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The proper description of time remains a key unsolved problem in science. Newton

conceived of time as absolute and universal which “flows equably without relation to

anything external.” In the nineteenth century, the four-dimensional algebraic structure of

the quaternions developed by Hamilton, inspired him to suggest that he could provide

a unified representation of space and time. With the publishing of Einstein’s theory of

special relativity these ideas then lead to the generally accepted Minkowski spacetime

formulation of 1908. Minkowski, though, rejected the formalism of quaternions suggested

by Hamilton and adopted an approach using four-vectors. The Minkowski framework is

indeed found to provide a versatile formalism for describing the relationship between

space and time in accordance with Einstein’s relativistic principles, but nevertheless fails

to provide more fundamental insights into the nature of time itself. In order to answer this

question we begin by exploring the geometric properties of three-dimensional space

that we model using Clifford geometric algebra, which is found to contain sufficient

complexity to provide a natural description of spacetime. This description using Clifford

algebra is found to provide a natural alternative to the Minkowski formulation as well as

providing new insights into the nature of time. Our main result is that time is the scalar

component of a Clifford space and can be viewed as an intrinsic geometric property of

three-dimensional space without the need for the specific addition of a fourth dimension.

Keywords: time, geometric algebra, quaternions, Minkowski, spacetime

1. INTRODUCTION

Historically, there have been many attempts to understand the nature of time and provide a
rigorous definition. One of the most influential ideas regarding time was published in 1686 by
Sir Isaac Newton, Principia Book 1, “Absolute, true, and mathematical time, of itself, and from
its own nature, flows equably without relation to anything external, . . . ” [1]. Newton’s apparent
conceptualization of a universal and perfect clock is significantly modified by relativity theory,
which finds that the observed rate of clocks depends on relative motion as well as the relative
strength of the gravitational field, between source and observer. So, in order to retain Newton’s
definition, we are required to add the proviso that it applies to an inertial observer in the rest frame
of the system under observation, and to a region of space near the observer so that differential
gravitational fields become negligible. So in this frame of reference, exactly what sort of clock can
we then utilize? One possible candidate is the de Broglie frequency that is assumed to be associated
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with every particle of energy E, which in its own rest frame, is
given by ν = E/h = mc2/h, wherem is the invariant mass of the
particle and h is Planck’s constant1. We would expect observers
throughout the universe observing fundamental particles, such
as electrons, in this way, would all observe the same frequency
and thus provide a universal clock. Observations of distant
cosmic objects appear to confirm that the laws of nature and the
fundamental constants are essentially invariant throughout the
universe, and only some small variations have been claimed [3].

We can also attempt to draw further insight from the
representation of time in the Minkowski spacetime framework
[t, x, y, z], where t is the time coordinate. This formulation
appears to imply that time is a dimension, orthogonal to the other
three space dimensions and so naturally leads to the concept
of time being a fourth dimension. A limitation on the idea of
treating time as a fourth Euclidean-type dimension, though, is
that it does not appear possible, at least in the macroscopic
world, to freely travel in the time dimension as is possible with
space dimensions [4]. Hence, the Minkowski formulation seems
somewhat unhelpful in clarifying this aspect of time [5].

1.1. Algebraic Formulations of time
In order to proceed with our approach, we now wish to
algebraically model three-dimensional physical space.
Unfortunately, it appears, that despite over a 100 years of
intense development there is still no generally accepted algebraic
description of space. That is, distinct approaches are commonly
utilized to model various physical systems such as three-vectors,
four-vectors, matrices, complex numbers, quaternions and
complex spinors, depending on the specific application. This
fact is indeed quite surprising, in that, one of the specific goals
of nineteenth century science was to find the correct algebra for
physical space [6]. The objective was initially led by Hamilton
who produced the quaternion algebra through generalizing the
two-dimensional complex numbers to three dimensions. Indeed,
due to the general success of complex numbers in algebraically
describing the properties of the plane Hamilton reasoned that
quaternions should therefore properly describe the algebra of
three-dimensional space. This then lead to the first attempt at
a rigorous mathematical definition of a unified space and time.
Hamilton wrote the quaternion as

q = t + x1i+ x2j+ x3k, (1)

where t, x1, x2, x3 ∈ ℜ and the three basis vectors are subject to
the well known quaternionic relations i2 = j2 = k2 = ijk = −1.
Hamilton’s quaternions form a four-dimensional associative
normed division algebra over the real numbers represented
by H. Hamilton defined x = x1i + x2j + x3k as a vector
quaternion to take the role of Cartesian vectors in order to
describe spatial vectors, and then also proposed, around 50 years
before Minkowski, that if the scalar “t” was identified with time
then the quaternion can be used as a representation for a unified
four-dimensional spacetime. Hamilton stating “Time is said to

1The de Broglie frequency can also be associated with the Zitterbewegung

frequency predicted by Schrödinger in 1930 and now confirmed

experimentally [2].

have only one dimension, and space to have three dimensions. ...
The mathematical quaternion partakes of both these elements; in
technical language it may be said to be ‘time plus space’, or ‘space
plus time’: and in this sense it has, or at least involves a reference
to, four dimensions” [7]. Indeed squaring the quaternion we find

q2 = t2 − x2 + 2tx (2)

the scalar component t2 − x2 thus producing the invariant
spacetime distance.

Minkowski, after indeed considering the quaternions, but
viewing them as too restrictive for describing spacetime, chose
rather to extend the Gibbs-Heaviside three-vector system with
the addition of a time coordinate to create a four-component
vector producing the modern description of spacetime, as a
four-vector

X = [t, x]. (3)

Defining an involution X̄ = [t,−x] we then produce the
invariant distance

X · X̄ = [t, x] · [t,−x] = t2 − x2, (4)

as required [8].
Comparing these two descriptions we can see that they

provide some significant differences. To begin with, Hamilton’s
description views time as an intrinsic part of the description of
three-dimensional space. On the other hand, with theMinkowski
formulation, the immediate implication is that time is an
additional Euclidean-type dimension. Although this assumption
is qualified by the fact that time contributes an opposite sign
to the metric distance and so distinct from a regular four-
dimensional Cartesian vector. Note that the octonions, being the
generalization of quaternions, have also been considered as an
expanded arena for spacetime [9–12].

It is an historical fact that the vector quaternions were
found difficult to work with and not suitable to describe
Cartesian vectors and were replaced by the Gibbs vector
system in use today [6]. The reason for Hamilton’s failed
attempt to algebraically describe three-dimensional space, is that
by generalizing the complex numbers of the plane to three
dimensions he actually only produced the rotational algebra
for three dimensions. To properly describe three-dimensional
space we further need to generalize the quaternions to include
a true Cartesian vector component [13]. This generalization of
quaternions was in fact achieved by Clifford with the eight-
dimensional Clifford algebra over three dimensions of Cℓ(ℜ3).

2. RESULTS—CLIFFORD’S DESCRIPTION

OF SPACE

A Clifford geometric algebra Cℓ (ℜn) defines an associative real
algebra over n dimensions and in three dimensions Cℓ

(

ℜ3
)

is eight-dimensional [13, 14]. In this case we can adopt the
three quantities e1, e2, e3 for basis vectors that are defined to
anticommute in the same way as Hamilton’s quaternions, but
unlike the quaternions these quantities square to positive one,
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that is e21 = e22 = e23 = 1. Also, similar to quaternions, we
can combine scalars and the various algebraic components into
a single number, called in this case a multivector

X = t+ x1e1+ x2e2+ x3e3+n1e2e3+n2e3e1+n3e1e2+ be1e2e3,
(5)

where t, x1, x2, x3, n1, n2, n3, b ∈ ℜ. Now defining j = e1e2e3 we
find the dual relations je1 = e2e3, je2 = e3e1 and je3 = e1e2,
which allows us to write

X = t + x+ jn+ jb, (6)

with the vectors x = x1e1+x2e2+x3e3 and n = n1e1+n2e2+n3e3.
It can be shown that quaternions are isomorphic to the even

subalgebra of the multivector, with the mapping i ↔ e2e3, j ↔
e1e3, k ↔ e1e2 and the Gibbs vector can be replaced by the vector
component of the multivector. Thus, within Clifford’s system we
can absorb the quaternion as q = t+ jn and a Gibbs vector x into
a unified system [14].

We define Clifford conjugation on a multivector X as

X̄ = t − x− jn+ jb. (7)

We define the amplitude squared of amultivectorX as |X|2 = XX̄
that gives

|X|2 = t2 − x2 + n2 − b2 + 2j
(

tb− x · n
)

(8)

forming a commuting “complex-like”2 number.
Clifford conjugation that produces the multivector amplitude

turns out to be the only viable definition for the metric as it is
the only option that produces a commuting resultant and is thus
an element of the center of the algebra. This is essential as we
require the metric distances to be isotropic in space in order to be
generally consistent with the principles of relativity. Once again
we can observe the required invariant distance t2 − x2 appearing
in the metric.

An important point to note for the multivector, is that in
order to produce a meaningful metric, which consists of a
combination of its various elements, then all of these components
must be measured in the same units, as shown in Equation (8).
Now, beginning from 1983, the General Conference on Weights
and Measures (CGPM) decided that the speed of light should
be assumed constant and that a meter was then the distance
traveled by light in a specified time interval equal to 1/c s [15].
The CGPM defines the speed of light as a universal constant
c = 299, 792, 458 m/s. Hence both time and distance are now
measured in units of seconds, and it is therefore natural to adopt
these units for all components of the multivector. Distances
typically measured in meters therefore appear in the multivector
with the conversion x → x/c and so are in units of seconds.
Interestingly, from the perspective of the multivector, c is simply
taking the role of a units conversion factor, and so therefore the
value of c is obviously invariant between observers. Hence one
confusion regarding time could arise due to the poor selection of

2We refer to this as a complex-like number because the trivector j is commuting

and squares to minus one and all other quantities are real scalars.

units, as in order to properly relate space and time they should be
measured in the same units, as now carried out by CGPM.

The role of the various terms in the metric can be
understood from several perspectives. Geometrically they refer
to the four geometric elements of three-dimensional space
(points, lines, areas and volumes) combined in a natural way
to form an invariant distance. These four geometric elements
described algebraically by the scalar, vectors, bivectors and
trivectors of Clifford geometric algebra. In terms of physical
quantities they are commonly referred to as scalars, vectors,
pseudovectors and pseudoscalars. Now, scalars and vectors are
well understood physically as quantities such as energy and
momentum respectively. Pseudovectors, also called axial vectors,
can be understood physically as rotational quantities, such as
angularmomentum, torque and themagnetic field. Pseudoscalars
are less commonly understood and describe the nature of
magnetic monopoles or helical motion.

The multivector generalization of the quaternions now allows
a full algebraic description of three-dimensional space, as
the scalar, vector, bivectors and trivectors components now
correspond directly with the geometrical quantities of points,
lines, areas and volumes found in three dimensions. Additionally
these four quantities describe the range of physical quantities
described as scalars, vectors, pseudovectors (or axial vectors)
and pseudoscalars [13]. Now, similar to quaternions, as we also
identify time as the scalar part of space, time is now imputed the
geometrical meaning and topology of a scalar point-like quantity.
This can be contrasted with the linear description of space as
vectors implied by Minkowski and so we can see now a sharp
geometrical distinction between space and time when described
within the multivector. We now wish to show briefly that the
multivector provides a viable formalism to describe both classical
and relativistic dynamics from which a definition of time can
then arise.

2.1. Classical and Relativistic Mechanics
The amplitude of amultivector defined in Equation (8) effectively
defines distances in the Clifford representation of space. Hence,
we can define the action in the conventional manner between two
spacetime locations, represented by multivectors, as

S =

∫

|dX|. (9)

Now, if we ignore the imaginary like components, for simplicity,
we have

|dX|2 =
(

ṫ2 − ẋ2 + ṅ2 − ḃ2
)

dτ 2, (10)

where we define ṫ = dt
dτ
, ẋ = dx

dτ
, ṅ = dn

dτ
and ḃ = db

dτ
. The

symbol τ is a scalar that can be identified with the scalar time t
when the other variations within the multivector are zero, that
is the time in the rest frame of the particle, commonly referred
to as the proper time. Hence we can see that no external time
parameter is required in this approach as time arises from within
the spacetime multivector itself and with the assumption of a rest
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frame a suitable evolution parameter can be identified. If we write

the action S =
∫

|dX|
dτ

dτ then this implies a Lagrangian

L =
|dX|

dτ
=

√

ṫ2 − ẋ2 + ṅ2 − ḃ2 = 1, (11)

where we now extremize the action S =
∫

Ldτ .

As we have no explicit coordinate dependence, ∂L
∂ ṫ
, ∂L

∂ ẋ ,
∂L
∂ ṅ

and ∂L

∂ ḃ
are constants of the motion. Using the Euler-Lagrange

equation for t

d

dτ

∂L

∂ ṫ
−

∂L

∂t
= 0 (12)

thus giving the conserved quantity

∂L

∂ ṫ
= L

−1 ṫ = E. (13)

We have written the conserved quantity as the dimensionless
scalar E as we expect it to relate to energy by Noether’s
theorem [16]. Indeed, because ṫ = dt/dτ = γ and L

−1 = 1, we
find E = γ , which is the conventional relativistic energy relation
for a unit mass. That is, inserting the speed of light factor and an
invariant scalar mass factor we find E = γmc2 for the energy, as
required. Also, using the Euler-Lagrange equation for x we find
the conserved quantity

∂L

∂ ẋ
= L

−1ẋ = p. (14)

Thus the second conserved quantity is the momentum per

unit mass p = γ v, where v = dx
dt
. The bivector and

trivector components will relate to the conservation of angular
momentum and spin. That is, we will produce the conserved
quantities ℓ = γw, where w = dn

dt
and s = γ db

dt
. Hence physical

space defined using the multivector in Cℓ(ℜ3), with the metric
defined by Equation (8), forms a spacetime naturally producing
the four conventional conservation laws for motion.

For completeness we note that transforming the multivector
as X′ = AXB where A,B ∈ Cℓ(ℜ3) will leave the metric distance
defined in Equation (8) unchanged, and so this transformation
defines the Lorentz transformations. Due to the higher eight-
dimensional nature of spacetime that we have assumed using
the multivector these will obviously form a generalization of the
conventional Lorentz transformations. Note though that in the
special case of four-dimensional spacetime events we reproduce
the conventional six-dimensional Lorentz group.

The first two components of the multivector ṫ + ẋ =

(E + p)/m can be identified as the four-momentum per unit
mass. The third and fourth components jṅ + jḃ has the
transformational properties of four-spin. Hence for a general
particle with momentum and spin we produced a unified
description. Hence the metric in Equation (8) provides an
invariant distance combining these twomeasures. This particular
distance measure has the critical properties of producing the
expected Minkowski spacetime distance as well producing a
commuting value and being one of the simplest possible.

Because it is commuting, all observers agree on this measure,
assuming the bilinear tranformation between inertial observers.
Interestingly this invariant distance, in general, has an imaginary
component, and represents a further conserved quantity between
observers.

Note that we have assumed a rest frame for the particle, so
that we could form the proper time τ as an evolution parameter.
However this is not always possible for particles such as photons
for example, and so we need to consider time somewhat more
generally than the scalar component alone. That is, we need
to look more broadly at the full multivector in order to more
completely define time.

3. DISCUSSION

In order to aid our intuition, we can use a rubber sheet analogy
to give a geometrical picture of the multivector and hence a more
tangible understanding of space and time. The scalar component
t can represent the expansion or contraction of the sheet at each
point, the displacement x the linear distortion within the sheet,
the bivector jn the planar twist and the trivector jb the three-
dimensional torsion of the sheet. It is interesting that the scalar
can refer to the expansion of the rubber sheet, and so can form a
correspondence with cosmic time measured with the expansion
of the universe. This identification of time with expansion is also
consistent with Newton’s concept of the non-directional flow of
time with space expanding uniformly in all directions.

The Clifford multivector description of spacetime views time
and space as simply two particular geometrical properties that we
abstract from three-dimensional space with the scalar component
representing time. Note that this definition of time as the
scalar element implies that time can be applied to the general
space Cℓ(ℜ3) of general dimension n. It is also natural to ask
then regarding the other two geometrical components of the
multivector, that of bivectors and trivectors. These of course
we refer to commonly as area and volume but also refer to
physical quantities having the attributes of pseudovectors and
pseudoscalars, respectively. Inspecting the metric in Equation (8)
we can see that the bivector component also provides the correct
signature for the time component as well as the scalar component
that we initially selected, giving the modified metric for the
spacetime interval of (dt2 + dn2)− dx2, ignoring for the present
discussion the other contributions to the metric. This appears
to indicate that the whole quaternion T = t + jn should
therefore be used to represent the property of time. This makes
sense as it then unifies the two key aspects of time that we
have identified that of the reversible rotational part jn and the
irreversible expanding part as the scalar t. If this line of thinking
is adopted then time becomes a four-dimensional quaternionic
quantity. Indeed multi-time theories of spacetime have already
been investigated [17–22]. As an intriguing side-note, Hamilton
specifically referred to the quaternionic algebra he developed as
the “algebra of pure time” [23].

Time is actually closely linked with rotation. For example,
Kepler’s second law states that for gravitationally bound orbits,
or indeed any central force field, that a satellite’s position vector
will trace out ‘equal areas in equal times’ or dA = kdt, where
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k is some constant. This relation can thus be inverted to define
a precise and steady clock dt = (1/k)dA and a definition of
time consistent with a bivector. This heuristic picture using
Kepler’s laws is not meant to be precise, however, it does show
a connection between time and rotation. More specifically we
know that bivectors generate rotations in a Clifford space and
indeed the unit quaternions are commonly used to describe
rotations in three dimensional space.

The fourth and final geometrical component of physical space
is the trivector jb that describes the torsion of physical space or
helical motion of particles typified, for example, by a circularly
polarized photon. It should be noted though that this term has a
space-like contribution to themetric and so we would not include
it as an aspect of time.

An important implication of the metric distance
in spacetime being defined by Equation (8) is that by
measuring distance exclusively based on the scalar and
vector contributions to the metric distance, as is typically done,
we are not calculating distances and times in a fully invariant
manner.

The Clifford algebra Cℓ(ℜ3) has several subalgebras including
the real scalar, the quaternions t + jn as well as the complex
numbers t + jb. Also, while not closed, the spaces t + x describe
conventional spacetime while jn + jb can describe four-spin.
Typically the energy and momentum of massive particle is
represented by the four-vector [E, p]. However, this obviously
ignores the spin-angular momentum attributes of fundamental
particles represented as jl + js. Hence it is natural to combine
these description into a full momentum multivector as P =

E + p + jl + js = mdX/dτ , where m is the invariant mass and
using the space multivector X defined in Equation (6). Also note
that E+ jB can describe the electromagnetic field.

4. CONUNDRUMS REGARDING TIME

1. Time is generally considered as being an ineffable concept
essentially invisible to the senses—in comparison, space
appears much more tangible and visualizable.

This distinction between time and space, can perhaps
be traced back to their distinct topological natures as a
point-like and line-like quantities respectively that we
have identified. A true point, by definition, is invisible to
observation.

2. Why it is possible to freely move in space but not in time?

The Minkowski formulation, in which time and space are
combined within a four-vector, leads one to think that we should
be able to move in the time dimension as freely as we move in
the space dimension. Now, if we take a coffee cup as an example,
then clearly we can indeed move it in a certain direction and
then easily reverse this translation by moving it back again to
its starting point. For rotating the cup it appears that we can
do the same, however, if we consider time as related to the
microscopic rotations at the fundamental particle level and all the
spin axes are randomly aligned then it is not possible to reverse all
these microscopic spin directions simultaneously. This is distinct

from the space direction due to the molecular bonding of the
atoms where it is indeed possible to reverse the spatial movement
of each constituent particle simultaneously. However, when we
move to the level of fundamental particles the rotational nature
of time allows fundamental particles to move backwards in time
if they invert their rotation, as in the CPT symmetry.

3. Why we tend to perceive an arrow of time?

If we describe time by the quaternion T = t + jn, then we can
produce both a irreversible (scalar) and a reversible (bivector)
aspect to time.

5. CONCLUSION

We began from the premise that the eight-dimensional Clifford
geometric algebra Cℓ(ℜ3) provides an appropriate algebraic
description of three-dimensional physical space. The multivector
naturally describes algebraically the four geometric elements of
three-dimensional space, that of points, lines, areas and volumes,
as shown in Equation (6). These four quantities also describe the
physical quantities referred to as scalar, vectors, pseudovectors
and pseudoscalars and found to be a natural language to describe
physical theories in three dimensions [24, 25]. We thus consider
that the four geometrical quantities of physical space are the
fundamental basis upon which we abstract such local concepts as
time and space [26, 27]. When we represent spacetime with the
Clifford multivector, in order to be consistent with Minkowski
spacetime we find that time needs to be identified with the
scalar component and space with the vector component of the
multivector. This thus gives a view of time as the geometric
point-like quantities of space. With vectors describing space,
we thus now have a geometrical union of time and space as
the points and lines, respectively. Thus the correct topology of
time can be proposed as a point-like entity that is distinct from
the Minkowski formulation that implies a linear topology [28].
Also, using the rubber sheet analogy we noted that the scalar
can represent an expansion of the sheet and so nicely correlated
with cosmic time as defined by an expanding universe. This
idea of time represented by expansion also neatly ties in with
the Newtonian idea of the non-directional flow of time and the
principle of entropy. We also wish to note that the bivectors
are also time-like and so could be included as an additional
description of time. Thus time would effectively become a four-
dimensional quaternionic quantity, combining both scalar and
bivector components. This idea could be further explored as it
may enable us to unify two different attributes of time, with the
scalar attribute representing the irreversible expansional aspect of
time and the bivector the reversible rotational attribute of time,
respectively.

So “what is time?” We conclude that it is simply one
of the properties that we abstract from the geometry of the
three-dimensional space, primarily the geometrical point-like
quantities as well as the areal bivector quantities.

We conclude that the Minkowski representation of spacetime,
which rejected the quaternions in favor of the four-vector
formalism, was a move away from the more natural geometrical
description of time using Clifford algebra Cℓ(ℜ3).
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Ultimately the full union of time and space needs to include
all the geometric elements of point-like, linear, areal and volume
elements and so implies that a four-vector is insufficient, but that
we require an eight-dimensional spacetime event multivector,
incorporating the scalar, linear, rotational and the torsional
aspects of space, as shown in Equation (6). In addition to
the scalar and vector components of the multivector being
labeled as time and space respectively, we propose that the
additional bivector time-like component and the trivector space-
like component should also be properly identified and labeled.
The fact that these additional components within spacetime
are generally ignored could help explain some of our current
difficulties in properly understanding time.

In conclusion, if we assume that the correct algebraic
representation of physical space is given by Clifford geometric
algebra, then the Minkowski metric implies that time is the scalar
aspect of this space, represented geometrically as points. This

then implies a Lagrangian leading to relativistic mechanics and
by extension the other main laws of physics and is hence a
meaningful and consistent description of time.
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