑

r∈Z3

c2k+r⊙Mo
(ϕ̃t)

. (9)

Especially in the case that the Fourier coefficients f̂k tend to zero
rapidly we expect that the two different approaches to choose

the coefficients d̂k lead to approximately the same results, see the
numerical examples in Nestler [30].

We summarize the NFFT algorithm as follows. The

approximation of the function values f (xj) ≈ f̃ (xj) via Equation
(2) corresponds to the computation of a discrete convolution
for each xj. This is the third and last step of the algorithm.
Thus, we refer to the first step of the NFFT, see Equation (6),

as the deconvolution step as well as to d̂k as the deconvolution
coefficients. The step from Fourier space to spatial domain (ĝk 7→
gl) is realized via the ordinary inverse FFT (second step).

The FFT size can be chosen larger than the given number of
Fourier coefficients M, which is called oversampling. Choosing
σ greater than 1 in the single dimensions increases the
computational cost, while we expect smaller aliasing errors.
We remark that the oversampling technique has already been
considered in the very first articles on nonuniform FFTs, see Dutt
and Rokhlin [21] and Beylkin [22].

The problem of evaluating sums of the form

h(k) :=
N
∑

j= 1

fje
2π ik·xj , k ∈ IM,

where for each j = 1, . . . ,N a coefficient fj ∈ C is given,
can be treated very similarly. We refer to the method for the
exact evaluation of the sums h(k) to the adjoint NDFT. The
corresponding fast algorithm is known as the adjoint NFFT.
Note that the matrix-vector form of the adjoint NDFT is simply
obtained by replacing the matrix representing the NDFT by its
Hermitian transpose, for which reason the acronym NFFTH is
also commonly used. Thus, the derivation of the fast algorithm
for the adjoint problem is straightforward, see Potts et al. [25]
and Keiner et al. [27], for instance. Analogously to Equation (4)
the error can be written as

h(k)− h̃(k) =
N
∑

j= 1

fj[1− d̂kck(ϕ̃t)]e
2π ik·xj

−
∑

r∈Z3\{0}

N
∑

j= 1

fjd̂kck+r⊙Mo (ϕ̃t)e
2π i(k+r⊙Mo)·xj . (10)

2.1. Window Functions
In the following we consider different window functions and
show how the error sums

∑

r∈Z\{0}

c2
k+rσM

(ϕ̃t)

c2
k
(ϕ̃t)

(11)

Frontiers in Physics | www.frontiersin.org 3 July 2016 | Volume 4 | Article 28

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Nestler Parameter Tuning for the P2NFFT

in the univariate setting can be estimated, compare to Equations
(7) and (9) for three dimensions. For details about the derivation
of those estimates we refer to Nestler [30] and references therein.

We restrict our considerations to B-splines, the Bessel I0 as
well as the Gaussian window function, which we also considered
in Nestler [30]. The B-spline as well as the Bessel window
function are compactly supported in spatial domain, i.e., we have
ϕt = ϕ. In the numerical examples presented in Nestler [30]
these window functions produced much smaller approximation
errors than the Gaussian, especially in the case of rapidly
decreasing Fourier coefficients, which we also have for the
Coulomb problem. Note that the considerations in Nestler [30]
only cover the one dimensional case. In the present paper we
consider an application of the NFFT in three dimensions, which
requires some additional work in order to trace the problem of
estimating the approximation errors back to the one dimensional
setting, see Section 4.1.

2.1.1. B-Spline Window
The B-spline window in three variables is defined by Beylkin [22]
and Potts and Steidl [31]

ϕ(x) :=
3
∏

j= 1

B2m
(

σjMjxj
)

,

where 2m ∈ 2N denotes the order of the B-spline. The parameter
m equals the support parameter as introduced above, i.e., we have
suppϕ =

⊗3
j= 1[−m/σjMj, m/σjMj] and the corresponding Fourier

coefficients are given by

ck(ϕ̃j) =
1

σjMj
sinc2m

(
πk

σjMj

)

.

We obtain the estimates, see Steidl [23],

∑

r∈Z\{0}

c2
k+rσjMj

(ϕ̃j)

c2
k
(ϕ̃j)

=
∑

r∈Z\{0}

(
k

k+ rσjMj

)4m

<
8m

4m− 1

( |k|
|k| − σjMj

)4m

=: sj(k).

(12)

In the case σj = 1, i.e., no oversampling is applied, we have for
k = Mj/2

∑

r∈Z\{0}

c2Mj/2+rMj
(ϕ̃j)

c2Mj/2(ϕ̃j)
=
∑

r 6=0

(
1/2

1/2 + r

)4m

> 1. (13)

Thus, we can not achieve an arbitrary precision just by increasing
the support parameter m. However, from Equation (12) we see
that the aliasing sums will decrease if the oversampling factor σ
is increased.

2.1.2. Bessel Window
The Bessel (I0) window function, cf. Pippig [20], is constructed
based on the Kaiser-Bessel window, which was introduced in

Potts and Steidl [31, Appendix]. In order to get a window
function ϕ with compact support, the roles of time and frequency
domain are simply interchanged.

The Bessel (I0) window function is also found under the
name Kaiser-Bessel function in the literature [10, 32, 33] and is
defined via

ϕ(x) :=
3
∏

j= 1

ϕj(xj),

where for the shape parameters bj > 0, j = 1, . . . , 3,

ϕj(x) :=
{

I0

(

bj

√

m2 − σ 2
j M

2
j x

2
)

: x ∈ [−m/σjMj, m/σjMj],

0 : else.

Typically, the standard shape parameters

bj = b0,j := (2σj − 1)
π

σj
(14)

are used in the single dimensions, see Potts and Steidl [31,
Appendix].

The Fourier coefficients of the Bessel window are given by

ck(ϕ̃j) =
1

σjMj













sinh
(

m
√

b2j − 4π2k2/(σ 2
j M

2
j )
)

√

b2j − 4π2k2/(σ 2
j M

2
j )

: |k| ≤ σjMjbj
2π ,

m sinc
(

m
√

4π2k2/(σ 2
j M

2
j )− b2j

)

: else,

(15)

and tend to zero only with order 1 for k → ∞ since the functions
ϕj are not continuous in x = ±m/σjMj. Nevertheless, we are able to
compute an upper bound for the error sums given in Equation
(11), which is stated below.

For some R ∈ N : R > |k|
σjMj

+ bj
2π we have [30]

∑

r∈Z\{0}

c2
k+rσjMj

(ϕ̃j)

c2
k
(ϕ̃j)

≤

∑

0<|r|≤R

c2
k+rσjMj

(ϕ̃j)

c2
k
(ϕ̃j)

+
ln
(
2π(|k|/σjMj−R)−bj
2π(|k|/σjMj−R)+bj

)

+ ln
(
2π(|k|/σjMj+R)+bj
2π(|k|/σjMj+R)−bj

)

4πbσ 2
j M

2
j · c2k(ϕ̃j)

︸ ︷︷ ︸

=: sj(k)

.

(16)

Obviously, a modification of the shape parameter also changes
the Fourier coefficients of the window function and therewith the
resulting NFFT approximation error, see Equations (7) or (9),

which strongly depends on the given Fourier coefficients f̂k. In
Nestler [30] we showed that an appropriate adjustment of the
shape parameter can lead to significant improvements in terms
of the arising errors. It strongly depends on the given coefficients

f̂k which shape parameter is optimal with respect to accuracy.
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In addition, it seems reasonable to claim bj > π/σj. Otherwise
we may have ck(ϕ̃j) = 0 or at least ck(ϕ̃j) ≈ 0 for some
k ∈ {−Mj/2, . . . , Mj/2 − 1}, see Equation (15).

Note that the choice of the shape parameter only influences
the accuracy and not the time needed for the evaluation of the
window function, assumed that all other parameters are kept
constant. The same holds for the Gaussian window function,
which is introduced below.

2.1.3. Gaussian Window
For the shape parameters bj > 0, j = 1, . . . , 3, we define the
Gaussian window function by

ϕ(x) =
3
∏

j= 1

e
−σ 2j M2

j x
2
j /bj

√

πbj

as well as its truncated version via Equation (5).
Typically, the shape parameters are chosen via bj = b0,j :=

2σj
2σj−1

m
π
, see Steidl [23], Duijndam and Schonewille [28] and

Greengard and Lee [26]. The Fourier coefficients of the truncated
version, which are given by

ck(ϕ̃t,j) = ck(ϕ̃j) · Re
[

erf

(

m√
bj

+
πk
√

bji

σjMj

)]

= e
−bjπ

2k2/(σ 2j M
2
j )

σjMj
· Re

[

erf

(

m√
bj

+
πk
√

bji

σjMj

)]

,

tend to zero only with order 1 since the window function is not
continuous on T, analogously to the Bessel window function. In
contrast, the estimation of the error sums, as defined in Equation
(11), is much more complicated than for the Bessel window,
which is due to the presence of the complex valued error function.
Therefore, we simply set

∑

r∈Z\{0}

c2
k+rσM

(ϕ̃t,j)

c2
k
(ϕ̃t,j)

≈
∑

0<|r|≤R

c2
k+rσM

(ϕ̃t,j)

c2
k
(ϕ̃t,j)

=: sj(k) (17)

in our numerical experiments, see Section 4. Thereby, we increase
the value R ∈ N step by step until a certain relative accuracy
is achieved. Note that additionally the computation of ck(ϕ̃t) is
numerically demanding for large values of k, since the Gaussian
tends to zero very rapidly, whereas the real part of the complex
valued error function increases.

The Fourier coefficients of the non truncated Gaussian ck(ϕ̃j)
can be computed much more easier than the coefficients ck(ϕ̃t,j)
and tend to zero exponentially fast. Nevertheless, the formula for
the rms error estimate becomes even slightly more complicated.

If we set d̂k := c−1
k (ϕ̃) we obtain, cf. Nestler [30],

∥
∥
∥f − f̃

∥
∥
∥

2

2
=
∑

k∈IM

∣
∣
∣f̂k

∣
∣
∣

2





(

1− ck(ϕ̃t)

ck(ϕ̃)

)2

+
∑

r∈Z3\{0}

c2k+r⊙Mo
(ϕ̃t)

c2k(ϕ̃)



.

3. EWALD SUMMATION AND RMS
ERRORS

We consider a system of N charges qj distributed in a box of
the size L1 × L2 × L3, where L1, L2, L3 ∈ R+. The electrostatic
potential for each particle j subject to 3d–periodic boundary
conditions is defined as

φj =
∑

n∈Z3

N
∑

i= 1

′ qi

‖xij + L⊙ n‖ , (18)

where the prime indicates that for n = 0 the terms with i = j are
omitted and the vector L ∈ R

3
+ is defined by L = (L1, L2, L3).

In the following we assume that the system is charge neutral, i.e.,
we have

N
∑

j= 1

qj = 0. (19)

Note that if Equation (19) is fulfilled, the infinite sum in Equation
(18) is conditional convergent, i.e., the values of the potentials
strongly depend on the underlying order of summation. In
general, a so called spherical limit is considered, see Kolafa and
Perram [34], for instance.

In molecular dynamics simulations one is also interested in
calculating the forces acting on the particles, which are given by

Fj := −qj∇xjφj. (20)

As already indicated in the introduction, the so called Ewald
summation technique is the basis for a variety of efficient
algorithms in this field. The basic idea behind the Ewald
summation approach can be explained as follows. It makes use
of the trivial identity

1

r
= erf(αr)

r
+ erfc(αr)

r
, (21)

where α > 0 is named Ewald or splitting parameter,

erf(x) := 2√
π

∫ x
0 e−t2dt is the error function and erfc(x) := 1 −

erf(x) is the complementary error function. Based on Equation
(21) the potential is split into two parts. The complementary error
function erfc(x) tends to zero exponentially fast as x grows. Thus,
the second part is absolutely converging and can be evaluated
directly by truncating the infinite sum. The first part is still long
ranged and conditionally convergent, but for the error function
we have

lim
r→0

erf(αr)

r
= 2α√

π
,

i.e., we do not have a singularity in this part. As a result, we can
transform the remaining infinite sum into a rapidly converging
sum in Fourier space, where the underlying order of summation
is of importance.

If the spherical summation order is applied, we obtain [6, 35]

φj = φSj + φLj + φselfj + φcorrectj (22)
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with the short range part

φSj :=
∑

n∈Z3

N
∑

i= 1

′qi
erfc(α‖xij + L⊙ n‖)

‖xij + L⊙ n‖

as well as the long range part

φLj := 1

πV

∑

k∈Z3

ψ̂(k)S(k) e−2π i(k⊙L−1)·xj . (23)

Thereby, we set ψ̂(k) := e−π
2‖k⊙L−1‖2/α2

‖k⊙L−1‖2 for k 6= 0 and ψ̂(0) := 0,

define the structure factors

S(k) :=
N
∑

i= 1

qie
2π i(k⊙L−1)·xi =

N
∑

i= 1

qie
2π ik·(xi⊙L−1), (24)

and denote by V : = L1L2L3 the volume of the box. The self
potential is given by

φselfj := − 2α√
π
qj

and the dipole correction term reads as

φcorrectj := 4π

3V

(

xj ·
N
∑

i= 1

qixi −
1

2

N
∑

i= 1

qi‖xi‖2
)

. (25)

Note that the correction term is representing the applied
order of summation as well as the nature of the surrounding
medium. For more detailed considerations of the origin of the
correction term see Ballenegger [36]. The correction potential,
see Equation (25), is obtained for vacuumboundary conditions. If
another surrounding medium is assumed, the prefactor changes
to 4π(1 + 2ǫ)−1V−1, where ǫ denotes the dielectric constant
of the medium, see Frenkel and Smit [37]. For ǫ = 1 we
obtain the result for vacuum boundary conditions. As mentioned
above, the presented Ewald formulas are only valid if the charge
neutrality condition, see Equation (19), is fulfilled. We remark
that a generalization in order to treat systems with a net charge is
possible, see Hummer et al. [38].

We are also interested in the computation of the forces Fj
acting on the particles, which we define in Equation (20). The
forces are computed by applying the differentiation operator
directly to the Ewald representations of the potentials as given in
Equation (22), i.e., also the force splits into a short range, a long
range as well as a correction part

Fj = FSj + FLj + Fcorrectj ,

where the short range part FSj = −qj∇xjφ
S
j is absolutely

convergent. The differentiation in the long range

part can be performed easily in Fourier space, which
results in

FLj := −qj∇xjφ
L(j)

=
2iqj

V

∑

k∈Z3\{0}
ψ̂(k)(k⊙ L−1)S(k)e−2π i(k⊙ L−1)·xj . (26)

The rms error in the forces

1F :=

√
√
√
√

1

N

N
∑

j= 1

∥
∥Fj − Fj,≈

∥
∥
2
,

where Fj,≈ denotes an approximation of the exact force Fj, is
commonly taken as a measure of accuracy.

The estimation of rms errors can in general be done as follows,
see Deserno and Holm [39], Wang and Holm [40], and Kolafa
and Perram [34, Appendix A] for instance. Given the charges
qj and the positions xj, we assume that the vector valued error
involving all terms contributing to the interaction of one particle
j can be written in the form

εj := qj

N
∑

i= 1
i6=j

qiχ ij,

where each vector χ ij only depends on the positions xi and xj.
Furthermore, we assume that the contributions from different
particles are uncorrelated. Of course, this assumption is not
always true but should at least be reasonable for random particle
distributions. We obtain

〈

‖εj‖2
〉

= q2j

∑

i6=j

∑

k 6=j

qiqk

〈

χ∗
ij · χkj

〉

︸ ︷︷ ︸

=:χ2

= q2j χ
2

N
∑

i= 1

q2i

︸ ︷︷ ︸

=: Q

= q2j χ
2Q,

Thereby, the angular brackets denote that the average over all
possible configurations is considered. Finally, we get

√
√
√
√

1

N

N
∑

j= 1

‖εj‖2 ≈
χQ√
N
. (27)

3.1. Rms Force Error in the Short Range
Part
Since the complementary error function erfc tends to zero
rapidly, the real space parts of the potentials as well as the forces
can be computed approximately by direct evaluation, i.e., all
distances ‖xij + L ⊙ n‖ larger than an appropriate cutoff radius
rcut are ignored. Note that if we assume a sufficiently homogenous
particle distribution, each particle only interacts with a fixed
number of neighbors and the short range parts can be computed
with a linked cell algorithm [37] inO(N) arithmetic operations.
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In Kolafa and Perram [34, Equation (18)], the authors provide
an estimate of the corresponding RMS error, which reads as

χ = 2√
rcutV

e−α
2r2cut ⇐⇒

1FS =

√
√
√
√

1

N

N
∑

j= 1

∥
∥
∥FSj − FSj,≈

∥
∥
∥

2
≈ 2Q√

rcutNV
e−α

2r2cut , (28)

where we denote by FSj,≈ the obtained approximations of the

forces’ short range parts.

Remark 3.1. Consider two different particle systems with
numbers of particles N1,2, corresponding box volumes V1,2 and
sums of squared charge values Q1,2. It is easy to see that, if

N1

V1
= N2

V2
and

Q1

V1
= Q2

V2
(29)

are fulfilled, the expected rms force errors in the short range parts
are equal, provided that the same values for α and rcut are used.

3.2. Rms Force Error in the Long Range
Part
The Fourier coefficients ψ̂(k) tend to zero exponentially fast as
‖k‖ → ∞ so that we can set

FLj ≈ FLt,j :=
2iqj

V

∑

k∈IM

(k⊙ L−1)ψ̂(k)S(k)e−2π ik·(xj⊙L−1) (30)

forM ∈ 2N3 large enough, which leads to a truncation error

FLj − Ft,j =

qj

N
∑

i= 1
i6=j

qi




2i

V

∑

k∈Z3\IM

(k⊙ L−1)ψ̂(k)S(k)e−2π ik·(xj⊙L−1)





︸ ︷︷ ︸

=:χ ij

.

The rms force error in the long range part for cubic box shapes,
i.e., we assume that the particles are distributed in a cubic box
of edge length L > 0 and set L = (L, L, L), was considered in
Kolafa and Perram [34]. The authors estimate the rms force error
in the long range part 1FL via approximating the involved error
sum by an integral using spherical coordinates, i.e., only vectors
k with ‖k‖ ≤ M are excluded from the integration domain.

The error estimate for cubic box shapes can be easily
generalized to the non cubic case, which has also already been
considered, see Arnold et al. [41] for instance.

If one assumes that for some β > 0 the vectorsM and L fulfill
the relation

M = βL,

i.e., the numbers of grid points, which are used in each
dimension, are scaled accordingly to the boxes’ side lengths,

FIGURE 1 | Achieved rms force errors (solid) for different far field

cutoffs M = (2M,M,M) with M ∈ {8,16,32} and different near field

cutoffs rcut ∈ {4.0,4.5,5.0}. We also plot the estimates for the rms force

error in the near field (dotted) as well as for the far field with elliptical cutoff

(dashed), see Equations (28) and (31). Test case: N = 600 randomly

distributed particles in a box with edge lengths L = (20,10,10).

the computation of the rms force error is possible in an analog
manner using ellipsoidal coordinates. Thereby, the set of all k
vectors with 2

√
3‖k ⊙ L−1‖ ≤ ‖M ⊙ L−1‖ is excluded from the

infinite sum over k ∈ Z
3 in order to approximate the resulting

error. We obtain

1FL ≈ 4 4
√
3αQ

π
√

NV‖M ⊙ L−1‖
e−π

2‖M⊙L−1‖2/12α2

= 4αQ

π
√
VNβ

e−π
2β2/4α2 . (31)

Remark 3.2. It is easy to see that for two different particle
systems fulfilling Equation (29) the expected rms force errors in
the long range parts are equal, provided that the same values for
α and β are used.

As an example, consider the case that the long range parts of
the forces for a system with N1 = 100 particles distributed in
the box B1 := T

3 with charges qj = (−1)j, j = 1, . . . ,N1, is
approximated by using the cutoff M1 = (32, 32, 32). Then, the
same expected long range part rms error is obtained for a particle
system composed of N2 = 800 particles distributed in the box
B2 := 2T3 with charges qj = (−1)j, j = 1, . . . ,N2, if the far field
cutoff M2 = (64, 64, 64) as well as the same splitting parameter
α are used.

3.3. Parameter Choice
The presented error estimates allow a very precise prediction
of the occurrent rms errors when calculating the forces via the
Ewald formulas.

In the following we consider a concrete particle system and
compare the predicted rms force errors with the actually obtained
errors for different parameter settings.
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Example 3.3. We consider a system consisting of N = 600
randomly distributed charges qj = (−1)j in a box with edge
length vector L = (20, 10, 10).

According to the box shape we applied different far field
cutoffs M = (2M,M,M) with M ∈ 2N to approximate the
long range parts of the forces, where the summation was done
over the full mesh IM . The near field computations were done
by inserting different cutoffs rcut ∈ {4.0, 4.5, 5.0}. We applied
the ScaFaCoS software library [19] for the computation of the
forces, where we used the NDFT as well as the adjoint NDFT,
as introduced in Section 2, in order to compute the Fourier sums
exactly (this corresponds to a pure Ewald summation), reference
data. The results are plotted in Figure 1.

For relatively large values of α as well as for large mesh sizes
M, the actual error in the far field is somewhat overestimated by
the derived upper bound. This is supposed to be due to the fact
that the algorithm uses the full mesh IM instead of the supposed
ellipsoidal cutoff scheme. However, we see that the achieved error
behavior is described very well by the stated estimates.

Based on the error estimates we may tune the parameters as
follows. Note that a first tuning approach is discussed in Kolafa
and Perram [34]. A tuning similar to Algorithm 3.1 is already
used within the ScaFaCoS library [19] and can also be modified
in order to tune the accuracy with respect to the absolute rms
potential error, see Lindbo and Tornberg [5] for instance.

Given a near field cutoff rcut as well as a far field cutoffM, the
splitting parameter α is chosen optimal if the rms errors in the
near field as well as the far field are approximately of the same
size. Thus, a common approach is to solve for a given rcut the
equations

1FS = 1FL = ε√
2

for α and M, where the rms errors in the short range as well as
the long range part are denoted by1FS and1FL, respectively.

Assuming that the near field and the far field part of the error
are independent of each other we have

1F ≈
√
(

1FS≈
)2 +

(

1FL≈
)2 ≈

√

ε2

2 + ε2

2 = ε.

Thus, we expect that the overall rms force error is indeed
approximately of the size ε.

Algorithm 3.1 (Choice of the splitting parameter α and the far
field cutoffM.).
Input: Box size vector L, numbers of charges N, sum of squared
charge values Q, required accuracy ε > 0, near field cutoff radius
0 < rcut ≤ min(L1, L2, L3).

1. Compute α via Equation (28): Claiming FS ≈ ε/
√
2we obtain

α = 1

rcut

√
√
√
√ln

(

2
√
2Q

ε
√
rcutNV

)

.

2. Compute β via Equation (31): Inserting the above
computed value for α we choose M such that also the far
field error is approximately of the size ε/

√
2. We use the error

estimate for the elliptical cutoff scheme, see Equation (31),
and obtain

β = α

π

√

W

(
210α2Q4

π2N2V2ε4

)

,

where we denote by W(·) the well-known Lambert W
function, which is implicitly defined by W(x)eW(x) = x.

3. Set M := 2
⌈
β
2 L
⌉

∈ 2N3 (round up component wise to an

even integer).

Given some near field cutoff radius rcut and a required accuracy ε,
the splitting parameter α and the far field cutoffM can be set via
Algorithm 3.1 in order to reach the accuracy ε. Based on the used
hard- and software, some specific value for rcut will be optimal
with respect to runtime. However, the computation of the long
range part requires at best O(N3/2) arithmetic operations, see
Kolafa and Perram [34, Appendix B]. In order to enable a more
efficient computation we apply the NFFT algorithms, as we
describe in the following section.

4. NFFT BASED FAST EWALD SUMMATION
AND RMS ERRORS

We consider the efficient evaluation of the truncated long range
parts of the potentials

φLt,j := 1

πV

∑

k∈IM

ψ̂(k)S(k)e−2π i(k⊙L−1)·xj

≈ 1

πV

∑

k∈IM

ψ̂(k)S̃(k)e−2π i(k⊙L−1)·xj . (32)

As indicated above, the sums S(k), as given in Equation (24), can
be approximated by the adjoint NFFT, S(k) ≈ S̃(k), k ∈ IM . After
a multiplication with the Fourier coefficients ψ̂(k) we compute
the outer sums over k ∈ IM for all j = 1, . . . ,N via the NFFT.

The fast computation of the truncated versions of the forces’
long range parts FLt,j, as defined in Equation (30), can be done

in an analog manner. Note that the outer sums have then to
be computed by a vector valued 3d-NFFT, i.e., three 3d-FFTs
are needed. This approach is widely known as ik-differentiation
since the differentiation operator ∇ is directly applied in Fourier
space. We remark that the differentiation operator can instead be
shifted to the window function ϕ, which is known as analytical
differentiation and requires only the computation of one 3d-FFT
in order to approximate the outer sums. However, in the present
paper we only take into consideration the ik-differentiation
approach.

The described method (P2NFFT) is part of the publicly
available ScaFaCoS library [19]. The NFFT and the adjoint NFFT
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are computed by using the parallel FFT (PFFT) software [42].
See Wang et al. [43] for another implementation of the described
algorithm.

Remark 4.1. Note that the NFFT as well as the adjoint NFFT
are approximate algorithms. Thus, in addition to the truncation
errors, see Section 3, we introduce an approximation error when
applying the fast methods in Equations (24) and (32). By using
the exact algorithms (NDFT and adjoint NDFT) we obtain a
reference method, for which only the truncation errors in the
Ewald sums are present.

The computation of the corresponding rms approximation error
is done by making use of Equations (4) and (10). At first we
approximate the sums S(k) by S̃(k) via the adjoint NFFT, which
gives

FLt,j ≈ FLnffth,j :=
2iqj

V

∑

k∈IM

(k⊙ L−1)ψ̂(k)S̃(k)e−2π ik·(xj⊙L−1).

In the second step we approximate FL
nffth,j

≈ F̃L
nffth,j

via a vector

valued 3d-NFFT, i.e., we apply the ik-differentiation approach.
The final expression for the rms approximation error, which is

valid for arbitrary window functions ϕ, is given in Lemma 4.2.

Lemma 4.2. Let a charge neutral system, see Equation (19), of
charges qj ∈ R at positions xj ∈ B := L1T × L2T × L3T be given.
Suppose that the truncated long range parts of the forces FLt,j as

defined in Equation (30) are computed via the NFFT based method
by using the oversampled mesh IMo and a symmetric, real valued
window function ϕ. Then, the resulting error in the forces can for
each j = 1, . . . ,N be written in the form

FLt,j − F̃Lnffth,j = qj

N
∑

i= 1
i6=j

qiχ ij.

Thereby, the quadratic mean of the error terms χ ij has the lower
bound

χ2
:= 1

V

∫

B

1

V

∫

B

∣
∣χij
∣
∣
2
dxjdxi ≥ χ2

opt, (33)

where

χ2
opt :=

4

V2

∑

k∈IM

‖k⊙ L−1‖2ψ̂(k)2


1−





∑

r∈Z3

c2k+r⊙Mo
(ϕ̃t)

c2k(ϕ̃t)





−2

 .

(34)

The corresponding optimal NFFT deconvolution coefficients are
given by Equation (8). If the deconvolution coefficients are set as
in Equation (6), the expected quadratic error χ2 reads as

χ2
std := 4

V2

∑

k∈IM

‖k⊙ L−1‖2ψ̂(k)2








∑

r∈Z3

c2k+r⊙Mo
(ϕ̃t)

c2k(ϕ̃t)





2

− 1



.

(35)

Proof. For the sake of completeness we present a short sketch of
the proof. We can write the error FLt,j − F̃L

nffth,j
as

FLt,j − F̃Lnffth,j =
(

FLt,j − FLnffth,j

)

+
(

FLnffth,j − F̃Lnffth,j

)

= qj

N
∑

i= 1

qiχ ij. (36)

If the window function ϕ is symmetric, one easily finds that
χ jj = 0. In order to obtain a representation of χ ij we have to
apply the error formula of the adjoint NFFT, see Equation (10),
to S(k) and compute the first part FLt,j − FL

nffth,j
.

In the second part we apply the representation of the
computed NFFT approximation, see Equation (2), in order to
compute F̃L

nffth,j
or rather FL

nffth,j
− F̃L

nffth,j
.

Putting everything together, we obtain a representation for χ ij

and can compute the integral as given in Equation (33), where the
integration domain B is defined as B := L1T × L2T × L3T. We
finally obtain

χ2 = 4

V2

∑

k∈IM

‖k⊙ L−1‖2ψ̂(k)2
∣
∣
∣1− d̂2kc

2
k(ϕ̃t)

∣
∣
∣

2

− 4

V2

∑

k∈IM

‖k⊙ L−1‖2ψ̂(k)2d̂4kc4k(ϕ̃t)

+ 4

V2

∑

k∈IM

‖k⊙ L−1‖2ψ̂(k)2




∑

r∈Z3

d̂2kc
2
k+r⊙Mo

(ϕ̃t)





2

.

(37)

Minimizing with respect to d̂k for each k provides the optimal
coefficients

d̂k := ck(ϕ̃t)
∑

r∈Z3

c2k+r⊙Mo
(ϕ̃t)

,

i.e., we have to optimize the NFFT algorithms with respect to
the error in the L2-norm. The expressions given in Equations

(35) and (34) are obtained by inserting d̂k = c−1
k (ϕ̃t)

and the computed optimal coefficients into Equation (37),
respectively.

We denote by

1FLfast :=

√
√
√
√

1

N

N
∑

j= 1

∥
∥
∥FLt − F̃L

nffth,j

∥
∥
∥

2
≈ χQ√

N
(38)

the resulting RMS error.

Remark 4.3. Note the difference to the derivation of the optimal
influence function by Hockney and Eastwood [1, Section 8-3-
3]. The optimal influence function is derived via considering
the approximation of the non truncated Fourier space sums,
see Equation (26), by transforming the continuous charge
distribution into a grid based charge density. In contrast, we
already start with the truncated sum over k ∈ IM .

The two deconvolution steps and multiplication with
the Fourier coefficients are summarized as the so called
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influence function in the P3M framework. The resulting
optimal rms force error in the case of ik-differentiation reads as

4

V2

∑

k∈IM










∑

s∈Z3

∣
∣R(k+ s⊙M)

∣
∣
2 −

∣
∣
∣
∣
∣
i(k⊙ L−1)⊤

∑

s∈Z3

c2k+s⊙M(ϕ̃t)R(k+ s⊙M)

∣
∣
∣
∣
∣

2

‖k⊙ L−1‖2
(

∑

r∈Z3

c2k+r⊙M(ϕ̃t)

)2










, (39)

where R(k) : = − i(k⊙L−1)
‖k⊙L−1‖2 e

−π2‖k⊙L−1‖2/α2 , see Hockney and

Eastwood [1, Eq. 8-23]. Note that the single summands tend
to zero exponentially fast and thus we may only consider
the contributions for s = 0, for which we obtain Equation
(34). This shows the mathematical equivalence of the P3M
and the P2NFFT method in the case that we choose the
oversampling factor σ = (1, 1, 1). Note that the two methods
provide additional features, such as analytic differentiation
and interlacing, which can further improve the performance,
see [1, 3, 20, 44] for instance. We remark that the formulas
of the P3M rms errors as well as for the optimal influence
functions are valid for arbitrary window functions as well and
that analogical error estimates are also known for the analytic
differentiation approach, see Hockney and Eastwood [1] and
Pippig [20]. The window function is called charge assignment
function in terms of the P3M, for which usually B-splines are
used. The order of the B-spline 2m is named charge assignment
order. Correspondingly, the convolutions in spatial and Fourier
domains are known as charge assignment on and from the grid,
respectively.

4.1. Efficient Computation of the Resulting
Rms Errors
In the following we discuss how the above derived expressions
for the rms force error can be estimated efficiently. In three
dimensions we use a tensor product approach, see Equation
(3), in order to construct the window function ϕ by only using
univariate functions.

Thus, also the Fourier coefficients ck(ϕ̃t), k ∈ Z
3, are of a

tensor product structure

ck(ϕ̃t) =
3
∏

j= 1

ckj (ϕ̃j,t).

In order to estimate the rms force error efficiently we separate
the computations regarding the three dimensions by using an
approximation of the form

1

x
≈

n
∑

i= 1

rie
−wix for x ∈ [1, ℓ), (40)

where ℓ ≫ 1 should be chosen large enough. Such an
approximation can be obtained with the help of the well-known
ESPRIT algorithm [45], see Potts and Tasche [46] for instance,

or by using the Remez algorithm, which has been applied by
Hackbusch [47].

For k ∈ IM and Lmax := max{L1, L2, L3} we have

1 ≤ x := L2max‖k⊙ L−1‖2≤ L2max

(
M2

1

4L21
+ M2

2

4L22
+ M2

3

4L23

)

= 3β2L2max

4
.

Thus, we should choose ℓ ≥ L2max

(
M2

1

4L21
+ M2

2

4L22
+ M2

3

4L23

)

.

Example 4.4. For cubic box shapes, i.e., L : = (L, L, L) and
M := (M,M,M) we have

L2max‖k⊙ L−1‖2 ≤ ‖k‖2 ≤ 3M2

4
< 2 · 105 ∀M ≤ 512,

which is supposed to suffice if small particle systems are
considered. In Hackbusch [47] the authors provide an
approximation with only n = 11 exponential terms with

maxx∈[1,2·105)

∣
∣
∣
∣
∣

1

x
−

11
∑

i= 1

rie
−wix

∣
∣
∣
∣
∣
≤ 7 · 10−6.

Now we have for k 6= 0

‖k⊙ L−1‖2ψ̂(k)2

= e−2π2‖k⊙L−1‖2/α2

‖k⊙ L−1‖2

= L2maxe
−2π2‖k⊙L−1‖2/α2

L2maxk1
2

L21
+ L2maxk2

2

L22
+ L2maxk3

2

L23

≈ L2max

n
∑

i= 1

rie
−(2π2/α2+wiL

2
max)(k

2
1/L

2
1+k22/L

2
2+k23/L

2
3). (41)

For the window functions as presented in Section 2 we have

∑

r∈Z\{0}

c2
k+rσjMj

(ϕ̃j,t)

c2
k
(ϕ̃j,t)

{

≤ sj(k) : ϕ ∈ {B-Spline,Bessel},
≈ sj(k) : ϕ ∈ {Gaussian},

(42)

where k ∈ IMj , see Equations (12), (16), (17). Then

(

∑

r∈Z

c2
k+rσjMj

(ϕ̃j,t)

c2
k
(ϕ̃j,t)

)2

≈ 1+ 2sj(k)+ s2j (k) =: 1+ s̃j(k)
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and for k = (k1, k2, k3) ∈ IM we obtain





∑

r∈Z3

c2k+r⊙Mo
(ϕ̃t)

c2k(ϕ̃t)





2

≈ (43)

1+
3
∑

j= 1

s̃j(kj)+
∑

j1<j2

s̃j1 (kj1 )s̃j2 (kj2 )+
3
∏

j= 1

s̃j(kj).

For i = 1, . . . , n and j = 1, . . . , 3 we define the sums

Sstdi,j :=
∑

k∈IMj

e
−(2π2/α2+wiL

2
max)k

2/L2j

Rstdi,j :=
∑

k∈IMj

s̃j(k)e
−(2π2/α2+wiL

2
max)k

2/L2j

S
opt
i,j :=

∑

k∈IMj

1

1+ s̃j(k)
e
−(2π2/α2+wiL

2
max)k

2/L2j

R
opt
i,j :=

∑

k∈IMj

s̃j(k)

1+ s̃j(k)
e
−(2π2/α2+wiL

2
max)k

2/L2j

and obtain for χ2
std
, as defined in Equation (35), by applying

Equation (41)

χ2
std ≈ 4

V2

∑

k∈IM

‖k⊙ L−1‖2ψ̂(k)2




3
∏

j= 1

[

1+ s̃j(kj)
]

− 1



 (44)

≈ 4L2max

V2

n
∑

i= 1

ri





∑

j1,j2,j3

(

Sstdi,j1S
std
i,j2

Rstdi,j3 + Sstdi,j1R
std
i,j2

Rstdi,j3

)

+Rstdi,1R
std
i,2R

std
i,3





− 4L2max

V2





3
∏

j= 1

[

1+ s̃j (0)
]

− 1





n
∑

i= 1

ri, (45)

i.e., we can estimate the error with O(n(M1 + M2 + M3))
arithmetic operations.

Similarly, we obtain the following estimate for the optimal
error χ2

opt, see Equation (34).

χ2
opt ≈

4

V2

∑

k∈IM

‖k⊙ L−1‖2ψ̂(k)2


1−
3
∏

j= 1

1

1+ s̃j(kj)





= 4

V2

∑

k∈IM

‖k⊙ L−1‖2ψ̂(k)2
3
∏

j= 1

1

1+ s̃j(kj)
·





3
∏

j= 1

[

1+ s̃j(kj)
]

− 1





≈ 4L2max

V2

n
∑

i= 1

ri





∑

j1,j2,j3

(S
opt
i,j1

S
opt
i,j2

R
opt
i,j3

+ S
opt
i,j1

R
opt
i,j2

R
opt
i,j3

)

+R
opt
i,1 R

opt
i,2 R

opt
i,3





− 4L2max

V2



1−
3
∏

j= 1

1

1+ s̃j(0)





n
∑

i= 1

ri. (46)

Remark 4.5. WithM = βL we have

1

V

e−π
2‖k⊙L−1‖2/α2

‖k⊙ L−1‖2 = β3

M1M2M3

e−π
2‖k⊙M−1‖2/(α2β2)

1
β
‖k⊙M−1‖

= β4

|IM|
e−π

2‖k⊙M−1‖2/(α2β2)

‖k⊙M−1‖ (47)

and additionally the error sums as defined in Equation (11) only
depend on the values k/σM ∈ [0, 1/2σ]. Thus, the errors χstd/opt
are supposed to be almost equal among particle systems with the
same charge and particle density, if β , α as well as the NFFT
parametersm, σ and b are kept constant.

In other words, the errors can be predicted by considering a
smaller particle system, which is scaled appropriately (see [48,
Section 5]), where the same approach has been applied. We give
an example in Table 1, where we list the approximated errors
obtained via Equation (45) as well as by using Equation (44), for

TABLE 1 | Computed values for Equations (35), (44), and (45) for different systems having the same particle and charge density (see the supposed values

for L, N, and Q).

L N = Q M Q√
N

χstd via Equation (35) Q√
N

χstd via Equation (44) Q√
N

χstd via Equation (45)

(10,10,10) 100 (32,32,32) 2.1705e-08 3.1596e-08 3.1596e-08

(30,30,20) 1800 (96,96,64) 2.1705e-08 3.1596e-08 3.1587e-08

(40,40,40) 6400 (128,128,128) 2.1705e-08 3.1596e-08 3.1621e-08

(80,80,80) 51200 (256,256,256) 2.1705e-08 3.1596e-08 3.1760e-08

We choose the parameters α = 1.0, m = 4, σ = 1.25, ϕ = B-spline.
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which the second approximation for the separation of the single
dimensions, see Equation (40), is not applied.

Note that the error as given in Equation (35) can be computed
exactly in case of the B-spline window, since the one dimensional
sums over rj ∈ Z can be expressed in terms of the Euler-
Frobenius polynomials, see Nestler [30] and references therein.
However, this approach is numerically unstable since the sums
take values very close to 1. Thus, in order to get a value for the
exact error given in Equation (35) we compute the aliasing sums
over rj ∈ Z \ {0}, see Equation (12), directly via truncation. Note

that the summands tend to zero likeO(r−4m
j ).

4.2. Comparison between Different
Window Functions
We consider the window functions from Section 2 and evaluate
the occurrent rms errors, as described above, for some test
scenarios.

In the following examples we consider a particle system
containing N = 300 randomly distributed charges qj = (−1)j

distributed in a cubic box with edge length 10, i.e., L =
(L, L, L) = (10, 10, 10). We compute the quadratic means χstd
as well as χopt via Equations (45) and (46), respectively, for
different values of the splitting parameter α and compare the
predicted errors with measured errors. For this purpose we apply
the P2NFFT implementation in ScaFaCoS [19] and set rcut := 0
in order to compute only the far field. The exact computation
is done by applying the NDFT algorithms instead of the NFFT
methods, see Remark 4.1. Note that the P2NFFT is based on the
standard deconvolution approach, see Equation (6).

4.2.1. B-Spline Window
For the B-spline window the upper bounds sj(k), as introduced
by Equation (42), are given in Equation (12).

Example 4.6. The results for the B-spline window function
are plotted in Figure 2. We see that the measured errors are
estimated very precisely by χstd and that the usage of the
optimized deconvolution approach does, especially in the range
of high precisions, not promise significant improvements, which
is due to the rapid decrease of the Fourier coefficients ψ(k).

4.2.2. Bessel Window
For the Bessel I0 window the upper bounds sj(k) for k ∈ IMj

are given in Equation (16). We claim that the accuracy of the
P2NFFT method can be improved significantly by tuning the
shape parameter b.

Example 4.7. We give an example on how the choice of the
shape parameter b influences the accuracy of our method and
compute χstd for different values of b := (b, b, b), where we set
α := 0.8,M := (32, 32, 32), σ := (1, 1, 1) andm := 3. The results
are plotted in Figure 3.

For typical scenarios we suppose that the error behaves as
depicted in Figure 3, that is, that the error adopts its minimum
for some optimal value b = bopt and grows with increasing
distance |b− bopt| from the optimal value.

In this specific example we obtain bopt ≈ 5.5. Note that the
choice of the standard shape parameter b := b0 = (2σ−1)π

σ
= π

results in an increase of the error by more than two orders of
magnitude. In other words, an appropriate method to tune the
shape parameter seems necessary.

We suggest the following approach to tune the shape parameter
b automatically, cf. Nestler [30]. For simplicity we assume that

FIGURE 3 | Predicted and measured errors χstd for different values of

the shape parameter b: = (b,b,b). We choose the parameters α = 0.8,

M = (32,32,32), σ = (1,1,1) and m = 3. (Window function: Bessel).

FIGURE 2 | Approximate values for χopt via Equation (46) (dotted) and χstd via Equation (45) (dashed) for different far field cutoffs M with respect to

the splitting parameter α. Thereby we choose the support parameter m = 3 (left) and m = 6 (right) as well as the oversampling factor σ ∈ {1,1.25} (see legend). The

corresponding measured errors χstd are represented by the solid lines. (Window function: B-spline).
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approximately the same oversampling factor σ is applied in all
three dimensions, i.e., we set σ := (σ, σ, σ ), where σ ≥ 1.

Thus, it is reasonable to use also the same shape parameter b >
0 in the single dimensions, i.e., we set b := (b, b, b). Note that the
oversampled grid size has to be set viaMo,j := 2

⌈
σ
2Mj

⌉

, since we
need Mo ∈ 2N3. Thus, the oversampling factors σj := Mo,j/Mj,
which are actually applied in the single dimensions, may slightly
differ from σ .

In Algorithm 4.1 we denote by χ(b,m, σ ) the predicted rms
error terms χopt and χstd, which actually depend on the chosen
shape parameter b, the support parameter m, the oversampling
factor σ as well as the applied deconvolution scheme. Based on
the given sets of parameters the resulting error terms χ can be
approximated by Equations (45) and (46), respectively.

Algorithm 4.1 (Shape parameter tuning).

Input: Splitting parameter α, box size vector L, far field cutoff
M, support parameter m, oversampling factor σ , which is to be
applied in all three dimensions.

(i) Set bopt : = b0, i.e., take the standard shape parameter,
see Equation (14), as a first guess for the optimal shape
parameter.

(ii) Choose a start step size d, e.g., d := bopt
2 .

(iii) Set bopt := argminb∈{bopt−d,bopt,bopt+d} χ(b,m, σ ).
If the old and the new value for bopt coincide, set d := d/2.

(iv) Repeat (iii) until the computed optimal error does not
significantly change anymore.

Output: Optimal shape parameter bopt and the best possible error
χmin.

Example 4.8. We tune the shape parameter b, which is applied
in all three dimensions, by the suggested tuning Algorithm 4.1
and plot the results for the Bessel window function in Figure 4.
As already observed for the B-spline window, we cannot see
significant differences between χopt as well as χstd.

The default values for the shape parameter are

b0 =
{

π ≈ 3.14 : σ = 1,
6
5π ≈ 3.77 : σ = 1.25.

In Figure 5 we plot the tuned optimal shape parameters bopt
for the parameter setting m = 3, M = 32. We also compare
the errors obtained by using the tuned optimal shape parameter
bopt with the results obtained by setting b = b0. Obviously,
the optimal value bopt very much depends on the applied
splitting parameter α, which determines how fast the Fourier
coefficients ψ̂(k) are decreasing. We obtain significantly smaller
approximation errors by using the tuned shape parameters.

4.2.3. Gaussian Window
For the Gaussian window function we set sj(k) via Equation
(17), i.e., we do not compute upper bounds of the underlying
error sums but rather approximations. Note that in addition the
computation of ck(ϕ̃j,t) is numerically unstable for large k. In
other words, we expect that the error prediction is not as precise
as for B-splines or the Bessel window. The shape parameter can
be tuned via Algorithm 4.1, too.

Example 4.9. The results for the Gaussian window function,
which were obtained with the optimal shape parameters found by
Algorithm 4.1, are plotted in Figure 6. As for the Bessel window
we obtain considerably different optimal shape parameters bopt
among different values of the splitting parameter α.

Since the estimation of the underlying error sums is easier in
the case that the Fourier coefficients of the truncated Gaussian
are used, we use these coefficients within the deconvolution steps
of the NFFT and the adjoint NFFT. For the evaluation of the
complex valued error function within ScaFaCoS [19] we use the
libcerf library [49]. We can see that the errors are predicted fairly
well for relatively large splitting parameters α. For smaller values
of α we obtain somewhat inaccurate results, which is due to the
above described problems connected with the complex valued
error function.

FIGURE 4 | Approximate values for χopt via Equation (46) (dotted) and χstd via Equation (45) (dashed) for different far field cutoffs M with respect to

the splitting parameter α. Thereby we choose the support parameter m = 3 (left) and m = 6 (right) as well as the oversampling factor σ ∈ {1,1.25} (see legend). The

corresponding measured errors (χstd) are represented by the solid lines. (Window function: Bessel).
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FIGURE 5 | Optimal shape parameters bopt (left) for the setting m = 3, M = 32, where σ = 1 (black) and σ = 1.25 (red). On the right hand side we plot the

measured errors χstd, which were obtained with b = bopt (solid) and with b = b0 (dashed), respectively. (Window function: Gaussian).

FIGURE 6 | LHS: Approximate values for χopt via Equation (46) (dotted) and χstd via Equation (45) (dashed) for different far field cutoffs M with respect

to the splitting parameter α. Thereby we choose the support parameter m = 6 as well as the oversampling factor σ ∈ {1,1.25}. The corresponding measured

errors (χstd) are represented by the solid lines. RHS: We compare the results obtained by setting d̂k = c−1
k

(ϕ̃t ) with those obtained by applying d̂k = c−1
k

(ϕ̃). (Window

function: Gaussian).

We suppose that we cannot considerably profit from using
the Fourier coefficients of the truncated Gaussian ck(ϕ̃t) since the
coefficients ψ̂(k) tend to zero exponentially fast in k. Indeed, we
obtain almost the same errors by using the Fourier coefficients of
the non-truncated Gaussian ck(ϕ̃) instead, see right hand side in
Figure 6.

4.2.4. Comparison
In order to compare the three different window functions we plot
some of the predicted errors χstd, as presented in the Examples
above, in Figure 7.

The Bessel window function provides the most accurate
results in most cases. It can be seen that the B-Spline performs
best in terms of accuracy only for very small values of α. In this
case the coefficients ψ̂(k) tend to zero very rapidly, i.e., the error
is strongly dominated by the terms k ≈ 0 and thus the B-spline
profits from the fact that sj(k) → 0 as k → 0, see Equation (12).

It seems that the Gaussian can not keep up with the B-spline
and the Bessel window function in terms of accuracy. Note
that the PNFFT software [50] allows the usage of a third
order interpolation scheme for the repeated evaluation of the
window function. In three dimensions the window function
is constructed based on a tensor product approach, i.e., the

interpolation can be restricted to the single dimensions. This
enables an efficient and highly accurate evaluation, which is
independent from the used window function. The evaluation
of the window function only consists of a few arithmetical
operations, which is in terms of computational costs similar to
the fast Gaussian gridding [26], if the Gaussian window function
is used.

Based on the presented comparison we suppose that,
depending on the required accuracy, the B-spline or the Bessel
window function will be most profitable in terms of efficiency.
Thus, we restrict our considerations to these two window
functions in the following examples.

4.3. Parameter Tuning and Numerical
Examples
We recall Remarks 3.1, 3.2, and 4.5, which show that the
predicted errors are of a comparable size among particle systems
with the same particle and charge density, if the FFT mesh size is
scaled appropriately. Thus, we can tune all parameters of our fast
algorithm for a small particle system and apply the tuned sets of
parameters also to larger systems while keeping the performance
of the algorithm in terms of accuracy as well as efficiency.
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FIGURE 7 | Predicted errors χstd as presented in Examples 4.6, 4.8, and 4.9 for the support parameter m = 6, where M = 16 (left) and M = 32 (right),

respectively.

4.3.1. Choice of the Oversampling Factor
The accuracy of the P2NFFT method strongly depends on the
properties of the window function. We obtain more accurate
results by using a larger support parameter m, for instance. In
addition, we can apply oversampling in order to increase the
accuracy of the algorithm. We aim to choose the oversampling
factor σ as large as necessary in order to reach a certain accuracy.
In the end, different combinations of the parametersm and σ will
be possible, of which one will be optimal in terms of runtime.

With the help of the error estimates, as presented above, we
are able to tune the oversampling factor for a given mesh size
M and support parameterm. For simplicity we again assume that
approximately the same oversampling factor is applied in all three
dimensions, i.e., we have σ ≈ (σ, σ, σ ) with σ ≥ 1.

Given some near field cutoff rcut and a required accuracy ε,
the Ewald summation parameters α and β can be determined
via Algorithm 3.1. Note that finally the actual optimal splitting
parameter will slightly differ from the computed one, since
the approximations via NFFT and adjoint NFFT introduce
additional aliasing errors.

However, the NFFT parameters are tuned in order to fulfill

1FLfast ≤ ε2 ≤ ε√
2
, (48)

i.e., we force the approximation error 1FL
fast

as defined in
Equation (38) to be less or equal to the Ewald type rms errors
in the near field as well as in the far field. Then, we suppose that
the NFFT approximation errors are small enough such that the
required accuracy ε is still achieved.

We apply a simple binary search algorithm in order to tune
the required oversampling factor, see Algorithm 4.2.

Algorithm 4.2 (Tune the oversampling factor).

Input: support parameterm, Ewald parameter α, NFFTmesh size
M, box length vector L, required accuracy ε2.

(i) Define a maximum oversampling factor σmax, e.g., σmax :=
2. If the resulting error 1FL

fast
(σmax) > ε2, then set σmin :=

σmax.

(ii) Else: If1FL
fast

(1) ≤ ε2, then set σmin := 1.

(iii) Else: Set σ := 1
2 (1 + σmax) and use a simple binary search

method to approximately solve1FL
fast

(σ ) = ε2 for σ .

Output: required oversampling factor σmin ∈ [1, σmax]. If the
required accuracy ε2 cannot be achieved, we simply return σmax.

In the following examples we apply Algorithm 4.2 in order
to tune σ for different parameter settings. Thereby, we set
σmax := 2 and compute the oversampling factor with an
absolute accuracy of 10−2. Note that especially for small mesh
sizes M the actual oversampling factor, which is finally applied
in each dimension, will slightly differ from the tuned value,
since we need Mo ∈ 2N3. But, since we aim to tune the
oversampling factor for relatively small mesh sizes in order to
apply the same parameter also to larger systems, cf. Remarks 3.2
and 4.5, it is reasonable to tune σ with respect to a higher
precision.

The required accuracy ε2 is set to

ε2 := ε√
2
,

i.e., we want that the approximation errors in the long range part
are approximately of the same size than the truncation errors in
the near field as well as the far field. We can actually not prove
that this approach will always force the overall rms force error
to be smaller than ε. However, the truncation error in the far
field, see Example 3.3, is always overestimated since the algorithm
uses the full mesh IM instead of a radial cutoff scheme and
additionally the mesh size M has been computed by rounding
above to the next even integer, see step 3 in Algorithm 3.1.
Moreover, also the NFFT approximation errors are supposed
to be somewhat smaller than predicted. Thus, we still suppose
that the required accuracy can be reached, see Example 4.10 for
instance.

In the following examples we consider again the particle
system as introduced in Section 4.2. In Example 4.12 we consider
also larger systems.

Example 4.10. For different values of the near field cutoff radius
rcut we tune the Ewald parameters α and β with Algorithm 3.1 in
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order to reach the accuracy ε = 10−8. In order to tune the NFFT
parameters we claim Equation (48) to be fulfilled.

For different values of the support parameter m we tune
the oversampling factor σ by applying Algorithm 4.2 for the
B-spline window. The tuned parameters as well as the achieved
rms force errors 1F and the measured computation times
t are listed in Table 2. The corresponding results, where we
use no oversampling (σ : = 1) are given in Table 3. Note
that the required accuracy may for no m ∈ N be reached, see
Equation (13).

We can see that it is in general more favorable in terms of
computational costs to use a B-spline with a smaller support
parameter m combined with spending some oversampling. As
an example, in the case rcut = 6, we needm ≥ 8 in order to reach
the required accuracy, if we do not use oversampling. With an
oversampling factor σ ≈ 1.3 we can reduce the computational
costs since already the support parameterm = 5 is sufficient.

The presented runtimes include the computation of the
potentials as well as the forces and have been measured on
an Intel i5-2400 single core processor that runs on 3.10 GHz
with 8 GB main memory. The software was built with the
Gnu C Compiler at version 4.7.1 and optimization flags “-O3”.
For the repeated evaluation of the window function we use
a third order interpolation scheme based on interpolation
tables instead of evaluating the functions directly. Thus, the
speed of the evaluation is independent from the used window
function, as already mentioned above. We stress that it may
strongly depend on the used hardware, compiler and the like,
which parameter setting is optimal regarding the required
runtime. Note that the P2NFFT framework also enables
the computation of the particle interactions on massively
parallel architectures, which will also change the optimal
parameters.

In Table 4 we list the tuned parameters as well as achieved
rms force errors and runtimes for the Bessel window. For small
values of the support parameter m the B-spline window requires
less oversampling in order to reach the required accuracy. In
contrast, for m ≥ 6 the Bessel window function demands less or

TABLE 2 | Tuned oversampling factors σmin, achieved computation times t

in seconds and measured rms force errors 1F for the B-spline window.

rcut m = 4 m = 5 m = 6 m = 7 m = 8

5.5 σ = 1.7344 1.2812 1.1094 1.0312 1.0000

t = 4.84e-02 3.25e-02 3.01e-02 3.08e-02 3.28e-02

1F = 7.32e-09 7.21e-09 7.04e-09 6.95e-09 7.28e-09

6.0 σ = 1.7344 1.2969 1.1094 1.0312 1.0000

t = 4.11e-02 2.89e-02 2.92e-02 3.02e-02 3.25e-02

1F = 7.68e-09 8.04e-09 7.40e-09 7.32e-09 7.86e-09

6.5 σ = 1.7656 1.3281 1.1406 1.0469 1.0156

t = 3.58e-02 2.85e-02 2.93e-02 3.04e-02 3.41e-02

1F = 8.44e-09 8.12e-09 7.47e-09 7.36e-09 7.28e-09

The parameters α andM have for each rcut been set via Algorithm 3.1, where ε := 10−8.
For each rcut we highlight the parameter combination with the smallest computation time.

equal oversampling. We achieve even smaller computation times
than for the B-spline window.

4.3.2. Runtime Over rcut
In addition to the above described parameter tuning, for which
the near field cutoff rcut has to be specified, we also want to
tune the parameter rcut in order to achieve an (almost) optimal
runtime. For small particle systems we may apply the above
described tuning for different values of rcut and compare the
achieved runtimes.

Example 4.11. We tune the parameters as described in the
previous considerations for different near field cutoffs rcut,
compare to Example 4.10. Thereby, we again choose ε := 10−8

and plot the measured runtimes over rcut in Figure 8. Note the
unexpected jumps in the runtime plots, which result from an
increased FFT computation time in the long range part, if the
oversampled grid size shows an unprofitable decomposition into
prime factors.

The corresponding tuned parameters and the achieved rms
force errors can be found in Figure 8 as well. Note that we also

TABLE 3 | Measured computation times t in seconds as well as achieved

rms force errors 1F for the B-spline window without oversampling, i.e.,

σ = 1.0.

rcut m = 4 m = 5 m = 6 m = 7 m = 8

5.5 t = 2.20e-02 2.36e-02 2.60e-02 2.88e-02 3.27e-02

1F = 9.83e-07 1.28e-07 2.49e-08 9.38e-09 7.28e-09

6.0 t = 2.10e-02 2.28e-02 2.53e-02 2.82e-02 3.18e-02

1F = 1.01e-06 1.36e-07 2.77e-08 1.05e-08 7.86e-09

6.5 t = 2.21e-02 2.40e-02 2.62e-02 2.94e-02 3.26e-02

1F = 1.21e-06 1.83e-07 4.16e-08 1.48e-08 9.15e-09

The parameters α andM have for each rcut been set via Algorithm 3.1, where ε := 10−8.
For each rcut we highlight all cases, where the measured rms force error is smaller than

the given required accuracy.

TABLE 4 | Tuned oversampling factors σmin, achieved computation times t

in seconds and measured rms force errors 1F for the Bessel window.

rcut m = 4 m = 5 m = 6 m = 7 m = 8

5.5 σ = 2.0000 1.4688 1.0938 1.0000 1.0000

t = 5.89e-02 4.06e-02 3.01e-02 2.89e-02 3.28e-02

1F = 7.22e-09 6.89e-09 6.88e-09 6.90e-09 6.90e-09

6.0 σ = 2.0000 1.4531 1.0938 1.0000 1.0000

t = 4.93e-02 3.35e-02 2.83e-02 2.83e-02 3.18e-02

1F = 7.50e-09 7.23e-09 7.23e-09 7.24e-09 7.24e-09

6.5 σ = 2.0000 1.4375 1.0781 1.0000 1.0000

t = 4.33e-02 3.10e-02 2.75e-02 2.93e-02 3.26e-02

1F = 7.67e-09 7.26e-09 7.27e-09 7.36e-09 7.35e-09

The parameters α andM have for each rcut been set via Algorithm 3.1, where ε := 10−8.
For each rcut we highlight the parameter combination with the smallest computation time.
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FIGURE 8 | Measured runtimes for different values of rcut (left). The required rms force accuracy was set to ε := 10−8. The parameters (right) were chosen by

applying Algorithms 3.1, 4.1, and 4.2. For each rcut we considered different combinations of m and σ , where we chose the one yielding the smallest computation

time. Test case: N = 300 randomly distributed particles, box size: 10× 10× 10.

consider the case σ = 1 for the B-spline window, where for
each rcut we choose the support parameter m ≤ 8 as small as
possible, i.e., we increase m ≤ 8 step by step until the predicted
error 1FL

fast
for σ = 1 is smaller than ε2, cf. Equation (48).

In some cases the requested precision could not be achieved.
Again, note that the accuracy may also not be achieved for larger
support parametersm, cf. Equation (13). In contrast, the required
accuracy is always achieved in the case that oversampling is
allowed. Mostly, we obtain a more inconvenient parameter set
for the B-spline window, which results in somewhat larger
computation times compared to the Bessel window. Note that we
could save approximately fifteen percent of runtime by using the
Bessel window function with oversampling, compared to using
the B-spline without oversampling.

We remark that the optimal parameters significantly change
with changing required accuracy ε. In Figure 9 we plot the tuned
parameters for ε := 10−4. In order to reach an absolute accuracy
ε = 10−8 the following NFFT parameters should be used.

• B-Spline:m = 6, σ ≈ 1.2,
• Bessel:m = 6, σ ≈ 1.1, b ≈ 4.0 orm = 7, σ = 1, b ≈ 3.4.

In contrast, in the case ε = 10−4 we obtain the following
parameter combination.

• B-Spline:m = 4, σ ≈ 1.1 orm = 3, σ ≈ 1.25,
• Bessel:m = 4, σ = 1, b ≈ 3.3.

The same parameters are supposed to be optimal also for larger
particle systems having the same particle/charge density, here
N
V = Q

V = 0.3, see Example 4.12. We expect fundamentally
different optimal parameters when changing the particle density
significantly.

4.3.3. Scale Parameters to Larger Particle Systems
As described above, all parameters can be tuned for a small
particle system in order to apply the obtained set of parameters
also to larger systems. Provided that Equation (29) is fulfilled,
the rms errors are supposed to be of a comparable size
among a set of systems having the same particle and charge
density.

Example 4.12. We compute for each near field cutoff rcut
the Ewald parameters (α, β) as well as possible parameter
combinations for the NFFT (support parameterm, oversampling
factor σ ) based on the small particle system considered in the
last examples. The optimal set of parameters with respect to
runtime is found by comparing the obtained runtimes for the
large particle system.

We consider the following systems:

(i) N = 153600 randomly distributed particles in a cubic box
with edge length L1 = L2 = L3 = 80.

(ii ) A so called cloud wall system containing N = 100800
particles in a non cubic box with edge length vector
L = (60, 70, 80). The cloud wall system consists of two
oppositely charged particle walls surrounded by further
particles, which are randomly distributed. Such systems
have been proposed in Arnold et al. [11] because of their
significant long range part.

The measured optimal runtimes are plotted on the left hand side
in Figures 10, 11. The corresponding NFFT parameters as well
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FIGURE 9 | Measured runtimes for different values of rcut (left). The required rms force accuracy was set to ε = 10−4. The parameters (right) were chosen by

applying Algorithms 3.1, 4.1, and 4.2. For each rcut we considered different combinations of m and σ , where we chose the one yielding the smallest computation

time. Test case: N = 300 randomly distributed particles, box size: 10× 10× 10.

FIGURE 10 | Measured runtimes for different values of rcut (left). The required rms force accuracy was set to ε = 10−8. The parameters (right) were chosen by

applying Algorithms 3.1, 4.1, and 4.2, setting N = 300 and L = (10,10,10) (see Example 4.11). For each rcut we considered different combinations of m and σ , where

we chose the one yielding the smallest computation time. Test case: N = 153600 randomly distributed particles, box size: 80× 80× 80.
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FIGURE 11 | Measured runtimes for different values of rcut (left). The required rms force accuracy was set to ε := 10−8. The parameters (right) were chosen

by applying Algorithms 3.1, 4.1 and 4.2, setting N = 300 and L = (10,10,10) (see Example 4.11). For each rcut we considered different combinations of m and σ ,

where we chose the one yielding the smallest computation time. Test case: cloud wall system, N = 100800 particles, box size: 60× 70× 80.

as the achieved rms force errors can be found on the right hand
side, respectively.

We can see that the optimal combinations of the NFFT
parameters (m and σ ) differ only slightly among the different
particle systems. In contrast, the optimal near field cutoff changes
with varying numbers of particles N, which is due to the fact that
the near field computation scales like O(N), whereas O(N logN)
arithmetic operations are needed for the far field.

In most cases it is more favorable in terms of computational
costs to spend some oversampling in combination with a
smaller supported window function. As in Example 4.11 we
save approximately fifteen percent of runtime when applying the
Bessel window function with oversampling instead of using the
B-spline without oversampling. In the latter case we obtain even
larger rms force errors.

Example 4.12 clearly shows that the parameters, which have
been tuned for a small particle system, can be applied also to
larger systems in order to keep the achieved accuracy among
systems having the same charge as well as particle density almost
constant. An optimization with respect to runtime is possible by
measuring the required runtimes for different near field cutoffs
rcut. Thereby, we obtain unexpectedly large computation times
in the case that the applied FFT mesh size shows an unprofitable
factorization into prime factors, which makes it somewhat more
difficult to predict the performance for larger particle systems, for
which the FFT mesh size is appropriately scaled.

Note that for some fixed rcut the computational cost
required for the near field scales like O(N), assumed that the

particles are homogeneously distributed. In contrast, the far field
computations require O(N logN) arithmetical operations, i.e.,
for growing system size we expect that the optimal value for the
near field cutoff rcut is increasing, too. Thus, the tuning with
respect to runtime should be done based on the original system
instead of considering a smaller one.

In addition, we have seen that the possibility to use
oversampling makes the P2NFFT method somewhat more
flexible. In many cases a small oversampling factor is required in
order to reach the requested accuracy. Moreover, we can reduce
the computational costs since a window function of a smaller
support can be used.

5. CONCLUSION

In the present work we studied the error behavior of the P2NFFT
method, which is publicly available as a part of the ScaFaCoS
library [19]. We investigated the performance of the algorithm
for different window functions, namely B-splines, the Bessel I0
function as well as the Gaussian, and presented an approach
to predict the occurrent rms errors in the forces precisely and
efficiently. Based on this, we also suggest a method to tune all
involved parameters automatically.

Given a required accuracy and an appropriate near field cutoff
rcut, the splitting parameter α and the far field cutoff M can be
computed easily by inverting the error formulas for the Ewald
sums. In addition we can tune the NFFT parameters, as for
instance the required oversampling factor and window specific
parameters, in order to force the NFFT based approximation
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errors to be smaller than a given accuracy. For the efficient
evaluation of the predicted errors we use an approximation of
the function 1/x by a short sum of exponential terms, which
enables a separation of the three dimensions. The presented
numerical examples show that the error estimates are indeed
very accurate and that the method can be tuned to a high
precision via the proposed parameter tuning. In our examples
we considered especially random particle systems, since the error
estimates are obtained under the assumption that the particles are
homogeneously distributed and that the different contributions
to the overall error are uncorrelated. In the case that the Bessel
or the Gaussian window function is used, the accuracy of the
method very much depends on the window’s shape parameter.
We could improve the performance of the method significantly
by tuning the shape parameter appropriately.

The results of the comparison between the different
window functions can be summarized as follows. The applied
combination of the near field cutoff rcut, the splitting parameter
α and the far field cutoffM very much influences which window
function performs best in terms of accuracy. In general, we
obtain the smallest approximation errors when using the Bessel
or the B-spline window. In order to achieve a required precision,
different combinations of all involved parameters are possible.
It will especially depend on the used hardware and software
which set of parameters is optimal with respect to runtime. All
involved parameters can be tuned for a small particle system in
order to apply the same parameters also to larger systems having
the same particle density. We tested the described approach by
considering sets of particle systems of increasing size. By applying
the tuned parameters, we could achieve almost the same rms
errors among systems having the same charge as well as particle
density. The Bessel window function is in many cases the better
choice with respect to the required computation time, since a
smaller oversampling factor is needed. Thereby, an appropriate
choice of the shape parameter is essential.

The analysis of the present approximation errors shows
that the P2NFFT and the classical P3M method are in
principle equivalent, if the B-spline window function without
oversampling is used within the NFFT. The differences in
the applied deconvolution schemes in terms of accuracy are
negligible, especially if a high precision is required. The tests also
show that spending some oversampling combined with a smaller
support of the window function is in many cases more efficient
than applying no oversampling, which requires the usage of a
wider supported window function in order to achieve the same
accuracy. The error analysis for the B-spline window shows that
in certain cases the usage of oversampling is indeed necessary in
order to reach a certain precision.
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