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Karstic caves, which play a key role in groundwater transport, are often organized as

complex connected networks resulting from the dissolution of carbonate rocks. In this

work, we propose a new model to describe and study the structures of the two largest

submersed karst networks in the world. Both of these networks are located in the area

of Tulum (Quintana Roo, Mexico). In a previous work [1] we showed that these networks

behave as self-similar structures exhibiting well-defined scaling behaviors. In this paper,

we suggest that these networks can be modeled using substructures of percolation

clusters (θ-subnetworks) having similar structural behavior (in terms of fractal dimension

and conductivity exponent) to those observed in Tulum’s karst networks. We show

in addition that these θ-subnetworks correspond to structures that minimize a global

function, where this global function includes energy dissipation by the viscous forces

when water flows through the network, and the cost of network formation itself.

Keywords: karst network, scaling behavior, percolation model, percolation backbone, optimal network

1. INTRODUCTION

In a previous paper [1], we studied the fractal properties of the Ox Bel Ha and Sac Actun
karstic networks in the region of Tulum, Mexico using real space renormalization and numerical
simulations. We found that both networks have similar structures with well defined fractal
dimension df ≈ 1.5, conductivity exponent µ̃ ≈ 0.9, and walk dimension dw ≈ 2.4. We also
observed that these exponents are related by the Einstein relation.

Here we build on this work and propose a new model allowing the description of those systems,
and study how their structures may emerge from general energy dissipation principles.

Previous authors have proposed several models for describing the geometry of karstic networks.
The most comprehensive are based on a full mathematical description of the physical and chemical
processes leading to the dissolution of carbonates (for example 2–4). They provide a detailed and
deterministic description of the formation of underground cave networks and allow the time scales
of these processes to be estimated. However, they require large, complex, and highly non-linear sets
of partial differential equations to be solved. Simplifications and approximations of these processes
were also proposed to enable the generation of stochastic networks that resemble actual networks
[5–7]. Even simpler models are based on the statistical resampling of existing data sets and allow
stochastic networks to be generated which reproduce the main statistical characteristics of the
training networks [8]. Amongst these studies, Ronayne and Gorelick [9] and Ronayne [10] used
the invasion percolation model of Stark [11] and investigated its large scale flow and transport
properties. A weakness of these existing models is that they consider only networks having the
structure of a tree, while our observations in Tulum show that the actual networks contain a
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significant amount of loops. Therefore, there is a need for amodel
better suited to our case. Karst networks including numerous
loops (called anastomotic structures [12]), are also observed in
other locations, thus requiring the investigation of improved
models that include loops.

Many natural systems exhibit fractal properties and can be
modeled as critical phenomena [13] using different frameworks.
For example, the structure of river basins can be analyzed and
modeled using self-organized criticality [14], landscape erosion
was modeled considering a Kardar–Parisi–Zhang like equation
[15], or flow through porous media was described using the
backbone of critical percolation clusters [16].

Here we adopt the framework of percolation theory that
is recognized as particularly well-suited to study connected
structures [17], and conductivity and diffusion behavior of
percolation clusters are well-known (random resistor network
theory) [18]. We propose using subnetworks of percolation
clusters, and show that these structures exhibit a similar fractal
dimension, walk exponent and conductivity exponent to those
observed. We also show how these subnetworks correspond to
structures that minimize a function, where one term relates
to energy dissipation from viscous flow and the other relates
to the energy cost of creating the network. We discuss this
minimization principle by analogy with dynamical models of
river networks [19] and early karst development [20].

2. MATERIALS AND METHODS

2.1. Materials: The Karst Networks of
Tulum
For clarity, we provide here a brief summary of previous findings
[1].

The Ox Bel Ha and Sac Actun coastal karstic systems
(Figure 1) are located around the city of Tulum (Quintana Roo,
Mexico). They are the two largest submerged karst networks
in the world. Each network is comprised of more than 200 km
of connected conduits [21] and covers an area of about 10 ×

10 km2 with a limited vertical extension (average conduit
depth is approximately 12m). They formed within a horizontal

FIGURE 1 | Cave divers’ maps of (1) the Sac Actun system and (2) Ox

Bel Ha. The diamond symbol represents the location of the town of Tulum and

the coastline is sketched.

layer of a relatively young carbonate platform and is relatively
homogeneous in comparison to the network extension. These
two remarkable properties (large extension and homogeneous
geology) make these networks ideal for study. Due to the flat
topography of the area, the hydraulic head gradient is small and
ranges from 1 to 10 cm/km [22].

In Hendrick and Renard [1], we analyzed these systems as
spatial graphs embedded in the plane and characterized their
properties. Figure 1 shows the maps of the two networks that
were acquired by cave divers. A conduit is mapped as N points
(nodes) linked byN−1 lines (links) in such a way that the degree
of the inner nodes is 2 and, at the extremities where conduits
meet, nodes are of degree >2. Nodes located at dead ends of the
networks have degree 1. The length of the links is roughly the
size of the ruler used to map the network. These karst systems are
quite homogeneous networks, characterized by a mean of degree
distribution around 2.35 and a maximum node degree of 5.

Both Ox Bel Ha and Sac Actun have fractal dimension df ≈

1.5, and exhibit the same conductivity scaling behavior. For each
network, the conductivity σ between two nodes scales with the
Euclidean distance L that separates them, i.e., σ (L) ∝ L−µ̃.
Both networks are characterized by a conductivity exponent µ̃ ≈

0.9. They also share a similar diffusion behavior. Diffusion is
anomalous, the mean square displacement of a walker is given
by 〈r2 (t)〉 ∝ t2/dw with a walk exponent dw ≈ 2.4. It was
also found that this set of exponents is in agreement with the
(2-dimensional) Einstein relation µ̃ = −df + dw.

2.2. Methods: Computation of df , dw, and µ̃
In the following, we study the fractal dimension, conductivity
exponent, and walk exponent of subnetworks of backbones
using a large number of numerical simulations. The fractal
dimension is computed using the Maximum-Excluded-Mass-
Burning algorithm, described in Song et al. [23]. Figure 2

illustrates one step during the renormalization procedure that is
used to investigate the scaling properties of the networks. Details
on this procedure are provided in Hendrick and Renard [1].

The conductivity exponent is obtained evaluating the relation
σ (L) ∝ L−µ̃ for pairs of randomly sampled nodes (imposing
for each sample pairs the same inflow rate). More precisely, we
solve the Kirchhoff’s circuit laws equations on the subnetwork
connecting the two sampled nodes assuming, on each link, a flow
described by theHagen-Poiseuille law [24]. The resistance of each
link is taken as unity [in the following, we work on square grids,
thus link (conduit) length is fixed and we assume the same radius
for each link]. The walk exponent is computed by evaluating the
mean square displacement of random walkers 〈r2 (t)〉 ∝ t2/dw for
different initial nodes.

3. KARST NETWORKS AS SUBNETWORKS
OF THE PERCOLATION BACKBONE

3.1. Percolation Theory: Background
Considerations
The model is based on percolation theory that provides a
standard framework for studying connected structures. The
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FIGURE 2 | Renormalization of Ox Bel Ha using the Maximum-Excluded-Mass-Burning algorithm [23]. Main orientation conduits are highlighted by

renormalization. Main flow paths occurs from inland (upper part of the network) to the sea (bottom part). The Ox Bel Ha network (A) and a renormalized version (B).

TABLE 1 | Fractal dimension df , conductivity exponent µ̃ and walk

exponent dw of critical percolation cluster (cPC), critical backbone

percolation cluster (cBB) and Tulum karst networks.

df µ̃ dw

cPC 91/48 ≈ 1.896 0.9826± 0.0008 2.878± 0.001

cBB 1.6432±0.0008 0.9826± 0.0008 2.62± 0.03

Ox Bel Ha 1.51±0.03 0.917± 0.037 2.39± 0.03

Sac Actun 1.49±0.03 0.920± 0.036 2.40± 0.03

Values for cPc and cBB come from [17], those of karst networks from [1]. Conductivity

exponents of cPc and cBB are the same since cBB is the conducting part of the cPc.

Notice that away from pc, percolation clusters are described by the same set of exponents

up to ξ .

percolation model is that a fraction p of randomly chosen sites
is occupied of a 2D square lattice. A cluster is a set of occupied
sites connected to their nearest neighbors. When p is small, the
clusters are isolated, while as p increases so do the size of the
clusters. At the percolation threshold p = pc (pc ≈ 0.593 for a
square lattice), a cluster spans the lattice (and would also span
an infinite lattice). The correlation length ξ (the characteristic
size of clusters) depends on p and diverges at p = pc as ξ ∼
∣

∣p− pc
∣

∣

−ν
, with ν an universal exponent (independent of the

lattice geometry) equal to 4/3 in two dimensions.
In our numerical simulations, the lattices are finite and the

infinite cluster is defined as the largest cluster that connect the
lattice’s boundaries. We call this the the percolation cluster.

At criticality, i.e., at p = pc, the percolation cluster is
self-similar on all length scales (for an infinite lattice). Here
we focus on the backbone of the percolation cluster, defined
as the conducting part (i.e., links of the percolation cluster
carrying non-zero flow rates) of the percolation cluster. The
fractal dimension, walk exponent and conductivity exponent of
the critical infinite percolation cluster and critical backbone are
known [17].Table 1 summarizes these values and compares them
with the values measured for the karstic systems in Tulum. Since
we observe quite different exponents we cannot simply use the

percolation cluster or its backbone directly as a relevant model
for karst networks.

The probability P∞ that a node of a percolation cluster belongs
to the infinite spanning cluster is zero for p < pc and is given
by a power law P∞ ∼ (p − pc)

β close to and above pc, with a
universal exponent β = 5/36 in 2 dimensions. The percolation
model is an archetype model for continuous phase transition.
The probability P∞ is the order parameter that distinguishes the
disconnected phase to the connected phase. At the critical point
p = pc, a collective behavior emerges at all length scales since the
correlation length ξ diverges.

3.2. Proposed Model Using Subnetwork of
Percolation Backbone
Karst networks are structures connecting inlets to outlets to
allow the transport of water in heterogeneous media. Therefore,
percolation theory is a natural starting point to model such of
systems.

We consider networks in a busbar configuration where a
fixed flux is prescribed between two parallel edges (Figure 3).
We equally distribute the imposed total inflow rate between
the nodes connected to the upstream edge. This geometry
is adapted to the study of karst networks around Tulum
since the real networks transport groundwater from inland,
where precipitation is recharging the system, toward the
discharge area (the Caribbean Sea). The overall flux traversing
the system is imposed by the climatic conditions. Thus,
the total water flow rate traversing a karst network is time
varying. We restrict our study to a prescribed fixed flux
representing the average of the total flow rate over the
year. We do not consider a fixed water height constraint.
The sea level is a water head boundary. However, there
is not an upstream structure, such as a lake, that may
constitute a water height constraint for the networks of Tulum.
Thus, we focus on systems experiencing a prescribed fixed
flux.
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FIGURE 3 | Illustration of the busbar geometry. A fixed flux is imposed

between the two edges (represented by the black thick lines).

In the remainder of this work, we always consider the (largest)
percolation cluster that connects the two edges of the busbar
configuration.

The proposed modeling procedure consists of numerically
generating a percolation cluster for a given value of p (greater
or equal to pc). A prescribed flux is imposed on this network
as a boundary condition between the edges of the busbar
configuration. Water flows in the percolation cluster from the
upstream edge to the downstream edge. The magnitude of the
flow is computed by solving numerically Kirchhoff equation
(using the Hagen-Poiseuille equation and a resistance of one for
each link). It is then assumed that the karst network grows along
the links of the percolation cluster that carry the strongest flow
rates and that form a connected network that spans the two edges.
Thus, we study karst networks as subnetworks of backbones of
the percolation clusters.

We take as parameter θ = Qt/Qmax with Qt the imposed
threshold flow rate (i.e., minimal flow rate allowed for a link to
be part of the karst network). Qmax = max〈i,j〉

{

Qij

}

with 〈i, j〉
links of the percolation cluster and Qij the flow rate on the link
〈i, j〉1. The connected network of links carrying a flow rate above
θ and which connect the two edges of the busbar geometry, are
named θ-subnetwork. Examples of θ-subnetworks are illustrated
in Figure 4.

3.3. Properties of θ-Subnetworks
We investigate, through numerical simulations, the properties of
θ-subnetworks for different site occupation probabilities at the
critical point and above. We consider p = 0.593, 0.60, 0.61
and p = 0.62. For each probability, we generate 100

1Indices i and j are labels of two linked nodes.

FIGURE 4 | Illustration of θ-subnetworks extracted from a percolation

cluster of site occupation probability p = 0.60. Notice that the size of

largest loops grow from θ = 10−8 to θ = 0.06 and then reduces.

percolation clusters. From each percolation cluster, we extract2

6 θ-subnetworks taking θ ∈ [0.01, 0.1]. The effective fractal
dimension, conductivity exponent and walk exponent are
computed for each θ-subnetworks. The results of the numerical
experiments are reported in Figure 5. The curves represent
averages of all realizations for a given value of p. The percolation
clusters are generated on a square lattice containing 150 ×

150 nodes. We work with site percolation for computational
convenience. The percolation network is built by creating links
between first nearest neighbors (nodes separated by a maximal
distance equal to the lattice parameters).

Dimensionally speaking, a karst network can be a θ-
subnetwork of a critical backbone, as the fractal dimension of the
backbone is larger than the fractal dimension of observed karst
network (Table 1). However, at criticality, the conductivity and
the walk exponents of θ-subnetworks are, on average, too large
(the curves p = 0.593 in Figure 5). Thus, we have to consider
percolation clusters above the critical probability.

Figure 5A shows that the fractal dimension is a decreasing
function of θ . For a given θ , the fractal dimension of the
generated structures generally increases with the percolation

2The largest θ at which there exists a θ-subnetwork varies between percolation

clusters. Therefore, the interval of θ in which we sample the 6 θ-subnetworks

differs from one percolation cluster to another. We do not sample at fixed θ ’s to

avoid biased results or empty samples. Therefore, we extract 6 values of θ equally

distributed on the interval [0.01, θmax], with θmax being the maximum value of θ

for which a θ-subnetwork exists.
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FIGURE 5 | (A) Fractal dimension df , (B) conductivity exponent µ̃, (C) walk exponent dw, and (D) walk exponent computed using the Einstein relation dEw of

θ-subnetworks of percolation clusters generated using threshold probabilities p = pc = 0.593, p = 0.60, p = 0.61, and p = 0.62. Zones delimited by lines represents

exponents, with the error intervals, of observed karst networks (Table 1). In (C,D) only the upper allowed value of dw is represented by a line.

probability p. Meanwhile, the conductivity exponent (Figure 5B),
for a given df , decreases with the percolation probability p.
The same remarks hold for the walk exponents (Figure 5C).
The behaviors of µ̃ and dw can be understood intuitively by
considering that, as p increases, the number of links of the
percolation clusters increases. Thus, on average, the resistance
of the percolation cluster decreases and hence µ̃ decreases. The
walk exponent dw decreases as p increases, since, at a large scale,
the percolation clusters are statistically more homogeneous (i.e.,
dw → 2).

We notice that for p ≥ 0.61, the θ-subnetworks have a fractal

dimension df ≈ 1.5 and also have conductivity exponent close

to the one observed for the networks of Tulum (Figure 5B).

However, the walk exponents of the generated structures are

slightly higher compared to the one of Tulum’s karst networks

(Figure 5C).

There is no guarantee that the generated structures respect the

Einstein relation. We examine the validity of this relation as a

hallmark since this one is satisfied by the karst networks of Tulum

and for homogeneous fractal structures such as percolation

cluster or the Sierpinski gasket. It is noteworthy that, even if

the relation is not fulfilled exactly with the proposed model,

the behavior of the walk exponent computed via the Einstein
relation dEw = df + µ̃ is similar to the one computed directly by
random walk simulation (Figure 5D) taking into consideration
that the exponents df , dw, and µ̃ are computed using independent
measures. As a further step, we study the deviation from the

FIGURE 6 | Deviation from the Einstein relation. Vertical lines represent

Tulum’s karst networks fractal dimension, given the confidence interval.

Horizontal lines are confidence interval given exponents (df , dw, and µ̃)

computed on Tulum’s karst networks (Table 1).

Einstein relation, i.e., dw − µ̃ − df (Figure 6). The relation is
better satisfied close to pc and for small θ (i.e., large df ). This
is not surprising because critical percolation clusters and their
backbones satisfy the Einstein relation up to the scale of the lattice
size.
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3.4. Remark on Expected Scale Behaviors
of θ-Subnetworks
If we consider θ-subnetworks of percolation clusters above pc,
we lose self-similarity at the large scale. The typical size of
percolation clusters is given by the correlation length ξ ∼
∣

∣p− pc
∣

∣

−ν
. Above and below pc, clusters are self similar up to

the correlation length (ξ correspond to the typical finite size of
finite clusters). Above pc, ξ corresponds also to the size of largest
holes on the infinite spanning cluster. If we consider p > pc, ξ
is reduced and percolation looks more and more homogeneous
(the size of largest holes of infinite spanning cluster are reduced).
However, here we consider only θ-subnetworks which are sparser
structures than backbones. The holes (loops) sizes vary non-
monotonically with θ . Holes size grows with θ until the θ-
subnetwork collapses into a small structure only containing small
loops (Figure 4). Therefore, the correlation length scale ξ of the
substrate (the percolation cluster) is not the correlation length
scale ξθ of its θ-subnetworks. Nonetheless, ξ and ξθ correspond
for small θ , i.e., close to the backbone. This observation aims to
clarify why proper scaling behavior is expected for θ-subnetwork
even above criticality.

4. KARST NETWORKS AND THE
MINIMIZATION OF DISSIPATED ENERGY
AND FORMATION COST

Karst networks are natural systems. Therefore, it is reasonable
to assume that they grow in a manner such that the resulting
structures minimize the dissipation of energy related to the
transport of underground water.

4.1. Definition of the Energy and
Calculation
To investigate whether this assumption holds, we compute the
(rate of) energy E dissipated by the viscous forces on the θ-
subnerworks. Letting Rij be the resistance associated to the link
〈i, j〉 and Qij its flow rate, the dissipated energy (assuming a
laminar flow described by theHagen-Poiseuille equation) is given
by E =

∑

〈i, j〉 RijQ
2
ij (see for example [25]).

The networks generated by our model, whose structures tend
to approach the characteristics of real karst networks, are rather
different than backbones. However, the backbone of a percolation
cluster is the subnetwork that, by maximizing the number of
conducting links, minimizes E. Thus, one could expect karst
networks to develop until they reach a backbone structure.

Our model is static, meaning we work with a steady state
flow and do not allow conduit radii to change over time.
Consequently, we cannot study how a karst evolves from its
early stage to its maturity. What we can do is to compare the θ-
subnetworks with each other to try to understand the structure of
observed karst networks.

Our very first hypothesis is that karst systems develop along
links carrying the strongest flow rates. One can argue that a
strong flow rate is needed to create a link and keep it open.
A limiting process of the physics of dissolution is the mass
transport. When water dissolves limestone, it saturates in calcite

and hence, if there is not a sufficient flux to flush out dissolved
calcite, the dissolution process stops. In this way, to guarantee a
sufficient water pressure gradient along each links, the network
has to concentrate the water flow by limiting the number of
conduits. Hence, we are led to consider θ-subnetworks that
optimize the dissipated energy for a limited size. Therefore, we
make the assumption that karst networks are structures that
minimizes

C =
∑

〈i, j〉

RijQ
2
ij + f (N) (1)

with f (N) a cost function depending on the number of nodes
N of the network. The simplest choice is f (N) = αN with α

a constant. We are interested in how C varies with θ . We set
the constant to be α ≡ Emax/Nmax, with Emax = maxθ

{

E (θ)
}

,
and Nmax = maxθ

{

N (θ)
}

, which has interesting implications.
While α looks arbitrary, it is the ratio of two natural constants
of percolation clusters. The maximum of N is realized for θ →

0 by the backbone, whereas the maximum of E is realized
by the smallest (in terms of number of nodes N) existing θ-
subnetworks which tend to be the shortest path of percolation
clusters connecting the two edges of the busbar geometry.

4.2. Results
Figure 7A illustrates the behavior of the energy terms for θ-
subnetworks extracted from a percolation cluster at p = 0.60.
When θ increases, the dissipated energy E rises, while the cost of
dissolution proportional to N reduces. The overall cost C has a
minimum for θ ≈ 5 · 10−2. When these results are plotted as a
function of df (Figure 7B), one can see that the dissipated energy
E varies abruptly around df ≈ 1.52. The minimum of C is also
obtained with this model for df ≈ 1.52.

To refine the understanding of the links between the structure
and the overall energy dissipated in the system, the minimum of
C is computed as a function of θ for each set of 6 θ-subnetworks
extracted from 400 percolation clusters (100 percolation clusters
for each considered p, we work with the same set of θ

subnetworks we employ for the Figure 5). The average properties
of the structures minimizing C are summarized in Table 2. The
fractal dimensions, conductivity exponents and walk exponents
of the structures that minimize C depend on p. The structures
exhibiting a similar scaling behavior than Tulum’s karst networks
and minimizing C correspond to p = 0.61 (excepted the walk
exponent, which is too high). For p > 0.61, the properties of the
structure of θ-subnetworks deviate significantly from real karst
networks.

4.3. Discussion about the Minimization of C
4.3.1. Analogy with Rivers Networks

In Rodríguez-Iturbe and Rinaldo [14], the authors make a static
model of river networks, the Optimal Channel Network (OCN).
They assume that a river network develops until it minimizes
a functional representing its dissipated energy. The proposed
network model minimizes the dissipated energy, and is shown to
be statistically similar to real river networks. Since real rivers are
not static but rather develop over long time scales, a dynamical
model is needed to asses the evolution of river networks. In
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FIGURE 7 | Behaviors of the dissipated energy E, the number of nodes N and the function C of θ-subnetwork extracted from a percolation cluster of

percolation probability p = 0.60. The curves are plotted with respect to θ (A) and df (B).

TABLE 2 | Exponents of θ-subnetworks minimizing C.

p θ df µ̃ dw dEw = µ̃ + df

0.593 0.050 1.50± 0.04 1.040± 0.029 2.56± 0.02 2.54± 0.05

0.60 0.040 1.53± 0.04 0.992± 0.030 2.53± 0.02 2.52± 0.05

0.61 0.038 1.56± 0.05 0.919± 0.035 2.52± 0.02 2.48± 0.06

0.62 0.035 1.61± 0.05 0.794± 0.039 2.49± 0.02 2.40± 0.07

Banavar et al. [26], a partial differential equation describing the
erosion of an elevation field that represents the landscape is
derived. River networks are the drainage directions over the
elevation field. It is shown that the stationary solutions of the
elevation field equation corresponds to an OCN. The numerical
simulations reveal that the model is characterized by a very
short time scale, called the freezing time, followed by a much
longer time scale, the relaxation time. After the freezing time,
the structure of the river network, i.e., its drainage directions,
does not evolve any more. During the relaxation time, the
elevation field is modified but without changing the drainage
directions until it reaches a stable configuration characterized by
a drainage network dissipating a minimal amount of energy, an
OCN. The fact that the system involves in such a short period
followed by a much longer relaxation time that does not change
network structure provides an explanation to why river networks
of different ages exhibit similar statistical properties. A review
concerning these concepts is provided in Rinaldo et al. [19].

It is temping to assume an analog dynamical scenario for the
description of the development of karst networks: during the
short freezing time period, the structure of a karst system quickly
takes on the observed structure (described by the minimum of
C), and then dissolution widen the conduits over a long period
(the relaxation time).

It results from this discussion that the study of the structure
of young karst systems, in comparison with mature networks,
may support or deny the freezing time hypothesis. However,
young karst networks are generally characterized by conduits of
small apertures and thus are not directly observable. Therefore,

their properties should be studied through dynamical models of
dissolution.

4.3.2. Early Development of Karst Networks

Siemers and Dreybrodt [20] presented a numerical dynamical
model of karst network evolution. The dissolution process is
studied on networks of fractures that are modeled as percolation
clusters above pc. A busbar configuration is assumed and a
prescribed water head difference is imposed between the edges.
The percolation networks were built on a 30 × 30 square lattice.
This model shows that the early development stage (that occurs
under laminar flow), corresponding to widening of the fractures,
determines the structure of the mature karst network. This
initial period is brief compared to the entire evolution of the
network toward its maturity. The authors show that preferentially
dissolved fractures correspond to those forming the pathways
offering the least resistance to the flow. However, for percolation
probabilities p > 0.67, calcite under saturation mechanisms also
play an important role in the selection of preferentially dissolved
fractures3. For percolation probability close to pc, there is a
small number of pathways offering small resistances to the flow,
and these pathways are decisive for the resulting karst network
structure and the details of the under saturation process is not
important.

The model of Siemers and Dreybrodt [20] was designed to
study the development of predominantly vertical karst networks.
The dissolution process acts from the upper edge to the bottom
edge, with the results that the water saturates in calcite while
it enters in the network. However, the networks of Tulum are
extended horizontal structures on which it is expected that
rainfall water contributes to the injection of non saturated
(in calcite) water over the catchment areas. In addition, the
dissolution process of Tulum’s karst networks is also highly

3In Siemers and Dreybrodt [20] a bond percolation model is used to generate the

fracture networks. For bond percolation on a square lattice, the critical probability

is pbc = 0.5, with pb the bond percolation probability. The authors show that the

details about the dissolution of calcite is determining for final network structure

when pb > 0.6 which correspond to p & 0.67 for site percolation.
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determined by the sea water intrusion. Therefore, the analogies
with this model has some limitations.

To conclude, in the work of Siemers and Dreybrodt [20], we
recover the notion of the freezing time which is a short period
at the early development of the networks during which the final
structure of the karst networks is determined. Moreover, for
percolation probability p . 0.67, they show that the pathways
of least resistance (which corresponds in our model to the
θ-subnetworks) determines the network structure. This is an
additional argument that indicates that our proposed model and
global minimization principle are reasonable.

5. CONCLUSION

The model presented here aimed to reproduce the observed
exponents (fractal dimension, conductivity exponent, and walk
exponent) of karst networks of the area of Tulum.We studied the
dissipated energy due to viscosity E and the cost (proportional
to the number of nodes N) associated to the formation of the
structures (θ-subnework) generated by the model.

We showed that for ranges of site occupation probability close
to pc, the generated structures minimizing C = E + αN exhibit
similar scaling behavior to the Tulum karst networks. The precise
value of the constant α determines the minimum of C. Using
physical arguments, we introduced a cost function that prevents
the system from becoming too extended with the aim to keep
the dissolution process active. However, more work is needed to
better define the functional C.

A study of statistical properties of the structure of younger
karst networks, and the set up of a dynamical model of
dissolution adapted to Tulum’s karst networks, could provide
interesting additional information to assess the freezing time
hypothesis, and may ultimately reinforce our approach.

Although, our model reproduced the fractal dimension and
conductivity exponent of karst networks quite well, it failed to
reproduce the walk exponent accurately. Improvement of the
measure of dw, using for example the probability of first-passage
time of random walk, should be considered. The results may
confirm or deny the violation of the Einstein relation by the
generated structures.

Others percolation models such as directed percolation
[27] and percolation with long-range correlation [28] provide
interesting features for karst modeling. A cluster generated
by directed percolation exhibits a spatial anisotropy such as
the one observed looking at the main conduits orientation of

Tulum’s karst networks (see Figure 2). Percolation with long-
range correlations generate spatially correlated clusters in a
similar way as dissolution creates correlated voids in rocks.
However, fractal properties of the generated structures of both
percolation models differ from those of the networks we want to
model.

The multifractal properties of moments of flow rate (current)
distribution is an important research topic for characterizing
random resistor networks [18, 29]. Here we studied flow rate
distributions truncated by the parameter θ . A more detailed
study of their properties could help improve the understanding

of the properties of the θ-subnetworks and constitute a possible
direction for future research.

Finally, our model relies on the fine tuning of the percolation
probability p and on the flow rate threshold θ . However, a
karst network is a natural system and it is expected that it
develops naturally toward the observed self-similar structure in
a generic way (i.e., as a system having a critical point as an
attractor of its dynamics without needing to tune any parameter
in a precise manner). Generic scaling behaviors are features
of self-organized criticality [30] or the Kardar-Parisi-Zhang
equation [31] (among others). In our model, the minimum of
the function C characterizes the attractor because karst networks
are expected to be structures that minimize C. Thus, to avoid
fine tuning, a dynamic stochastic equation for karst networks
that evolves, in a generic way, to the minimum of C should be
considered.
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