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Understanding the structure of a scattered electromagnetic (EM) field is critical to

improving the imaging process. Mechanisms such as diffraction, scattering, and

interference affect an image, limiting the resolution, and potentially introducing artifacts.

Simulation and visualization of scattered fields thus plays an important role in imaging

science. However, EM fields are high-dimensional, making them time-consuming to

simulate, and difficult to visualize. In this paper, we present a framework for interactively

computing and visualizing EM fields scattered by micro and nano-particles. Our software

uses graphics hardware for evaluating the field both inside and outside of these particles.

We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional

structure of the field, spectral profiles at individual points, the structure of the field at the

surface of the particle, and the resulting image produced by an optical system.

Keywords: mid-infrared, FTIR, QCL, imaging, scattering, Mie, GPU, Monte-Carlo

1. INTRODUCTION

Particle interactions within an incident electromagnetic (EM) field are difficult to simulate and
visualize because the result is inherently high-dimensional. EM radiation is generally represented
using a complex vector field in three spatial dimensions. When the incident light consists of
broadband radiation, each wavelength λ interacts with materials in a unique way. Studying the
behavior of EM fields generates a time-dependent component, as the user changes properties of
the particles or incident light in order to study these effects on the scattered field. Accounting
for all of these factors requires a five-dimensional (5D) simulation in (x, y, z, λ, t), which is both
computationally expensive and requires a prohibitive amount of memory.

In this paper, we propose software for interactive simulation of broadbandMie scattering in EM
fields.We describe amathematical model based onMie theory that allows efficient evaluation of the
scattered field using hardware and algorithms that support highly parallel computation. The high-
dimensional nature of the simulation is constrained by user-specified visualization parameters.
By taking advantage of GPU-based computation, we allow the user to interactively adjust these
parameters to perform the simulation in real-time. This has several advantages over traditional
simulation of the complete 5D forward model.

1.1. Applications
Mie theory plays an important role in describing the propagation of EM radiation by providing
a rigorous solution to Maxwell’s Equations for a spherical scatterer. This theory has been used
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to characterize absorption in atmospheric simulations [1], and
to approximate cellular structures in spectroscopic imaging of
biological tissues [2]. There is also interest in using micro and
nanospheres, such as quantum dots, to improve sensing in
biomedicine [3]. Generalized Mie theory [4, 5] has been used in
plasmonics applications to understand the near-filed response of
nanoparticle aggregates to circularly polarized light [6, 7].

Mie theory is often used as a first-order approximation for
scattering by general particles [8]. Of particular interest is the
problem of inverse scattering in samples composed of particulate
or spherical components. We have recently demonstrated
a method for computing the refractive indices of spheres
composed of polymers measured using mid-infrared point
spectroscopy [9]. However, these nonlinear solutions require
iterative computation of the forward model. Since Mie theory
is computationally expensive, this solution becomes impractical
for multidimensional spectroscopic images. In particular, a fast
forward model is necessary for iterative calculations of inverse
solutions [9], characterization of imaging systems with multiple
interacting optical components [10], and iterative fitting of large
numbers of particles [11].

1.2. Previous Work
Several applications have been developed for computing spectra
based on the scattering properties of spheres. Algorithms
like MiePlot [12] provide plotting functions for scattering
amplitude as a function of wavelength, particle size, and material
properties. In addition, many plotting algorithms are available
for creating Mie scattering plots for specific cases such as coated
[13] and multi-layered spheres in shaped beams [14]. Finite
element methods are generally used for non-spherical particles
[15], while general solutions are known for fibers [16, 17].
These computational methods are often based on the BHMIE
method proposed by Bohren and Huffman [8]. Open-source
implementations are also available [18].

However, the available tools focus on creating plots that
characterize scattering in highly specific cases, which include
incident plane waves or fields focused on the sphere. These
cases generally allow for a closed-form analytical solution for the
scattered field. We have found no interactive tools for exploring
the multidimensional scattered field produced by spheres. This is
primarily due to (a) the computational complexity of evaluating
a scattered field, (b) the large amount of memory required to
store a pre-computed field, and (c) a lack of visualizationmethods
available for exploring simulation results.

Recent methods have been proposed for creating a general
framework for simulating scattering in microspectroscopy [16,
19], with the goal of correcting artifacts. These methods evaluate
cross-sections of the EM field near the sample. However, these
techniques are currently very time-consuming and focus only on
the evaluation of scattering through planar substrates.

Figure 1 shows an example of a polar scattering plot and
a near-filed image produced by existing applications. While
useful for understanding some Mie scattering properties in
specific cases, 2-D scattering plots alone are not sufficient for
understanding the multidimensional structure of a scattered
EM field. Furthermore, the computational time required by

MiePlot [12], for computing scattering plots based on Mie
theory (Figure 1A), increases proportionally to the radius of
the sphere. The T-matrix software [20] requires 15 s for a full
CPU evaluation of scattered fields (600 × 600 slice resolution)
at a single wavelength for a sphere positioned at the focal point
(Figure 1B).

2. MATERIALS AND METHODS

We simulate an optical system similar to those used in most
microscopes. The incident light is emitted from a source with
an intensity spectrum given by I0(k), where k = 2π

λ
is the

wavenumber.
Our simulation focuses on the scattering effects of spheres

specified by a radius a and a complex refractive index n(k) =
η(k)+ iκ(k). Here, the real part, η(k), denotes the refractive index
and indicates the phase velocity, while the imaginary part, κ(k),
quantifies absorption. The total field resulting from scattering by
a single sphere is given by:

E(r, θ) =
{

Ei(r, θ), if r < a

Ef (r, θ)+ Es(r, θ), otherwise
(1)

where Ef is the incident field produced by the light source and
focusing optics, Es is the scattered field, Ei is the field inside of
the sphere, (r, θ) are the spherical coordinates of each point in the
field, and a is the radius of the sphere. The internal and external
fields are equal at the sphere surface: Ei(r, θ) = Ef (r, θ)+Es(r, θ)
for r = a.

2.1. Calculation of the Focused Incident
Field (Ef )
The vector formulation for the electric field is given by

Ef (k, r) = E0e
ik⊤r (2)

subject to the constraint that E0
⊤k = 0. Here, E0 is a vector

providing the amplitude and polarization direction of the field, k
is a vector representing the direction of the incident plane wave,
and r = (x, y, z)⊤ is the position vector.

2.1.1. Scalar Model
The focused field is represented using a superposition of plane
waves:

Ef (r) = E0

J
∑

j= 1

Ef (kj, r) = E0

J
∑

j= 1

eikj
⊤r (3)

We implement Debye focusing [21, 22] by first applying the
partial wave expansion of the plane wave to obtain

eik
⊤r =

∞
∑

l= 0

(2l+ 1)iljl(kr)Pl(cos θ) , (4)

where l is the order of the incident field, jl(·) is an order-l spherical
Bessel function of the first kind, Pl(·) is an order-l Legendre
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FIGURE 1 | Examples of Mie scattering functionality provided from available tools. (A) Polar plot of scattered intensity vs. scattering angle (λ = 1 µm, sphere

radius = 1 µm) created using MiePlot [12]. (B) Scattered field produced by a PMMA sphere (radius = 1 µm, λ = 1 µm ) positioned at the focal point. Image was

created using a Python-based GUI for the parallel Multi-Sphere T-Matrix software [20].

polynomial, and k = ||k|| is the wavenumber. We use the j
subscript to indicate the field produced by a single propagating
plane wave kj. We also assume that the incident light is coherent,
therefore ||kj|| = k for all j ∈ J.

Using the addition theorem of the spherical harmonics [23] it
is possible to write the sum of the plane waves as the following
integral

Ef(p) = 2πE0

∞
∑

l= 0

(2l+ 1)iljl(kr)Pl(cos θ)

∫ α2

α1

Pl(cos θk) sin(θk)dθk (5)

where α1 and α2 indicate the angles subtended by the objective
(Figure 2), θk is the angle between the unit position vector and
the propagation direction of the incident plane wave: cos θk =
k⊤r

||k||||r|| , and p = (r, θ). For a lens, α1 = 0 and α2 = sin−1(NA). In

the case of a cassegrain mirror, which is commonly used for mid-
infrared spectroscopic measurements, the inner angle α1 will be
the angle subtended by the central obscuration. If α1 and α2 are
known, the incident field can be computed using a closed-form
solution:

Ef (p) = 2πE0

∞
∑

l= 0

iljl(kr)Pl(cos θ)cl , (6)

where cl = [Pl+1(cosα1) − Pl+1(cosα2) − Pl−1(cosα1) +
Pl−1(cosα2)]. The solution to Equation (6) for various optical
parameters produces the point spread function (PSF) shown in
Figure 2.

2.2. Calculation of the Scattered and
Internal Fields (Es and Ei)
The scattered field for a single incident plane-wave k produced
by a sphere with radius a positioned at the focal point pf is

given by:

Es(p) =
∞
∑

l= 0

Bl(λ, n, a)h
(1)
l
(kr)Pl(cos θ) (7)

where h
(1)
l
(x) is the order-l spherical Hankel function [8]. The

coefficients B that couple the internal and external scattered fields
are given by:

B(λ, n, a) = (2l+ 1)il
jl(ka)j

′
l
(kna)n− jl(kna)j

′
l
(k)

jl(kna)h
(1)′
l

(ka)− h
(1)
l
(ka)j′

l
(kna)n

(8)

where j′
l
(x) is the first derivative of the spherical Bessel function

of the first kind and h
(1)′
l

(x) is the first derivative of the spherical
Hankel function. These are derived by enforcing the appropriate
boundary conditions [23].

Computing the scattered field for a condenser of NAc > 0
requires integrating the scattered field equation across the solid
angle subtended by the condenser lens. Since the only term in
Equation (7) dependent on the light direction is the Legendre
polynomial Pl(cosθ), this solution can be found analytically.
However, this is only valid for spheres centered at pf . For more
generally positioned objects, each plane wave must be shifted by
an additional phase term in the form of a complex exponential.
The need for this phase shift is demonstrated in Figure 3B. A
change in sphere position parallel to the direction of propagation
of the plane wave will result in a phase delay. Applying this phase
shift results in the final scattering equation:

Es(p) = eik
⊤c

∞
∑

l= 0

Bl(λ, n, a)h
(1)
l
(kr)Pl(cos θ) , (9)

where c = ps − pf is the vector from the focal point pf to the
center of the sphere ps.
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FIGURE 2 | Constructive interference at the focal point f results in a high-intensity point spread function (PSF). The magnitude of the field resulting from

Equation (6) is shown for a transparent lens (top) and a Schwarzschild objective (bottom). Note that increasing the size of the center obscuration creates a PSF with

the characteristic features of a Bessel beam.

FIGURE 3 | Reference points for scattering through a sphere. (A) The terms used in the scattering definitions are graphically defined. (B) A phase shift is

included in the scattering equations for spheres that are not located at the focal point pf. The purple line gives the advancing wave-front for a plane wave. Note that

the green sphere will not require a phase shift, but the red sphere will require a shift equal to eik
⊤x .

The internal field, specifying the field inside of a sphere, for an
incident plane wave k is given by:

Ei(p) = eik
⊤c

∞
∑

l= 0

Al(λ, n, a)jl(knr)Pl(cos θ) (10)

with the scattering coefficients

A(λ, n, a) = (2l+ 1)il
jl(ka)h

(1)′

l
(ka)− j′

l
(ka)h

(1)
l
(ka)

jl(kna)h
(1)′
l

(ka)− h
(1)
l
(ka)j′

l
(kna)n

(11)

Note that these equations have no known closed-form integrals.
Therefore, the scattered field produced by a focused beam must
be computed numerically.

3. DISCUSSION

Using the proposed formulation (Equations 6, 9, and 10),
we demonstrate interactive performance by minimizing the
amount of computation and taking advantage of GPU-based

Frontiers in Physics | www.frontiersin.org 4 February 2017 | Volume 5 | Article 5

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Berisha et al. BIM-Sim

hardware. GPU-based methods provide an inexpensive means of
high-performance computing by taking advantage of parallelism
and efficient allocation of resources. We are able to achieve
interactive performance by minimizing the computational load
and limiting the simulation domain to regions visualized by the
user. In addition, fast evaluation is useful in situations where
iterative evaluation of the forward model is required to solve an
inverse problem [9, 11].

3.1. Focused Field
Note that the focused field Ef (Equation 6) depends only on
position, wavelength λ, and the condenser NAc. We first describe
a concise representation of the focused field that allows fast
evaluation of Ef as a function of position. We then show that
this representation can be constructed quickly, thereby allowing
interactive selection of the wavelength and condenser NA.

3.1.1. Representation
We compute and store the field by taking advantage of the
symmetry provided using a spherical condenser. In this case, the
condenser aperture subtends a circular solid angle that results in
a circularly-symmetric incident field centered on the focal point.
Note that this formulation is equally valid for a cassegrain with a
central obscuration.

Because of this symmetry, the incident field between the
condenser and objective can be reconstructed from a single cross-
section of the cylindrical volume (Figure 4). This cross-section
is stored as a two-dimensional (R x R) 32-bit floating-point
array mapped to a 2-channel GPU-based texture. This texture is
referenced in terms of cylindrical coordinates p ∈ [u v] with the
origin located at pf . In addition, it is only necessary to store 1

4 of
this cross-section by taking advantage of the symmetry along the
cylinder axis v. Note that direct mirroring of the slice results in a
phase shift that is corrected by swapping the sign of the imaginary
component for v < 0 (Figures 4B,C).

This representation has two major advantages. First of all,
hardware-accelerated texture units provide linear interpolation
between samples. This reduces the array resolution required
to build an accurate approximation of the incident field. Since
the simulation domain and resolution are user-specified, the

accuracy of the simulation is tightly controlled by defining the
desired array resolution R.

Secondly, GPU-based texture maps provide spatially coherent
caching, which allows a block of processors to acquire values of
Ef using a single fetch. Computing Ef at any point in the field

then requires at most a single texture fetch, and on average 1
N ,

where N is the GPU warp size (32 on an nVidia GeForce GTX
970). In addition, these texture fetches are performed in parallel
to additional computation on newer systems.

3.1.2. Computation
The focused field is evaluated using a GPU-based kernel
developed in CUDA. The Legendre polynomials dependent
on condenser angle α are constant for all points in Ef , and
are therefore pre-computed. The second Legendre polynomial,
Pl(cosθ), depends on position and is computed independently for
each point using a recursive definition, requiring only 4 floating
point operations for each order l =[0 Nl], where Nl is the
maximum order of the field (Equation 12).

The final component of Ef is the spherical Bessel function
jl(kr). These functions are time-consuming to compute.
However, the only dependence is distance from the focal point
pf . Since the simulation domain is specified by the user, the
parameter-space is one-dimensional and constrained by the
user-specified simulation domain and resolution. These values
are readily pre-computed and stored in an Nl x R table accessed
as a 1D 2-channel texture, where R is the domain resolution
(specified above). This insures at least one sample per pixel.

In conclusion, we show that a high-order representation of the
entire field can be pre-computed and stored efficiently when the
user makes a change to the condenser NA or incident wavelength.
Since the focused field is independent of downstream properties,
such as the position and material of particles, the value of Ef is
determined at any point using a single texture fetch.

3.2. Scattered Field
The implicit functions for the internal field and external scattered
field produced by a sphere are given in Equations (9) and (10).
The scattered and internal fields are only rotationally symmetric

FIGURE 4 | The use of spherical optics to focus the incident light results in a circularly-symmetric incident field Ef . (A) A single slice of the incident field is

evaluated and stored as a texture map. Any slice through the incident field is computed by interpolating values in this texture using the cylindrical coordinates (u, v).

(B,C) Note that extrapolation across the v = 0 plane requires switching the sign of the imaginary component of Ef .
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when the position of the sphere is at the focal point (ps = pf )
or when the incident light is represented by a single plane wave
(Es = E0s ). This is due to the phase shift introduced by moving
a sphere relative to pf (Figure 3). We utilize the symmetry in the
plane-wave solution to represent a particle’s scattering properties
in 2D. This image is computed and re-sampled using Monte-
Carlo integration to estimate the internal and scattered fields
produced by a particle positioned at any point in the near-field.

3.2.1. Evaluation for a Single Plane Wave
The internal and scattered fields are separated into four
components:

• the scattering coefficients given by B and A

• a propagation function given by h
(1)
l

in Es (or jl in Ei)
• the Legendre polynomial Pl(cos θ)
• the phase shift exponential dependent on the light direction

and sphere position.

The scattering coefficients are independent of position and
therefore constant for any wavelength λ and material m.
These values are therefore pre-computed for each scatterer.
This dramatically improves performance, since each scattering
coefficient (Equations 8, 11) requires computing multiple
complex-valued Bessel functions and their derivatives.

The attenuation functions h
(1)
l
(kr) and jl(knr) are dependent

on distance from the sphere center. Like the propagation function
for the focused field (jl in Equation 6), both of these parameters
are 1D and bounded by R. Therefore, these functions are pre-
computed for a range of distance values. The Hankel function
in Es is independent of any material properties, and is stored
with jl(kr) for the focused field Ef (Section 3.1). Since the Hankel
function can be expressed as a linear combination of Bessel
functions of the first (jl(kr)) and second kind (yl(kr)), both jl(kr)
and yl(kr) are stored in separate channels of the same texture,
allowing both attenuation functions for Ef and Es to be evaluated
using a single texture fetch.

The Bessel function used to compute the internal field,
however, is dependent on the index of refraction n(k) of the
particle. Therefore, this table is stored for each sphere. The
parameter range is significantly smaller, requiring only values
d < a, where a is the radius of the sphere. As with the focused
field, the Legendre polynomials are computed recursively.

These methods are used to compute the scattering domain
(Figure 5) for a sphere. This a 2D representation of E0s and E0i
as a function of d ∈

[

0 FOV
2

]

and cos(θ) ∈ [−1 1]. The accuracy
of the simulation is controlled by R × Rθ , where R is the spatial
resolution of the field slice and Rθ is the angular resolution of the
scattered field emanating from the sphere surface both inward
and outward. The required Rθ is directly dependent on the
highest order Legendre polynomial, which has l−1 oscillations in
the domain of cos(θ). Unlike Ef , the internal and scattered fields
are scaled by the scattering coefficients B and A, which quickly
converge to zero with increasing values of l. The maximum order
Nl required for convergence is given by Bohren and Huffman [8]:

Nl =
⌈

2πa

λ
+ 4

3

√

2πa

λ
+ 2

⌉

(12)

FIGURE 5 | (A) The pre-computed scattering domain E0s for a sphere is a 2D

function dependent on the position of a point p in terms of its distance from

the sphere center, d, and orientation relative to an incoming plane wave. Color

represents field magnitude. (B) Surfaces in the near field are shown mapped to

the scattering domain. Values where d < r (orange) use the separate E0
i

domain. Monte-Carlo samples are always collected along the y = cosθ

direction near the curve, within a range of ± cosα as specified by the vertical

bars.

Application of Nyquist sampling implies that Rθ ≥ 2Nl is
required to capture all of the oscillations, while greater values
increase accuracy for points far from the sphere. Our simulations
use Rθ = 1000.

3.2.2. Monte-Carlo Integration
The solutions for Ei and Es are determined using Monte-
Carlo integration based on a uniform distribution of sample
points within the solid angle α defined by NAc. The source
points for plane waves are determined using a stratified uniform
distribution projected onto the unit sphere based on Archimedes’
principle [24]. A uniform distribution of points is computed in
cylindrical coordinates in the range φ =[0 2π], z =[cosα 1]
using jittered stratified sampling [25] and projected inward onto
the unit sphere (Figure 6).

The scattered and internal fields produced by a particle are
approximated by:

Es ≈
2πE0((1− cosα2)− (1− cosα1))

M

M
∑

j= 1

Es(p, kj)

Ei ≈
2πE0((1− cosα2)− (1− cosα1))

M

M
∑

j= 1

Ei(p, kj) ,

(13)

where M is the number of Monte-Carlo samples, kj is a single
plane-wave direction given by a random sample, andEs,Ei are the
equations for a scattered and internal field produced by a single
plane wave (Equations 9, 10).

3.3. Surface Fields
The scattered field at the sphere surface is an important
characteristic, and often the subject of simulations using Mie
theory. In addition, both the internal and external fields are
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identical at this interface. This is generally referred to as the
scattering efficiency, and is often represented as a graph plot,
given as a function of θ . However, it is difficult to characterize
the scattering efficiency for a sphere when ps 6= pf , since this
introduces an additional φ-dependence that is time-consuming
to simulate and difficult to visualize using a 1D plot.

We visualize the field using a geometric surface. This
technique is similar to those applied to other spherical functions
in bio-medical imaging [26], such as diffusion-tensor MRI [27],
and provides a unique insight into the structure of the scattered
field. This allows the user to explore the scattering efficiency
of a particle in three-dimensions as a function of material
and position (Figure 9) and validate the effectiveness of MC
integration (Figure 7).

3.4. Simulated Imaging
The final step in the imaging process is to determine the field at
the detector and produce an image. The field is focused onto a
detector to produce an image of the objective focal plane. Note

that the image plane contains the focal point of the objective
lens, po.

3.4.1. Objective and Detector
According to the principles of Fourier optics, the objective
aperture blocks high- and low-frequency components of the
image plane given by the upper and lower cutoff frequencies:
fu = NAo

λ
, fl = NAin

λ
.

The resulting image is produced by evaluating a slice f (x, y)
of the field at po. The user specifies the field-of-view (FOV)
S, and field resolution R. We then perform a forward Fourier
Transform (FT) of the field slice, resulting in a frequency-domain
representation F(u, v) = F[f (x, y)]. Frequency components
above the cutoff frequency fu and below the cutoff frequency fl
are eliminated. The field at the detector is therefore f̂ (x, y) =
F

−1[F(u, v)Ap(u, v)], where the aperture function is given by

Ap(u, v) =
{

0, if
√

(u1u)2 + (v1v)2 > fu or < fl

1, otherwise
(14)

FIGURE 6 | Monte-Carlo sampling of the solid angle α defined by the condenser NAc. (A) The internal and scattered fields (Ei and Es) are determined by

integrating the results based on plane waves originating at points uniformly distributed on the unit sphere and bounded by the condenser aperture. (B) Uniform

sampling is performed using Archimedes’ principle by creating a uniform distribution on a cylinder in the range of φ =[0 2π ], z =[1 cos(α)] and projecting inward onto

the unit sphere.

FIGURE 7 | Monte-Carlo sampling of the scattered field at the surface of a 3 µm particle in a λ = 2.5 µm field focused by a 0.8 NA condenser. The error

in Monte-Carlo integration falls off with 1√
N
, where N is the number of samples. Due to the constructive coherence in a focused field, the relative error is negligible

near the focal point for N ≥ 400. The relative error will increase significantly with d = |p− pf | since the signal decreases with the square of the distance. (A) Scattered

field from a simulation using a single plane wave, (B) using 4 Monte-Carlo samples, (C) using 400 Monte-Carlo samples, (D) using 400 Monte-Carlo samples.
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and 1u = 1v = 1
S . The detector then transforms the complex

field into the final intensity image I = |f̂ (x, y)|2.
The forward and inverse Fourier transforms are performed

using the GPU-based cuFFT Fast Fourier Transform (FFT) [28].
The resulting FFT and detector images for an array of particles
with varying extinction coefficients κ are shown in Figure 8.

3.4.2. Absorbance
Common vibrational spectroscopic imaging techniques, such
as mid-infrared spectroscopic imaging, rely on absorbance
measurements of a tissue sample in order to estimate the

extinction κ . The absorption is given by A = −log10

(

I
I0

)

, where

I0 is an image of the incident field, without any particles present.
A simulated image of multiple materials is shown in

Figure 10, demonstrating the complex interactions between the
incident field, particles, and optics in order to produce a final
absorption image.

3.4.3. Extended Sources
We also allow the software to simulate extended (non-coherent)
sources. Extended sources are created by simulating multiple
point sources and integrating their intensity with the detector. An
image of the extended source can be specified, allowing different
sources (point, Gaussian, glowbar) to be simulated.

4. RESULTS

We have developed a software package called the Broadband
Interactive Mie Simulator (BIM-Sim), which interactively
computes the Bjorn approximation for scattered fields produced
by spherical particles. This includes the simulation of a focusing
lens, objective lens, and imaging system. The complete field is
computed both inside and outside of each particle. BIM-Sim
is open-source and available online at http://stim.ee.uh.edu/
resources/software/bimsim/.

We visualize the field using planar cross-sections of the
volume placed anywhere between the objective and condenser
(Figure 9). The complex components of the scattered field
at the particle surface are computed and visualized using a
3D surface model (Figure 9). This facilitates the study of the
scattering efficiency of a sphere in three dimensions. The shape
of the scattered field is computed using Monte-Carlo sampling,
which allows arbitrary positioning of the particle within the
focal volume. The use of Monte-Carlo sampling also allows
any apodization function to be used for the focusing optics,
facilitating the study of beam quality on the resulting field
[29, 30].

The imaging process is simulated by band-limiting a cross-
section of the field at the focal plane based on the objective
aperture function. The intensity of the filtered cross-section
is computed and re-sampled based on user-specified detector
parameters to create a final image (Figures 10, 11). Computing
both the total and incident field intensity also allows the
simulation of absorption spectroscopy for any distribution of
micro-spheres. Material properties for the spheres are specified
at run-time or as a wavelength-dependent set of refractive
indices. If the extinction spectrum is known, BIM-Sim uses the
Kramers-Kronig relation to determine the phase speed [31] as a
function of λ.

4.1. Comparisons with Measured Data
We compared the predicted absorbance data (spectra and
images) from the forward model described above with IR
absorbance data of poly(methyl methacrylate) (PMMA) and
polystyrene microspheres. PMMA microspheres were obtained
from Bangs Laboratories, Fishers, IN, with diameters between
1 and 6.5 µm. Polystyrene microspheres were obtained from
Bangs Laboratories, Fishers, IN, and Polysciences, Warrington,
PA, with diameters between 4 and 6 µm. A small volume
of spheres was dispersed onto a 3mm thick calcium fluoride
(CaF2) substrate by gently tapping a loaded pipette tip, and
regions with individual spheres on the substrate were found.

FIGURE 8 | Objective affect on an image of 3 µm particles with n = 1.4+ κ , where κ = 0.0 → 0.12. The incident field is λ = 2.5 µm and the field of view is 100

µm. (A) Fourier transform of the EM field at the image plane. (B,C) Intensity images produced at the detector for 1.0 and 0.6 NA objectives.

Frontiers in Physics | www.frontiersin.org 8 February 2017 | Volume 5 | Article 5

http://stim.ee.uh.edu/resources/software/bimsim/
http://stim.ee.uh.edu/resources/software/bimsim/
http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Berisha et al. BIM-Sim

FIGURE 9 | Scattered fields created by three 2 µm diameter spheres separated by 2 µm of vacuum in a focused EM beam produced by a 0.2 NA

condenser. All three spheres have identical material properties. The magnitude and the real part of the scattered field at the sphere surface are shown (top). Note

that the sphere positioned within the center of the focused beam produces radially symmetric scattering, while adjacent spheres show reduced intensity and an

asymmetric scattered field. A cross section of the full field (Equation 1) through the spheres is shown (bottom).

FIGURE 10 | Absorption image and scattering efficiency of three spheres made of different materials with absorption spectra in the mid-infrared.

(A) The absorption image (left) and scattering efficiency (right) is shown at λ = 3.1 µm. The real and imaginary parts of the index of refraction are shown for toluene.

(B) The absorption image and scattering efficiency for λ = 6.6 µm is shown (top) with the index of refraction for water (H2O, bottom).
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FIGURE 11 | Scattered fields and absorption image created by three 2 µm spheres made of noble metals: silver, gold, and platinum (from left to right).

A cross section of the magnitude (|E|) and the real part [real(E)] of the full field through the spheres, generated by a single plane wave, are shown (top left). The

focused EM beam (Ef using a field order of 100) and the absorption image at λ = 3.1 µm are shown (top right). The real and imaginary parts of the index of refraction

are shown for silver, gold, and platinum (bottom).

Infrared imaging data were recorded using a Cary 670 Series
FTIR Spectrometer coupled to a Cary 620 Series IR Microscope
(Agilent Technologies, Santa Clara, CA). The system was
equipped with a 128× 128 pixel focal plane array (FPA) detector
that was used for imaging. TheNA of the detection Schwarzschild
objective and condenser was 0.62 with an obscuration of NA
= 0.34. The imaging was performed in high magnification
mode (pixel size of 1.1 µm). Spectra were recorded at 16 cm−1

resolution.
We estimated the complex refractive index as a function of

wavelength from bulk measurements of PMMA and polystyrene
absorption spectra. The effective refractive index, n, and the
absorption coefficient, k, obey the Kramer’s-Kronig relations,
allowing one to be estimated using a measurement of the other.
In this case, these values are computed using the following
equations:

A(λ) ≈ − 2π

n0λ
χ

′′
(λ)n(λ) ≈ n0 +

χ
′
(λ)

2n0
,

where A is the absorption (per unit thickness), n0 is the baseline
refractive index (≈ 1.4 for most polymers). The real and
imaginary components of the magnetic susceptibility

χ(λ) = χ
′
(λ)+ iχ

′′
(λ)

are related through the Hilbert transform, and the absorption
coefficient

k = −A(λ)λ

4π

can be computed from the absorption. The complex refractive
index for PMMA and polystyrene are shown in Figure 12.

Spectra and absorbance images from a number of PMMA
and polystyrene spheres were recorded. The forward model
is validated by comparing the predicted absorption spectra of
any pixel from the simulated spheres to the actual measured
spectra using the FTIR imaging system. The predicted spectra
from the described forward model and the measured spectra for
PMMA and polystyrene microspheres are shown in Figure 13.
The results show a close match between the measured and the
predicted spectra. We also compare the simulated absorption
images at any wavelength with measured absorbance images
(Figures 14, 15). It can be observed that the predicted and
measured absorption images match closely up to the noise level.

There are a number of factors which can effect the measured
spectrum of polymer microspheres, such as the noise level,
position of the sphere in the FOV, the material properties of the
sphere, the focal point, the spherical shape of the microsphere
etc. We note that the signal-to-noise ratio for the measured data
(recorded in high magnification mode) is reasonable but not
exceptional while the forward model described here does not
incorporate noise. The results shown here are based on running
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FIGURE 12 | Complex refractive index for PMMA (left) and polystyrene (right), computed from absorption measurements collected using FTIR spectroscopy.

FIGURE 13 | Measured and predicted absorption spectra for PMMA (top) and polystyrene (bottom) microspheres. Spheres with a radius of 1.5, 2.2, and 2.5

µm are considered. The spectrum from the center pixel of each sphere is shown.

our forward model with the following assumptions about each
imaged microsphere: it is positioned at the center of the FOV, it is
composed of clear material (in this case PMMA and polystyrene),
has a perfect spherical shape, and the microsphere is on focus.
We tried to image the microspheres as close as possible to the

center of the FOV. However, it was not possible to determine
the exact position of the center pixel of each imaged sphere in
the FOV using our imaging system (a small offset of the sphere
from the center of the image can be observed in Figures 14, 15).
The polystyrene microspheres where composed of additional
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FIGURE 14 | Measured and predicted absorption images for a PMMA microsphere of radius ≈ 2.2 µm at λ = 9.4, 8.2, 7.3 µm.

FIGURE 15 | Measured and predicted absorption images for a polystyrene microsphere of radius ≈ 2.2 µm at λ = 9.4, 8.2, 7.3 µm.

ingredients, such as water and 2.6% latex. The commercially
available microspheres are not guaranteed to have a perfect
spherical shape and they are of varying diameter size within the
same particle solution.

In order to validate our results for predicted spectra from
different pixels in the sphere we compare a cluster of measured
and predicted pixel spectra around the center of the spheres.
Figure 16 shows that the predicted spectra from different pixel
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FIGURE 16 | Measured and predicted absorbance spectra for PMMA (top) and polystyrene (bottom) microspheres. Spheres with a radius of 1.5, 2.2, and 2.5

µm are considered. A cluster of spectra around the center pixel of each sphere is shown.

locations closely follow the measured spectra. Also, notice that
there is more variation within measured spectra and more
overlap within the predicted ones. Overall, our results show
that the described theory for the forward model is capable of
describing recorded data with commercially availablemicroscopy
systems.

4.2. Accuracy and Timing Details
The most time-consuming operations are changes to the incident
wavelength λ and the condenser NA, which require re-evaluation
of the focused field and all scattered fields. Our technique allows
the EM field to be computed to user-specified accuracy, subject
to the limits of numerical precision, since the user can select
the resolution of the simulation. We use 32-bit floating point
precision.

Stratified sampling is used to limit variance across the
condenser aperture [24, 25]. Sample points are reconstructed
randomly whenNAc is changed. However, the same random seed
value is used, making random samples deterministic in order to
reduce flickering as these changes are reflected in the final image.

All of our results were tested on an nVIDIA Geforce GTX
970 with 4 GB of memory and 13 multiprocessors. For a

512 × 512 resolution slice, full evaluation of Ef requires 2–4 ms
and evaluation of a single scattered field requires 400–500 ms.
This includes both computation of the scatter domain and 400
Monte-Carlo samples of a single sphere. Evaluation time scales
linearly with the number of particles. Our current simulations
are bounded by the amount of time required to fetch multiple
samples of the scattered domain for Monte-Carlo sampling (one
fetch per sample).

5. CONCLUSIONS

In this paper, we address the need for interactive simulation
and visualization of scattered EM fields. This is an important
problem in the optics community, where there is significant
interest in understanding how micro and nano-particles interact
with incident radiation. Our two major contributions include
a method for interactive simulation of scattered fields and
a framework for visualizing these fields by coupling user
interaction with sparse simulation.

The simulation methods that we describe are interactive,
allowing exploration of scattered fields that would previously
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have been impractical. The resulting speedup allows the
user to dynamically set all aspects of the simulation. This
has many advantages over pre-computation. In particular, a
pre-computed representation of a field at the demonstrated
magnitude and dimension would require an impractical amount
of storage space and would be difficult to query efficiently. In
addition, a fast forward model of particle scattering provides
a framework for solving inverse problems, such as spectral
un-mixing [9] and localization of probes within an imaged
field.
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