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Compact Closed categories and Frobenius and Bi algebras have been applied to

model and reason about Quantum protocols. The same constructions have also been

applied to reason about natural language semantics under the name: “categorical

distributional compositional” semantics, or in short, the “DisCoCat” model. This model

combines the statistical vector models of word meaning with the compositional models

of grammatical structure. It has been applied to natural language tasks such as

disambiguation, paraphrasing and entailment of phrases and sentences. The passage

from the grammatical structure to vectors is provided by a functor, similar to the

Quantization functor of Quantum Field Theory. The original DisCoCat model only used

compact closed categories. Later, Frobenius algebras were added to it to model long

distance dependancies such as relative pronouns. Recently, bialgebras have been added

to the pack to reason about quantifiers. This paper reviews these constructions and their

application to natural language semantics. We go over the theory and present some of

the core experimental results.

Keywords: compact closed categories, frobenius algebras, bialgebras, quantization functor, categorical quantum

mechanics, compositional distributional semantics, pregroup grammars, natural language processing

1. INTRODUCTION

Categorical compositional distributional semantics is a model of natural language that combines
the statistical vector models of word meanings with the compositional models of grammar. The
grammatical structures are modeled as morphisms of a compact closed category of grammatical
types, the vector representations of word meanings are modeled as morphisms of the category
of finite dimensional vector spaces, which is also a compact closed category. The passage from
grammatical structure to vectorial meaning is by connecting the two categories with a structure
preserving map, in categorial words, a functor.

F : Grammar H⇒ Meaning

This passage allows us to build vector representations for meanings of phrases and sentences, by
using the vectors of the words and the grammatical structure of the phrase or sentence. Formally,
this procedure is the application of the image of the functor on the grammatical structure to the
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meaning vectors of the words. Still more formally, given a string
of words w1w2 · · ·wn, one first formalizes their grammatical
structure as a morphism α in the compact closed category of
grammar, introduced by Lambek and Lambek and Preller, as
the categorical semantics of pregroup type-logical grammars,
see Lambek [1, 2]. We denote these below by Preg. The vector
meanings of words live the category of finite dimensional vector
spaces, denoted below by FVect. The more concrete version of
the above functor is thus as follows:

F : Preg H⇒ FVect

The functor F transforms α to a linear map in FVect. This linear
map is applied to the vectors of the words within the phrase or
sentence. The whole procedure is formalized below:

(∗) −−−−−−−→w1w2 · · ·wn = F(−→w 1 ⊗
−→w 2 ⊗ · · · ⊗

−→w n)

Vectors of words, i.e., the −→w i’s are represented by morphims
I → V of the category of finite dimensional vector spaces, for
V the vector space in which the meaning of the word lives. The
tensor product⊗ between thesemorphisms is the categorical way
of packing them together. This model, referred to by DisCoCat,
for Categorical Compositional Distributional, was the first model
that put together the vector meanings of words by taking into
account their grammatical structure, in order to build a vector
for the phrase or sentence containing the words.

DisCoCat relates to the categorical models of Quantum
phenomena in two ways. One is through the function F; quoting
from Coecke et al. [3]:

“A structure preserving passage to the category of vector spaces is
not a one-off development especially tailored for our purposes.
It is an example of a more general construction, namely,
a passage long-known in Topological Quantum Field Theory
(TQFT). This general passage was first developed by Atiyah [4]
in the context of TQFT and was given the name “Quantization,”
as it adjoins “quantum structure” (in terms of vectors) to a
purely topological entity, namely the cobordisms representing
the topology of manifolds. Later, this passage was generalized to
abstract mathematical structures and recast in terms of functors
whose co-domain was FVect by Baez and Dolan [5] and Kock
[6]. This is exactly what is happening in our [DisCoCat] semantic
framework: the sentence formation rules are formalized using
type-logics and assigned quantitative values in terms of vector
composition operations. This procedure makes our passage from
grammatical structure to vector space meaning a “Quantization”
functor. Hence, one can say that what we are developing here is a
grammatical quantum field theory for Lambek pregroups. ”

The other connection is that the DisCoCat model, i.e., the
tuple

(

Preg, FVect , F
)

, was originally inspired by the categorial
model of Quantum Mechanics, as developed by Abramsky and
Coecke [7]. CQM, for Categorical Quantum Mechanics, models
Quantum protocols using compact closed categories and their
vector space instantiations (more specifically they use dagger
compact closed categories and category of Hilbert spaces, which
have also been used in DisoCat, e.g., see [8]). The aim of this

review is to briefly describe the DisCoCat model and its recent
extensions with Frobenius and Bi algebras. These extensions were
inspired by extensions to categorical Quantum Mechanics: the
work of Coecke et al. [9, 10] for the use of Frobenius Algebras and
Coecke and Duncan [11] for Bialgebras. These extensions have
enabled us to reason, in a structured way, about logical words
of language such as relative pronouns “who, whom, what, that,
which, etc.” and quantifiers “all, some, at least, at most, none, etc.”

In what follows, we will first review the advances made in the
DisCoCat model in a chronological order; then go through the
the core of theoretical underpinnings of the model and finally
present some of the main experiments performed to validate the
theoretical predictions.

2. A CHRONOLOGICAL OVERVIEW OF
DISCOCAT

The origins of the DisCoCatmodel goes back to the work of Clark
and Pulman [12], presented in the AAAI Spring Symposium on
Quantum Interaction (QI) in 2007. The paper discussed vector
models of word meaning, otherwise known as distributional
semantics, and outlined an open problem they faced. The open
problem is how to extend distributional models so that they can
assign vector meanings to phrases and sentences of language. In
their proposed extended model, Clark and Pulman, inspired by
the Harmonic Grammars of Smolensky [13], argue for the use of
tensors. The vector meaning of a string of words w1w2 · · ·wn, as
defined by them, is as follows:

−−−−−−−→w!w1 · · ·wn =
∑

i

−→w i ⊗
−→r i

where −→r i is a vector representing the grammatical role played
by word wi in the string. The problem with this model is
that firstly, vector meanings of sentences grow as the sentence
becomes larger and building tensor models for them becomes
costly. Secondly, sentences that have different grammatical
meanings live in different spaces and thus their meanings
cannot be compared to each other. Further, Clark and Pulman
do not provide any experimental support for their models.
Subsequently, in a paper presented in QI in 2008, Stephen et al.
[14], addressed the former two of these problems by presenting
the first DisCoCat model. An extended version of this paper later
appeared in Lambek’s 90’th Festschrift [15] in 2010. The original
DisCoCat model presented there worked along side the following
triangle:

where the space between the FVect and Preg was interpreted
as pairing. That is, instead of working with a functor between
the two categories of grammar and meaning, there is only one
category: the category whose objects are pairs (V , p) of V a vector
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space and p its grammatical type (i.e., the grammatical type of
the words living in that category), and whose morphisms are also
pairs (f : V → W, p ≤ q), for f : V → W a linear map and
≤ :p → q the partial ordering of the pregroup grammar. In this
model, pregroups where treated as partial order categories. The
functorial form of DisCoCat, described in the introduction, was
fist introduced by Preller and Sadrzadeh [16] in 2010 and later
connected to the Quantization of TQFT by Coecke et al. [3] in
2013. Similar connections, albeit not in a functorial form and not
to TQFT but to CQM in general, were also drawn in a paper by
Lambek [17]. It should be noted that the main contribution of
Coecke et al. [3] was however, to extend the functorial passage
and thus the DisCoCat from Lambek Pregroups to the original
monoidal calculus of Lambek [18].

F : Monoidal Closed Cats H⇒ FVect

Although grammar-aware vector space models of meaning
existed for adjective noun phrases via the work of Baroni and
Zamparelli [19], but the above DisCoCat model was the first one
where this grammar-awareness was theoretically defined for all
language constructs. Later, in 2013, in the paper by Grefenstette
et al. [20], it was shown how the concrete constructions of
Baroni and Zamparelli [19] can be used in the DisCoCat to
build matrices and tensors for intransitive and transitive verbs.
But extending these concrete models to words such as relative
pronouns, quantifiers and prepositions proved to be problematic,
due to data sparsity, as also shown in Baroni et al. [21].

The theoretical predictions of DisCoCat were first
experimentally verified in a paper by Grefenstette and Sadrzadeh
[22]. They presented an algorithm to build the matrices/tensors
of the model and implemented it on intransitive and transitive
verbs and further applied these to a disambiguation task. The
intransitive version of the task was originally developed by
Mitchell and Lapata [23], the extension to transitive was a novel
contribution, leading to a dataset that was later used by the
community in many occasions. In a short paper in the same
year [24] presented a few extensions to the constructions of the
latter model. The full set of results, together with extensions to
adjective-noun phrases and sentences containing them, appeared
in the journal article by Grefenstette and Sadrzadeh [25].

The model described above had one flaw, namely that
sentences of different types acquired vectors that lived in different
vectors spaces. This made it impossible to fully benefit from
DisCoCat, one of whose original promises was an extension of the
model of Clark and Pulman to one that one can actually compare
sentences. This shortcoming was later overcome by Kartsaklis et
al. [26], where it was shown that two possible applications of
Frobenius algebras on the concrete model of Grefenstette and
Sadrzadeh [22] solves the problem and leads us to a uniform
sentence space.

After the above, DisCoCat has been extended to cover
larger fragments of language and also it has been implemented
on different vector models with different implementation
parameters and experimented with in different settings. These
latter contributions include the following:

• Prior disambiguation of tensors by sense-clustering and
separating different meanings, based on the contexts in
which the words appear. For the case of a verb, we first
disambiguate its subject and objects by clustering, then build
verb tensors using disambiguated versions of these vectors.
The experimental support we provided for this work showed
that the disambiguated models indeed perform better than
their ambiguous versions, these results were presented in
Kartsaklis et al. [27] and Kartsaklis and Sadrzadeh [28].

• Experiments in support of entangled tensors in the linguistics
applications listed above. Our so called tensors are elements
of tensor spaces, which are in turn built from spaces of the
types of the corresponding words (e.g., a verb or an adjective).
Some elements of such spaces are separable and some are not.
In the separable case, for t ∈ A⊗Bwe have two other elements
a ∈ A, b ∈ B such that t = a ⊗ b. In the non-separable case,
this factorization will not be possible. In QuantumMechanics,
the non-separable elements correspond to entangled states of
a physical system. A question arises that whether our linguistic
tensors are separable or not. We answered this question by
measuring the degree of entanglement of our tensors and
showing that the ones with a higher degree led to better results,
as presented in Kartsaklis and Sadrzadeh [29].

• Application of neural word embeddings in the tensor models.
Recent work on deep neural nets has led to creation of large
sets of vectors for words, referred to by word embeddings,
as presented in Mikolov et al. [30, 31]. These vectors are
now hosted by Google in their Tensor Flow platform1. The
popularity and good performance of the vectors in various
tasks and models makes one ask whether or not they would
work well in a tensor framework as well. The work in Milajevs
et al. [32] showed that this is indeed the case.

• Developing a theory of entailment for the tensor models.
Distributional semantics supports word-level entailment via a
distributional inclusion hypothesis, where inclusion relations
between features of words is put forward as a signal for
the entailment relations between words. We showed how
this model can be extended from word to sentence-level in
a compositional fashion. We worked out different feature
inclusion relations for features of sentences that were built
using different compositional operations. We developed new
datasets and measured performances of our feature inclusion
relations, the results appeared in Kartsaklis and Sadrzadeh
[33, 34].

We have also extended the model theoretically, where the
major contributions are as follows:

• The use of Frobenius and Bi algebras to model linguistic
phenomena that involve certain types of rearranging of
information within phrases and sentences. An example of such
a phenomena is relative and quantified clauses, such as “all
men ate some cookies,” “the man who ate the cookies” and “the
man whose dogs ate the cookies.” We extended the DisCoCat
model from compact closed categories to ones with Frobenius
and Bi algebras over them and showed how the copying

1https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html
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and merging operations of these algebras allow us to model
meanings of quantified and relative clauses and sentences. The
work done here includes that of Clark et al. [35], Sadrzadeh et
al. [36, 37], Hedges and Sadrzadeh [38] and Sadrzadeh [39].

• Density matrices are the core of vector space models of
Quantum Mechanics and indeed it has been shown that the
category of density matrices and completely positive maps
is also a compact closed category. The question arises so
as whether and how these matrices have applications in
linguistics. The work of Piedeleu et al. [8], Balkir et al. [40, 41]
and Bankova et al. [42] showed that density matrices can
model different meanings of ambiguous words and that they
can also model a hierarchy of these meanings and thus be
applied to entailment.

3. OVERVIEW OF THEORY

This section reviews the theoretical framework of a DisCoCat.
Its structure is as follows: in Section 3.1, we will review the
distributional semantic models. We show how the motivating
idea of these models are formalized in terms of vector
representations and describe some theoretical and experimental
parameters of the model and some of the major applications
thereof. In Section 3.2. we review the grammatical model that
was first used as a basis for compositional distributional models,
namely the pregroup grammars of Lambek. We review the
theory of pregroup algebras and exemplify its applications to
reasoning about grammatical structures in natural language. In
Section 3.3, we show how a functorial passage can be developed
between a pregroup grammar, seen as a compact closed category,
and the category of finite dimensional vector spaces and linear
maps. We describe how this passage allows one to assign
compositional vector semantics to words and sentences of
language. This passage is similar to the one used in TQFT, where
the grammatical part is replaced by the category of manifolds
and cobordisms. Section 3.4, describes the theory of Frobenius
and Bi algebras over compact closed categories. In Section 3.5,
we show how these algebras can model meanings of relative
and quantified clauses and sentences. In Section 3.6, we go
through the graphical calculus of compact closed categories and
Frobenius and Bi algebras over them. We exemplify how these
are used in linguistics, where they depict flows of information
between words of a sentence.

3.1. Vector Models of Natural Language
Given a corpus of text, a set of contexts and a set of target words,
the vector models of words work with a so called co-occurrence
matrix. This has at each of its entries “the degree of co-occurrence
between the target word and the context,” developed amongst
other by Salton et al. [43] and Rubenstein and Goodenough [44].
This degree is determined using the notion of a window: a span
of words or grammatical relations that slides across the corpus
and records the co-occurrences that happen within it. A context
can be a word, a lemma, or a feature. A lemma is the canonical
form of a word; it represents the set of different forms a word can
take when used in a corpus. A feature represents a set of words
that together express a pertinent linguistic property of a word.

Given an m × n co-occurrence matrix, every target word t can
be represented by a row vector of length n. For each feature c,
the entries of this vector are a function of the raw co-occurrence
counts, are computed as follows:

rawf (t) =

∑

c N(f , t)

k

forN(f , t) the number of times the t and f have co-occurred in the
window. Based on L, the total number of times that t has occurred
in the corpus, the raw count is turned into various normalized
degrees. Some common examples are probability, conditional
probability, likelihood ratio and its logarithm: The lengths of the
corpus, window, and normalization scheme are parameters of the
model, as are the sizes of the feature and target sets, there has been
a plentiful of papers who study these parameters, for example see
Lapesa and Evert [45], Bullinaria and Levy [46], and Turney [47].

The distance between the meaning vectors, for instance the
cosine of their angle, provides an experimentally successful
measure of similarity of their meanings. For example, in the
vector space of Figure 1, cited from Coecke et al. [3], the angle
between meaning vectors of “cat” and “dog” is small and so is
the angle between meaning vectors of “kill” and “murder.” Such
similarity measures have been implemented on large scale data
(up to a billion words) to build high dimensional vector spaces
(tens of thousands of basis vectors). These have been successfully
applied to automatic generation of thesauri and other natural
language tasks such as automatic indexing, meaning induction
from text, and entailment, for example see Curran [48], Lin [49],
Landauer and Dumais [50], Geffet and Dagan [51], andWeeds et
al. [52].

3.2. Pregroup Grammars
A pregroup algebra, as defined by Lambek [1], is a partially
ordered monoid (P,≤, ·, 1) where every element has a left and a
right adjoint, which means that for every element p ∈ P we have
a pr ∈ P and a pl ∈ P such that the following four inequalities
hold:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

FIGURE 1 | A subspace of a vector space model of meaning, built from real

data, cited from Coecke et al. [3].
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An example of a pregroup in arithmetics is the set of
unbounded monotone functions on integers, where the monoid
multiplication is function composition with the identity function
its unit, and the left and right adjoints defined using min andmax
of integers. For reasons of space, we will not give these definitions
here and refer the reader to Lambek [1, 2].

Pregroup algebras are applied to natural language via the
notion of a pregroup grammar, defined to be a pair 〈D, S〉, where
D is a pregroup lexicon and S ⊂ B is a set of designated types,
containing types such as that of a declarative sentence s, and a
question q. A pregroup lexicon is a binary relation D, defined as

D ⊆ 6 × T(B)

where T(B) is the free pregroup generated over B (for the free
construction see [1]).

Given a pregroup grammar, as specified in Lambek [1], one
says that a string of wordsw1w2 · · ·wn of language is grammatical
iff for 1 ≤ i ≤ n, there exists a (wi, ti) ∈ D, such that we have a
type t ∈ T(B) ∩ D[6] such that the following partial order holds
in T(B):

t1 · t2 · · · · · tn ≤ t

An example of a pregroup lexicon is presented in Table 1:
The pregroup reductions corresponding sentences (1) “men

kill dogs,” (2) “men kill cute dogs,” and (3) “men do not kill dogs”
are as follows (all cited from [3]):

(1) n · nr · s · nl ≤ 1 · s · 1 = s

(2) n · nr · s · nl · n · nl · n ≤ 1 · s · 1 · 1 = s

(3) n · nr · s · jl · σ · σ r · j · jl · σ · σ r · j · nl · n

≤ 1 · s · jl · 1 · j · jl · 1 · j · 1 = s · jl · j · jl · j ≤ s

3.3. Quantization
In order to formalize the structure preserving passage between
syntax: pregroup grammars and semantics: vector models,
we formalize both of these in the language of compact
closed categories [53]. For this reason, we very briefly recall
some definitions. A compact closed category has objects A,B;
morphisms f : A → B; a monoidal tensor A ⊗ B that has a unit
I; and for each object A two objects Ar and Al together with the
following morphisms:

A⊗ Ar ǫrA
−→ I

ηrA
−→ Ar ⊗ A Al ⊗ A

ǫlA
−→ I

ηlA
−→ A⊗ Al

These morphisms have to satisfy certain other conditions, among
which are the four yanking equations, which for reasons of space

TABLE 1 | Type assignments for a toy language in a Lambek pregroup; table from

Coecke et al. [3].

Men Dogs Cute Kill To kill Do Not

n n n · nl nr · s · nl σ r · j · nl nr · s · jl · σ σ r · j · jl · σ

we will not give here. It is evident (and has also been proven,
see for example [17, 54]), that pregroup algebras are compact
closed categories. This is by taking the above ǫ and η maps
to be the four adjoint inequalities of a pregroup algebra. Finite
dimensional vector spaces with linear maps as morphisms are
also compact closed categories, this has been shown by Kelly and
Laplaza [53]. This category is symmetric, thus the left and right
adjoints collapse to one, that is for V a finite dimensional vector
space, we haveV l = Vr = V∗, whereV∗ is the dual space ofV . In
the presence of a fixed basis, however, one obtains the equivalence
V ≡ V∗. Assuming so, the ǫ and η maps are defined as follows,
for {−→r i}i a fixed basis:

ǫ = ǫl = ǫr : V ⊗ V → R

: :

∑

ij

cij
−→r i ⊗

−→r j 7→
∑

ij

cij〈
−→r i |

−→r j〉

η = ηl = ηr : R → V ⊗ V∗
: :1 7→

∑

i

−→r i ⊗
−→r i

Nowwe can define the structure preservingmap via the following
Quantization functor:

F : Preg H⇒ FVect

explicitly defined as follows:

• For n, s ∈ B and two atomic vector spaces W and S, we have
F(n) = W and F(s) = S,

• For p, q ∈ T(B) \ (B ∪ {1}), we have F(p · q) = F(p)⊗ F(q),
• For 1 ∈ T(B), we have F(1) = R,
• For adjoints we have, F(pr) = F(pl) = F(p),
• For morphisms, we have F(p ≤ q) = F(p) → F(q).

We have now formally defined a DisCoCat: the tuple
(Preg, FVect, F), as defined above. It is in this setting that
one obtains vector representations for sentences by applying
the definition (∗) of introduction. For example, the vector
representations of two of our example sentences above become
as follows:

−−−−−−−−→
men kill dogs = (ǫW ⊗ 1S ⊗ ǫW )

(

−−→men⊗
−→
kill⊗

−−→
dogs

)

=
∑

ijk

cijk 〈
−−→men |

−→w i〉〈
−→w k |

−−→
dogs〉 −→s j

−−−−−−−−−−−−→
men kill cute dogs =

(ǫW ⊗ 1S ⊗ ǫW ⊗ ǫW ) (−−→men⊗
−→
kill⊗

−−→
cute⊗

−−→
dogs)

=
∑

ijk

∑

lm

cijkclm 〈
−−→men |

−→w i〉〈
−→w k |

−→w l〉〈
−→w m |

−−→
dogs〉−→s j

An important observation is that in this setting one obtains
that, vector representations of words that have atomic types, e.g.,

men and dogs with type n are vectors −−→men,
−−→
dogs ∈ W. The

representations of other words, e.g., cute and kill with types nrs
and nrsnl are matrices

∑

ij cij
−→w i⊗

−→w j ∈ W⊗W for {−→wi }i a basis

for W and tensors
∑

ijk cijk
−→w i ⊗

−→s j ⊗
−→w k ∈ W ⊗ S ⊗ W, for

{
−→s j}j a basis in S.
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3.4. Frobenius and Bi Algebras
Both Frobenius and Bi algebras are defined over a symmetric
monoidal category C. Frobenius Algebras were developed in
their current from by Kock [6] and McCurdy [55], bialgebras
by McCurdy [56] and Bonchi et al. [57]. Formally, they are both
denoted by tuples (X, δ, ι,µ, ζ ) where, for X an object of C, the
triple (X, δ, ι) is an internal comonoid and the triple (X,µ, ζ ) an
internal monoid; i.e., the following are coassociative and counital,
respectively associative and unital morphisms of C:

δX : X → X ⊗ X ιX : X → I µX : X ⊗ X → X ζX : I → X

One difference between these two is that the Frobenius algebra
satisfies the following so-called Frobenius condition (due to [58]
who originally introduced the algebraic form of these in the
context of representation theorems for group theory):

(µX ⊗ 1X) ◦ (1X ⊗ δX) = δX ◦ µX = (1X ⊗ µX) ◦ (δX ⊗ 1X)

The bialgebras satisfy a weaker version of this condition, referred
to by Q3 in McCurdy [56]

δX ◦ µX = (µX ⊗ µX) ◦ (1X ⊗ σX,X ⊗ 1X) ◦ (δX ⊗ δX)

for σX,X the symmetry morphism of the category C. Both these
algebras do satisfy other conditions, which we will not give here.

In FVect, any vector space V with a fixed basis {−→vi }i has a
Frobenius algebra over it, explicitly given by:

δV : :
−→vi 7→

−→vi ⊗
−→vi ιV : :

−→vi 7→ 1

µV : :
−→vi ⊗

−→vj 7→ δij
−→vi ζV : :1 7→

∑

i

−→vi

where δij is the Kronecker delta. These definitions were
introduced in Coecke et al. [9, 10] to characterize vector space
bases.

Bialgebras over vectors spaces were introduced in Coecke
and Duncan [11] to characterize phases. For linguistic purposes,
however, we use a different definition, first introduced in Hedges
and Sadrzadeh [38]. Let V be a vector space with basis P(U),
where U is an arbitrary set. We give V a bialgebra structure as
follows:

ιP(U)|A = 1 δP(U)|A = |A⊗ |A

ζP(U) = |U µP(U)(|A⊗ |B) = |A ∩ B

The Frobenius and the bialgebra δ act similarly here: they both
copy their input, that is given a vector −→

υ , the produce two
copies of it −→υ ⊗ −→

υ . The slight difference in this special natural
language instantiation is that the inputs to the bialgebra δ’s are
vectors whose basis are subsets of a universal set U, whereas
the inputs to Frobenius algebra δ’s can be any vector. The main
difference between these two algebras are in their µ maps. The
Frobenius µ, when inputted with two same vectors, returns one
of them, the bialgebra µ acts on any two input vectors, but of
course these both have to have as basis subsets of P(U), and

returns the “intersection” of these two vectors. By “intersection
of vectors” we mean (as defined above), a vectors whose basis is
the intersection of the basis of the input vectors.

The reason for working with the above bialgebras is that they
are there to model generalized quantifiers of Barwise and Cooper
[59]. These quantifiers are defined asmaps with the typeP(U) →
PP(U). In order to see why, consider the following definition for
the logical quantifiers “all” and “some”:

[[some]] (A) = {X ⊆ U | X ∩ A 6= ∅}
[[

every
]]

(A) = {X ⊆ U | A ⊆ X}

A similar method is used to define non-logical quantifiers, for
example “most A” is defined to be the set of subsets of U that
has “most” elements of A, “few A” is the set of subsets of U
that contain “few” elements of A, and similarly for “several”
and “many.” These functions can be formalized as relations over
P(U), where they will thus obtain the type P(U) → P(U).
These relations can be formalized in the category of sets and
relations, which is also compact closed. The above definitions
are vector space generalizations of the bialgebras defined for
relations. They enable us to work with intersection of these
relations. This is an operation that allows Barwise and Cooper
to formalize an important property of generalized quantifiers
of natural language, i.e., that they are conservative. For details
and the from-relation-to-vector embedding, see Hedges and
Sadrzadeh [38].

3.5. Relative Pronouns and Quantifiers
In order to model relative pronouns and quantifiers, according to
the developments of Clark et al. [35], Sadrzadeh et al. [36, 37], and
Hedges and Sadrzadeh [38], one adds to the pregroup lexicon, the
following assignments:

To subject relative pronouns “who, that, which,” we assign type
nrnsln
To object relative pronouns “whom, that, which,” we assign type
nrnnllsl

To determiners of any role “a, the, all, every, some, none, at most,
many, · · · ,” we assign type nnl

The vectorial representations of the subject and object relative
pronouns are as follows, respectively for each case:

−−−→
Sbj Rel := (1W ⊗ µW ⊗ ζS ⊗ 1W) ◦ (ηW ⊗ ηW)
−−−−→
Obj Rel := (1W ⊗ µW ⊗ 1W ⊗ ζS) ◦ (ηW ⊗ ηW)

where the µW and ζS are maps of the Frobenius algebras defined
over the W and S spaces. The vectorial representation of the
determiners are as follows:

−−−−−−−→
determiner := (1W ⊗ ǫW) ◦ (1W ⊗ µW ⊗ ǫW ⊗ 1W)

◦(1W ⊗
[[

d
]]

⊗ δW ⊗ 1W⊗W)

◦(1W ⊗ ηW ⊗ 1W⊗W) ◦ (ηW ⊗ 1W)
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where theµW and δW maps are bialgebraic maps defined over the
space W = VP(U), which is notation for a vector space spanned

by the subsets of the set U. The
[[

d
]]

map has type W → W, it
is a linear map that directly encodes the relational graph of the
generalized quantifier d.

By applying definition (∗) from the introduction, one obtains
vectorial representations for relative clauses and quantified
sentences. An example of the former is “menwho eat cake,” which
acquires the following vectorial representation:

−−−−−−−−−−−→
men who eat cake := (1W ⊗ ǫW)◦(ǫW⊗1W ⊗ S ⊗ ǫW⊗1S ⊗ ǫW)

(−−→men⊗
−−→
who⊗

−→
eat⊗

−−→
cake)

This simplifies as follows, after opening up the meaning of “who”
using the “Obj Rel” definition above:

(µW ⊗ ǫW)
(

−−→men⊗
−→
eat⊗

−−→
cake

)

= (µW ⊗ ǫW)





∑

k∈K

−→w k ⊗(
∑

ij

αij
−→w i⊗

−→w j)⊗
∑

l∈L

−→w l





=
∑

ij,k∈K,l∈L

αijµW(−→w k ⊗
−→w i)⊗ ǫW(−→w j ⊗

−→w l)

=
∑

ij,k∈K,l∈L

αijδki
−→w iδjl =

∑

k∈K,l∈L

αkl
−→w k

An example of a quantified sentence is “most cats snore,” which
acquires the following vectorial representation,

(ǫW ⊗ 1S) ◦ (1W ⊗ ǫW ⊗ 1W⊗S)(
−−→
most⊗

−→
cats⊗−−−→snore)

The above simplifies to the following

(ǫW) ◦ (
−−−−→
[[most]]⊗ µW ⊗ 1S) ◦ (ǫW ⊗ 1S)(

−−→men⊗
−−−→snore)

Different instantiations for U and S are provided in Hedges and
Sadrzadeh [38], as an example considerU to be the set of words of
language, in which case P(U) represents the set of, what is called
“lemmas” of language, i.e., the set of canonical forms of words.
One takes S = VP(S′),for S

′ an abstract sentence space, denoted
by the symbol S in our previous examples. In this case, the above
categorical definition takes a concrete instantiation as follows:

∑

ijk

∑

B∈[[most]]([[cat]])

ccati csnorejk cmost
B 〈B | Ai ∩ Aj〉|sk

where we have
−→
cats: =

∑

i c
cat
i |Ai for Ai ⊆ U and −−−→snore: =

∑

jk c
snore
jk |Aj ⊗ Ak, for Aj ⊆ U and |Ak a basis vector of S.

3.6. Diagrams
The compact closed categorical setting of Abramsky and
Coecke comes equipped with a diagrammatic calculus, originally
developed in Joyal and Street [60] and referred to by string
diagrams. This calculus allows one to draw diagrams that
depict the protocols of Quantum mechanics and simplify the

computations thereof. For example see Figure 2 for the diagram
for teleportation:

These diagrams depict the flow of information between the
parties involved in the protocol and also simplify the tensor
contraction computations. In the setting of language, every
language construct can be seen as a protocol, with words as
the involved parties. The same diagrammatic calculus has been
widely used to show how information flows amongst the words
of a phrase or sentence and to depict the meaning of the language
unit resulting from it. In the interest of space, we will not
introduce this diagrammatic calculus here, but provide examples,
via the following Figures 3–5.

4. OVERVIEW OF EXPERIMENTS

Our first set of experiments was on two datasets, both consisting
of pairs of transitive sentences with ambiguous verbs and their
two eminent meanings. One of the datasets had adjectives
modifying the subjects and objects, the other contained bare
subjects and objects. The goal was to disambiguate verbs, based
on the sentences in which they occurred. A non-compositional
distributional approach to this task would be to build vector
representations for verbs and their different meanings (in this
case the two most eminent ones); then measure the cosine of the
angle between the vector of the verb and those of the meanings
and use this as a measure of disambiguation. In other words, if
the vector of the verb was closer to one of the meaning vectors,
that meaning would be chosen as the right meaning for the verb.
This non-compositional method, however, does not take into
account the specific sentence in which the verb has occurred. In
our compositional version, we build a vector representation for
each sentence of the dataset; specifically, we build a vector for
the sentence with the verb in it, and two for the two sentences
where the verb is replaced with one of its two eminent meanings.
Then we compare the distances between these sentence vectors.
The sentence vectors were built using different composition
operators, and the non-compositional verb vector was taken as

FIGURE 2 | Diagram of information Flow in the teleportation protocol, cited

from Abramsky et al. [7].

FIGURE 3 | Diagram of information flow in the negative transitive sentence,

cited from Preller and Sadrzadeh [16].
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FIGURE 4 | Diagram of information flow in a relative clause with an object relative pronoun, cited from Clark et al. [35].

FIGURE 5 | Diagram of Information Flow in a Sentence with a Quantified

Subject, cited from Hedges and Sadrzadeh [38].

TABLE 2 | Example entries from the transitive dataset, cited from Grefenstette

and Sadrzadeh [25].

Sentence 1 Sentence 2 HIGH-LOW Tag

Man draw sword Man attract sword LOW

Report draw attention Report attract attention HIGH

Man draw sword Man depict sword HIGH

Report draw attention Report depict attention LOW

a comparison base line. The results show that one of the tensor
composition methods, namely our Kronecker model, performed
best. This was the first time 3 and 4 word sentences were used to
disambiguate a single word. A precursor to this experiment, was
that of Mitchell and Lapata [23], where ambiguous verbs were
disambiguated using 2-word “Sbj Verb” or “Verb Obj” phrases.

A snapshot of two of these datasets are presented in
Tables 2, 3. The first two entries are the two sentences in question
and the last entry is a tag we gave to the sentences based on how
similar the meanings of the sentences in the pair were. As you
can see, the first dataset consists of “Sbj Verb Obj” sentences, the
second dataset consists of sentences of the form “Adj Sbj Verb
Adj Obj” where the subject and object are moreover modified by
adjectives:

We asked human annotators (on Amazon Turk) to assign
a degree of similarity to each pair of the dataset, using a
number from 1 to 7, ranking the degree of similarity of the
sentences therein. If the sentence “Sbj Verb1 Obj” was ranked

TABLE 3 | Example entries from the adjective-transitive dataset, cited from

Grefenstette and Sadrzadeh [25].

Sentence 1 Sentence 2

Statistical table show good result Statistical table express good result

Statistical table show good result Statistical table depict good result

to have an average high similarity with the sentence “Sbj Verb2
Obj,” then we concluded that “Verb1” had the same meaning
as “Verb2,” thus disambiguating it. We implemented different
models to compute vectors for sentences and used the cosine
of the angle between them as a measure of similarity. The
results are presented in Table 4. In the “Sbj Verb Obj” dataset,
the vectors built via the Kronecker model achieve the highest
correlation with the annotators’ judgments. This model is one of
the DisCoCat models, a model that has consistently performed
very well. In the “Adj Sbj Verb Adj Sbj” dataset, the model
referred to by Categorical Adj has consistently performed the
best. This model builds a matrix for the adjective and matrix
multiplies it with the vector of the noun to obtain a vector for
the adjective noun phrase. The exact results denote the degree
of correlation (computed by using Spearman’s ρ) between the
human judgments and the judgments predicted by the models.
These seem quite low, but so is the inter annotators agreement,
presented in the last line of each table. This agreement is an
upper bound for the experiment, denoting the degree to which
the human annotators agreed amongst themselves about their
similarity judgments. Having this upper bound in mind, we see
that the “Adj Sbj Verb Adj Sbj” dataset performed better than
the “Sbj Verb Obj” dataset (since it had larger compositional
contexts), as it aligns to human judgment in about 60% of the
time.

A criticism to this first set of experiments was that they relied
on human judgments and that these were not done according to
clear guidelines. One argument against lack of such a judgment
was that human annotators were asked to judge the degree of
similarity between sentences and that is a hard task. It was
argued that similarity has different interpretations in different
contexts and annotators might have had different interpretations
(different to ours) in mind when judging the dataset. In a second
task, we avoided this weakness by working on term-definition
pairs mined from a junior dictionary. The terms were words and
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TABLE 4 | Model correlation coefficients with human judgments, cited from

Grefenstette and Sadrzadeh [25].

Model ρ

Verb Baseline 0.13

Bigram Baseline 0.16

Trigram Baseline 0.15

Add 0.10

Multiply 0.16

Categorical 0.16

Kronecker 0.26

UpperBound 0.62

Model ρ

Verb Baseline 0.20

Bigram Baseline 0.14

Trigram Baseline 0.16

Additive 0.10

Multiplicative

AdjMult 0.20

AdjNoun 0.05

CategoricalAdj 0.20

Categorical

AdjMult 0.14

AdjNoun 0.16

CategoricalAdj 0.19

Kronecker

AdjMult 0.26

AdjNoun 0.17

CategoricalAdj 0.27

Upperbound 0.48

The best performing models are highlighted in boldface.

the definitions were short descriptions given by the dictionary
as the meaning of the word. The goal was to distinguish which
definition was describing which word. We built word vectors
for the terms and phrase vectors for the definitions and used
the cosine of the angle between these vector as a classifier. We
collected five definitions whose vectors were closest to the vector
of the verb and then verified whether the correct dictionary
definition was amongst these five. The model that classified more
terms to their correct definitions was considered to be the better
model.

A snapshot of the dataset is presented inTable 5. The accuracy
results are presented in Table 6, where the DisCoCat CopyObj

model achieves the highest accuracy for the terms that are nouns,
and the second best for terms that are verbs (28% vs. the accuracy
of 30% reached by multiplying the word vectors).

TABLE 5 | Sample of the dataset for the term/definition comparison task, cited

from Kartsaklis et al. [26].

Term Main definition Def. 2 Def. 3

Blaze Large strong fire Huge potent flame Substantial heat

Husband Married man Partner of a

woman

Male spouse

Horror Great fear Intense fright Disturbing

feeling

Apologize Say sorry Express regret or

sadness

Acknowledge

shortcoming or

failing

Embark Get on a ship Enter boat or

vessel

Commence trip

Vandalize Break things Cause damage Produce

destruction

TABLE 6 | Accuracy results for the term/definition comparison task, Kartsaklis et

al. [26].

CpObj Multp Addt Cont

Nouns 0.24 0.22 0.17 0.09

Verbs 0.28 0.30 0.25 0.07

Combined 0.19 0.20 0.12 0.06

The best performing models are highlighted in boldface.

TABLE 7 | Examples from a Term-Description dataset, cited from Sadrzadeh et al.

[37].

Term Description

1 Emperor Person who rule empire

2 Queen Woman who reign country

3 Mammal Animal which give birth

4 Plug Plastic which stop water

5 Carnivore Animal who eat meat

6 Vegetarian Person who prefer vegetable

Based on this experiment, we formed a toy experiment and did
a preliminary evaluation of the application of Frobenius algebras
to modeling relative clauses. Similar to the above experiment, we
mined term-description pairs from a dictionary, but this time
the terms were chosen such that their descriptions had a relative
pronoun in them. We then proceeded as before: built vectors for
the term and for the description. A snapshot of the dataset is
presented in Table 7.

The latter used three different composition operators: simple
addition and point wise multiplication, i.e., we just added and
point wise multiplied the word vectors within the descriptions
to obtain a vector representation for the whole relative clause.
We also built vector representations using the Frobenius model
presented above and an extension of it to possessive relative
pronoun “whose.” In the first two models, we had a choice of
either building a vector for the relative pronoun or dropping
it and thus treating it as noise. We presented results for both
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TABLE 8 | Results for the Term-Description dataset, cited from Sadrzadeh et al.

[37].

Frob Frob Mult Mult Add

’s = Id ’s =

∑

i (
−−−−→
noun1)i without

Rel. Pr.

with Rel.

Pr.

/with without

Rel. Pr.

MRR 0.82 0.71 0.78 0.76 0.75

Acc 0.75 0.56 0.62 0.62 0.62

The best performing models are highlighted in boldface.

TABLE 9 | Models correlation with human judgments for the disambiguation task

with normal and neural (NWE) vectors, cited from Milajevs et al. [32].

Method GS11 KS14 NWE

Verb only 0.212 0.325 0.107

Addition 0.103 0.275 0.149

Multiplication 0.348 0.041 0.095

Kronecker 0.304 0.176 0.117

Relational 0.285 0.341 0.362

Copy subject 0.089 0.317 0.131

Copy object 0.334 0.331 0.456

The best performing models are highlighted in boldface.

of these options. For the possessive Frobenius case, we had the
choice of either building a vector for ’s, or treating it as the
unit vector. Again, we presented the results of both cases. We
tested which model achieved a better accuracy (Acc) and a mean
reciprocal rank (MRR). The results are presented in the Table 8,
where both of the Frobenius models achieve the highest accuracy
and MRR.

The differences between the two Frobenius models only
applies to the possessive relative clauses, which were not reviewed
in this article, in the benefit of space. In these models, one has
to build a linear map for the “ ’s ” phoneme. In one model we
summed all the nouns that were modified by this morpheme,
in the other, we simply took it to be the identity map, i.e., the
unit map. In either case, the Frobenius model performed better
than our other implemented models, e.g., the other two models
in which we added the vectors of the words, taking into account
the vector of the relative pronoun or ignoring it, and two other
similar models where we multiplied them.

As another set of experiments, we used the neural word
embeddings of Mikolov et al. [30]. The motivation behind
this task was the popularity and success of the word
embeddings. Often, when vector representations are built from
scratch using count-based methods and on a given corpus,
many parameters have to be taken into account (e.g., size
of the window, the normalization scheme for the counts,
the dimensions of the vector spaces and its size). The
preprepared word embeddings provides a platform wherein
new vectors need not be built for each task and parameters
need not be individually tuned by each experimenter and for
each experiment. The word embeddings provide a standard

framework (to some extent) for all experimenters to do
experiments and compare their results in a more unified
manner. It also relieves us from the task of building the vectors
ourselves.

We used the neural noun vectors of Mikolov et al. [30] and
built adjective matrices and verb tensors and re-experimented
with the disambiguation task presented above. The results are
presented in Table 9. GS11 and KS14 denote the “Sbj Verb Obj”
and “Adj Sbj Verb Adj Obj” datasets with count-based vectors,
and NWE denotes both of these datasets together with the word
embedding vectors.

Our hope was that one of the tensor-based models would do
better here; this would indicate that the tensor models worked
better regardless of their underlying vectors, count-baed or
neural. This was shown to be indeed the case, as the DisCoCat
CopyObj model achieves the highest correlation with human
judgments.

5. BRIEF SUMMARY AND FUTURE WORK

In this paper, we reviewed the general field of categorical
compositional distributional semantics, to which we referred
as DisCoCat. This field introduces grammar awareness into
vectors models of language, otherwise known as distributional
semantics, thus enabling these models to build vectors for
phrases and sentences, using the vectors of the words therein
and their corresponding grammatical relations. The setting
of a DisCoCat is that of a compact closed category, to
which later Frobenius and Bi algebras were added to reason
about relative pronouns and quantifiers. Compact closed
categories, Frobenius and Bi algebras are also the building
blocks of the categorical approach to Quantum Mechanics,
known under the acronym CQM. Another connection to
Quantum formalisms, is the structure preserving passage
from grammatical structure to vectorial meaning, which is
through a functor similar to the Quantization functor of
Topological Quantum Field Theory. In this paper, we presented
a chronology of the developments of the DisCoCat, briefly
went through its theoretical underpinnings and its experimental
validations.

What remains to be done is to relate the setting of DisCoCat
to the Quantum logical approaches to language, such as the work
done by Preller [61], by Widdows [62], and the original seminal
work of Van Rijsbergen [63].
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