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Here, the critical properties of kinetic continuous opinion dynamics model are studied on

(4, 6, 12) and (4, 82) Archimedean lattices. We obtain pc and the critical exponents from

Monte Carlo simulations and finite size scaling. We found out the values of the critical

points and Binder cumulant that are pc = 0.086(3) and O∗
4 = 0.59(2) for (4, 6, 12); and

pc = 0.109(3) and O∗
4 = 0.606(5) for (4, 82) lattices and also the exponent ratios β/ν,

γ /ν, and 1/ν are, respectively: 0.23(7), 1.43(5), and 0.60(3) for (4, 6, 12); and 0.149(4),

1.56(4), and 0.94(4) for (4, 82) lattices. Our new results disprove of the Grinstein criterion.

Keywords: Monte Carlo simulation, critical exponents, phase transition, non-equilibrium

PACS numbers: 05.10.Ln, 05.70.Fh, 64.60.Fr

1. INTRODUCTION

In 1986 Galam introduced the use of local majority rules to study voting systems as bottom-
up democratic voting in hierarchical structures [1], see also the references [2–4]. Although
sociophysics has been rejected by some physicists in the eighties [5], it is has become today an
active and promising area of research for interdisciplinary physicists [6, 7].

In this same context, in 1982, de Oliveira [8] proposed a non-equilibriummodel called Majority
Vote Model (MVM). On two-dimensional lattices it shows critical phenomena with critical
exponents ν, β , and γ , as for [8–10] the equilibrium Ising model [11, 12], in agree with a hypothesis
of Grinstein et al. [13].

In 2012 Biswas et al. [14] proposed a kinetic model of opinion formation. This model kinetic
continuous opinion dynamics (KCOD) presents mutual interactions between the individual i, j
that can be both positive and negative. In this model the fraction of negative interactions is
represented by a parameter p in order to characterize the different types of distributions for the
mutual interactions. The results of the continuous version the KCOD model, obtained through
numerical simulations indicate the existence of a universal continuous phase transition at p = pc
with exponents of mean field (νd = 2.00(1), β = 0.50(1), and γ = 1.00(1)).

Similar to this KCODmodel is the one of Deffuant et al. [15], where each person i selects another
person j to talk to (no lattice) and both move their opinion toward that of the other person. For
the Krause-Hegselmann model [16], each person averages over the opinions of the others in the
population, again no lattice. While these two models use continuous opinions, those in the Sznajd
model [17] usually are Ising-like (+1 or −1) and restricted to a square lattice with four nearest
neighbors. Two Sznajd people happening to agree in their opinion convince all their six neighbors
of this opinion. In all these models one may start from a random distribution of opinions and
then check if the opinions all converge to one consensus, two opposing camps of opinions, or a
fragmentation into many opinion clusters [18–20].
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Recently, Mukherjee and Chatterjee [21] studied the KCOD
model on square and cubic lattices (2D and 3D). Their numerical
results indicate that the same critical behavior of the KCOD
model and the Ising model in the corresponding dimensions.

In this work, we studied the KCOD on two Archimedean
lattices—namely, (4, 6, 12), and (4, 82)—through extensiveMonte
Carlo simulations. Pictures of the (4, 6, 12) and (4, 82) AL are
shown in Figure 1. The AL are vertex transitive graphs that can
be embedded in a plane such that every face is a regular polygon.
Kepler showed that there are exactly 11 such graphs. The AL are
labeled according to the sizes of faces incident to a given vertex.

FIGURE 1 | Pictures of the (4, 6, 12) and (4, 82) AL.

FIGURE 2 | (Color on-line) O, OF, and O4 vs. p, for sizes L = 23, 24, 25, 26 and 27 and N = 12L2 (for 4, 6, 12) AL (first line) and N = 4L2 sites for (4, 82) AL

(second line).

The face sizes are sorted, starting from the face for which the list
is the smallest in lexicographical order. In this way, the square
lattice gets the name (4, 4, 4, 4) (abbreviated to (44)), honeycomb
is called (63), and Kagome is (3, 6, 3, 6). Here, we also compared
our results with those of the MVMmade on (3, 4, 6, 4) and (34, 6)
AL.

One of our goals, besides finding the critical exponents of

the KCOD model on (4, 6, 12) and (4, 82) AL, is to verify the

Grinstein et al. criterion [13], for non-equilibrium stochastic spin

systems with up-down symmetry on (4, 6, 12) and (4, 82) AL
belong to the same universality class as the Ising model on (44)
as suggested by Grinstein et al. [13]. Here, we also compared our
results with those of the MVM on (4, 6, 12) and (4, 82) [22].

2. DEFINITION AND SIMULATION

The KCOD model [14] is defined by a set of individuals with
continuous opinion variables oi(t), where the opinion of a person
i at time t, takes the values in the interval [−1,+1], is situated on
every node of the (4, 6, 12) and (4, 82) AL with N = 12L2 sites
for (4, 6, 12) and N = 4L2 sites for (4, 82). In a population of
N individuals, opinions change out of pair-wise interactions via
mutual influences/couplings µij as:

oi(t + 1) = oi(t)+ µijoj(t) (1)

oj(t + 1) = oj(t)+ µijoi(t) . (2)
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FIGURE 3 | Log-log plot of the dependence of the opinion O* = O(pc) on the

linear system size L. Fitting data, we obtained the estimation for the critical

ratio β/ν.

FIGURE 4 | Log-log plot of the OF at pc vs. L for (4, 6, 12), and (4, 82) AL.

Fitting data, we obtained the estimation for the critical ratio γ /ν.

The pairs i, j are unrestricted, meaning the original model is
defined on a fully-connected graph, giving a mean-field-like limit
(infinite range interactions). The pairwise interaction implies no
sum over the index j. with real random couplings µij. Agent
i updates his/her opinion via Equation (1) by interacting with
agent j and is influenced by the coupling µij . The opinions are
limited to −1 ≤ oi(t) ≤ 1. If the opinion value of an individual
become higher (lower) than +1 (−1), then it is set equal to +1
(−1). This bound, along with Equation (1), defines the dynamics
of themodel. Here,µij is a continuous random variable defined in
the range [−1,+1], i.e., it takes a random real value in the range
[−1, 0] or ([0, 1]) with probability p or (1 − p). In other words,
the disorder parameter p denotes the fraction of negative pairwise
interactions. The average opinion O = |

∑

i oi|/N measures the
ordering in the system. As a function of the fraction p of negative
interactions a symmetry breaking transition occurs between an

FIGURE 5 | OF at pχmax (N) vs. L for (4, 6, 12) and (82), AL. Fitting data, we

obtained another estimation for the critical ratio γ /ν.

FIGURE 6 | Plot of ln |pc(L)− pc| vs. the linear system size L for (4, 6, 12) and

(4, 82) AL. Fitting data, we obtained the estimation for the critical exponent 1/ν.

ordered and a disordered phase: below a certain value pc of the
parameter p, the system is ordered (giving a non zero value of the
opinion O, defined in the following), while it is disordered above
pc (O = 0).

The critical properties of model we are interested in are
the order parameter O, the order parameter fluctuations
(susceptibility)OF and the reduced fourth-order cumulant of the
O, namely here by O4, defined as

O(p) ≡ 〈O〉, (3a)

OF(p) ≡ N
(

〈O2〉 − 〈O〉2
)

, (3b)

O4(p) ≡ 1−
〈O4〉

3〈O2〉2
, (3c)

where 〈· · · 〉 stands for time averages, computed at the steady
states. Nrun independent simulations are averaged over.
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FIGURE 7 | (Color on-line) Data collapse of the opinion O, OF, and O4 shown in Figure 2 for L = 32, 64, and 128 (4, 6, 12) and (4, 82) AL. The exponent ratios used

here were β/ν = 0.23(7), γ /ν = 1.43(5), and 1/ν = 0.60(3) for (4, 6, 12), and β/ν = 0.149(4), γ /ν = 1.56(4), and 1/ν = 0.94(4) for (4, 82) AL.

TABLE 1 | Critical temperatures, exponents and effective dimensionalities for

MVM on (4, 6, 12) and (4, 82) AL [22].

MVM (4, 6, 12) (4, 82) (44) Ising

Tc 0.651 (3) 0.667 (2)

β/ν 0.105 (8) 0.113 (2) 0.125

γ /νT=Tc 1.48 (11) 1.60 (4) 1.75

γ /νT=T
∗

1.44 (4) 1.66 (2) 1.75

1/ν 1.16 (5) 0.84 (6) 1

Deff. 1.78 (7) 1.83 (6) 2

For completeness we cite data for Ising model on (44 ) as well [24].

The quantities O,OF, and O4 depend on the disorder
parameter p and obey

O = L−β/ν fo(x), (4a)

OF = Lγ /ν fof (x), (4b)

dO4

dp
= L1/ν fo4(x), (4c)

(finite-size scaling) with β , γ , and ν as the usual critical
exponents, fo(x), fof (x), fo4 (x) as the finite-size scaling functions
and

x = (p− pc)L
1/ν (4d)

TABLE 2 | Critical parameter, exponents and effective dimension for KCOD model

on (4, 6, 12) and (4, 82).

KCOD (4, 6, 12) (4, 82) (44)

pc 0.086 (3) 0.109 (3) 0.2266 (1)

β/ν 0.23 (7) 0.149 (4) 0.125 (1)

γ /νp=pc 1.43 (5) 1.56 (4) 1.75 (1)

γ /νp=p
∗

1.43 (3) 1.54 (5)

1/ν 0.60 (3) 0.94 (4) 1.01 (1)

Deff 1.89 (6) 1.76 (7) 2

For completeness we cite data for KCOD model on (44 ) as well [21].

as the scaling variable. Thus, the size dependence of O and OF
gives us the exponents β/ν and γ /ν, respectively. The maximum
of susceptibility also scales as Lγ /ν . Moreover, the value of p∗ for
which the susceptibility has a maximum scales with L as

p∗ = pc + bL−1/ν with b ≈ 1. (5)

Therefore, Equations (4c) and (5) give the exponent 1/ν.
The effective dimensionality, Deff, is given by the hyperscaling
hypothesis

2β/ν + γ /ν = Deff. (6)

Monte Carlo simulations were made on (4, 6, 12) and (4, 82)
AL with various systems of size N = 768, 3,072, 12,288,
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49,152, and 196,608 for (4, 6, 12) and N = 256, 1,024,
4,096, 16,384, 65,536, and for (4, 82) AL. We use 2 ×

105 Monte Carlo steps (MCS) to make the system reach
the steady state, and then the time averages are estimated
over the next 3 × 105 MCS. One MCS is accomplished
after N attempts to update the opinions of agents i and j,
considering the evolution Equations (1) and (2). The results
are averaged over Nrun (500 ≤ Nrun ≤ 2, 000) independent
simulation runs for each lattice and for given set of parameters
(p,N).

3. RESULTS AND DISCUSSION

Figure 2 displays the dependence of the opinion O, OF, and
O4 on the disorder parameter p, obtained from simulations
on (4, 6, 12) and (4, 82) AL with N ranging from N = 256
to 196,608 sites. The shape of O(p), OF, and O4 curves, for
a given value of L, indicate the occurrence of a second-order
phase transition in the system. The phase transition occurs at
the value of the critical disorder parameter pc. Such critical
disorder parameter pc is estimated as the point where the curves
of the Binder cumulant O4 for different system sizes N intercept
each other [23]. The corresponding value of O4 is represented
by O∗

4 . Then, we obtain pc = 0.086(3) and O∗
4 = 0.59(4);

pc = 0.109(3) and O∗
4 = 0.606(5) for (4, 6, 12), and (4, 82) AL,

respectively.
The results obtained from Figures 3–6 and used in Figure 7

are summarized in Table 2.
The excellent curve collapses Figure 7 for distinct system sizes

corroborates our estimated values for pc and exponent ratios β/ν,
γ /ν and 1/ν.

The resulting critical exponents and disorder parameters
are collected in Table 2. One can also see that the exponent
ratios β/ν, γ /ν, 1/ν are similar to MVM, Table 1, and are

different from the Ising model contrary to the Grinstein’s

hypothesis [13]. They are different from β/ν = 0.125 and
γ /ν = 1.75 obtained for a d = 2 lattices, but obey
hyperscaling relation (within the error bars). Equation (6)
yields effective dimensionality of systems Deff = 1.89(6)
for (4, 6, 12) and Deff = 1.76(7) for (4, 82). The effective
dimensionalities of KCOD on our two AL are close to those
for MVM on (4, 6, 12) AL (Deff = 1.78(7)) and on (4, 82) AL
(Deff = 1.83(6)). The results of simulations are collected in
Table 2.

4. CONCLUSION

We studied a non-equilibrium KCOD model through extensive
Monte Carlo simulations on (4, 6, 12) and (4, 82) AL. On
these lattices, the KCOD model shows a second-order phase
transition. OurMonte Carlo simulations suggest that the effective
dimensionality Deff is close to two, i.e., that hyperscaling relation
2β/ν + γ /ν ≈ 2 may be valid.

Finally, we remark that the critical exponents γ /ν, β/ν, and
1/ν for KCOD on (4, 6, 12) and (4, 82) AL are similar to theMVM
model on (4, 6, 12) and (4, 82) AL [22], see Tables 1, 2. Therefore,
this model not belong to the Ising universality class [24] and the
hypothesis of Grinstein has been disproved.
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