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The current-time characteristic during high power pulsed magnetron sputtering is

measured under identical conditions for seventeen different target materials. Based on

physical processes such as gas rarefaction, ion-induced electron emission, and electron

impact ionization, two test parameters were derived that significantly correlate with

specific features of the current-time characteristic: (i) the peak current is correlated to

the momentum transfer between the sputtered material and the argon gas, (ii) while the

observed current plateau after the peak is connected to the metal ionization rate.
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1. INTRODUCTION

From a curiosity within the coating technology [1], high power pulsed magnetron sputtering
(HPPMS) has rapidly become a well-established deposition technique with a broad application
field. A full review of these applications would be out of the scope of this paper, so only a few
examples will be given. The usage of HPPMS has been demonstrated for different applications
such as hard coatings [2–4], optical thin films [5–7], electrical applications [8–10], catalysis [11–
13], adhesive and/or low friction coatings [14, 15], anti-bacterial thin films [16], and conformal
coatings [17]. The technique has introduced also some interesting new insight in terms of plasma
physics which are presented in a large number of scientific papers, and summarized in a few highly
cited reviews [5, 18–20]. The intricate dynamics is transcribed by the current waveform which
has been studied in several ways. An overall understanding of the discharge current behavior has
now been reached. Processes such as gas rarefaction, self-sputtering, electron emission by single
and multi-charged species, and electron impact ionization come into play to define the current
waveform. An overview of possible current waveforms has been presented by Wu et al. [21]. As
commonly known, the mentioned processes depend strongly on the target material. Nevertheless,
only a limited number of papers has studied the impact of the target material on the current
waveform [22]. Moreover, a literature search reveals that only a limited number of materials are
actually studied. The literature study was performed by using the combination of the keywords
(HPPMS or HIPIMS) and (element) in the Web of Science. Indeed, more than half of the papers
(397 out of the 727) deal with Ti, Al and/or Cr. Rather arbitrarily we define “a well-studiedmaterial”
as a material with 10% of the number of papers of the most studied material, i.e. titanium. From
this definition only six elements (Ti, Al, Cr, Si, Cu, and Nb) can be given this label. The wide variety
in experimental conditions makes comparison difficult. Therefore, in this paper we have studied
the current waveform for 17 different target materials under identical conditions. The selection has
been made based on metals studied to some extend in literature [Ti, Al, Cr, Cu, Nb, Zn, V, Ag, Ta,
Zr, and Y, with exception of Si (semiconductor), and Fe (magnetic)] together with some less studied
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materials (Mo and Mg), and three new materials (Pb, Sm,
and Nd). The requirement to obtain the current waveform for
identical conditions sometimes prevent to reach typical HPPMS
conditions, but as will be discussed further this has no dramatic
effect on the studied correlations. To make some reasoning more
clear specific experiments were performed with Mg.

2. MATERIALS AND METHODS

The experiments were performed in a cubic (0.5× 0.5× 0.5 m3)
stainless steel vacuum chamber pumped by a combination of a
turbomolecular pump and a rotary vane pump to a base pressure
of less than 5× 10−4 Pa as measured with a Penning gauge. Two
inch targets (Testbourne and K.J. Lesker with a purity higher
than 99.5%) were mounted on a home-made circular planar
magnetron. Before the HPPMS experiments, the target was
sputter cleaned in DC mode until a constant discharge current
was registered. The HPPMS experiments were performed in pure
argon at a pressure of 1.8 Pa, obtained by an argon flow of 70 sccm
(standard cubic centimeter per minute) as measured with a
capacitance gauge. The magnetron was powered with a Melec
SIPP2000 power supply. A ferrite ring, and cable twisting, were
used to reduce any electromagnetic interference. The voltage
probe was a Tektronix P1500A (bandwidth 500 MHz).

To measure the discharge current, a TCPA300 current
transducer was used in combination with a TCP3030 current
probe (bandwidth 15 MHz). The voltage and current were
recorded with a DSO1024A (bandwidth 200 MHz) oscilloscope.
An overview of the experimental set-up is schematically depicted
in Figure 1. All experiments were performed by applying a 500 V
voltage pulse with a pulse length of 400 µs, and a duty cycle
of 10%. These settings were chosen, together with the argon
pressure, to allow a stable plasma for all elements under identical
conditions. Additional experiments as a function of the erosion
groove depth were performed with magnesium. To avoid any
effects of target contamination and/or misalignment between the
target and the magnet assembly, the target was not removed
from the vacuum chamber to measure the erosion depth. To
access the erosion depth, the linear correlation between the
erosion groove depth and the discharge voltage (obtained during
DCMS) observed during previous work [23, 24] was used. For
different erosion depths of the target, I-V characteristics were
measured by changing the applied voltage. Also the deposition
rate was determined. The latter was obtained by dividing the
measured thickness of deposited Mg films by the deposition
time. The film thickness was measured by profilometry (Taylor-
Hobson, Talystep). One of the derived correlations (see section
3.3) is based on the collision between the sputtered atoms with
the working gas atoms. To affect the discharge properties these
collisions need to take place close to the target. To calculate
the average transferred energy per sputtered atom Etrans, particle
trajectory Monte Carlo simulations were performed using the
SIMTRA code [25, 26]. The experimental set-up (see Figure 1)
was implemented, and for each target material 2,000 test
particles were launched from the target. The test particles were
randomly selected from a Thompson energy distribution, and a

cosine angular distribution. The number of collisions within a
cylindrical volume defined by the target radius (2.54 cm) and a
height of 2.5 cmwas calculated. The choice of the volume is rather
arbitrarily, but it is expected that the energy transfer within this
volume will affect the discharge properties. A similar assumption
was made by Raadu et al. [27] in the derivation of the ionization
region model for HPPMS.

3. RESULTS AND DISCUSSION

3.1. Experiments with Magnesium
I-V characteristics of magnetron discharge are commonly
presented on a log-log plot as the I-V characteristic can be
empirically described as I = kVn. In the case of HPPMS its
quite common to plot the peak current as a function of the
discharge voltage. A linear fit through the data points permits
in this way to determine the value of n which expresses the I-V
characteristic steepness and reflects the ionization efficiency in
the considered working conditions. To illustrate the impact of
the steepness on the overall waveform measured during HPPMS,
magnesium targets were sputter eroded. The influence of the
target erosion groove depth can be understood from the increase
of the magnetic field strength when the target becomes more
eroded. At sufficient high pressure, the increased magnetic field
strength generally results in an increase of the steepness [28]. This
behavior was shown for HPPMS by Čapek et al. by increasing the
target-to-magnet distance with paramagnetic Cu spacers [29, 30].
Magnesium has one of the highest sputtering yield as compared
to other metals in this study. This permits to erode the target in a
relative short time, and study the effect of target erosion on the
HPPMS waveform and the I-V characteristic of the discharge.
Figure 2 shows the change of the current waveform as a function
of the target erosion depth. A clear peak is followed by stable
plateau irrespective of the erosion groove depth. The figure shows
also an analysis of the peak current and the plateau current. Both
strongly increase in a similar fashion with the erosion groove
depth. The ratio between both (not shown) remains more or
less constant. The I-V characteristics for the same erosion depths
were measured by increasing the applied voltage between 300 V
and 650 V.

The steepness of the slope n is shown as function of the
erosion depth in the top left panel of Figure 2. An increase of
the steepness is observed. It is clear that with increasing erosion
groove depth both the peak current, the plateau current, and the
steepness of the I-V characteristic increase. The right top panel
shows the deposition rate as a function of the erosion groove
depth. A linear correlation (correlation coefficient 0.9725 for 8
data points) is observed.

3.2. Material Dependency
Figure 3 shows the measured current (I-t) (red traces), and the
voltage-time (V-t) pulse (blue traces) for the 17 different target
materials. The effective discharge voltage for all materials lies
between 482 and 504 V, but no systematic trends between the
used target material and the average discharge voltage within
the pulse were noticed. A well-defined rectangular voltage is
observed, except for Ag, Cu, Pb, W, and Zn. For these latter
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FIGURE 1 | Schematic overview of the experimental set-up. The stainless vacuum chamber is pumped by a combination of a turbomolecular pump combined with a

rotary vane pump. The planar cylindrical magnetron is powered by a HiPIMS power supply. A ferrite ring, and cable twisting, were used to reduce any electromagnetic

interference. The voltage probe was a Tektronix P1500A (bandwidth 500 MHz). To measure the discharge current, a TCPA300 current transducer was used in

combination with a TCP3030 current probe (bandwidth 15 MHz). The voltage and current were recorded with a DSO1024A (bandwidth 200 MHz) oscilloscope.

Depositions were performed on silicon substrates introduced in the vacuum chamber through a load lock.

elements, a transient regime toward 0 V is noticed when the
discharge voltage is switched off. This behavior is probably related
to the higher plasma impedance for these target materials which
hinders the charge removal in the pulse-off time. This point is
inspired by the fact that exactly for these five materials the effect
of gas rarefaction is the strongest (see further, Figure 4).

A clear difference can be noticed in both peak current and
the overall behavior of the discharge current as a function of
time between the different materials. Nevertheless, all current
waveforms have a similar shape fitting to mode V as presented
in the paper of Wu et al. [21], i.e. a clear peak followed by a stable
plateau current. For Nd and Sm, the peak is less defined, and
one could also argue that the shape fits to mode III. Important
for the following discussion is that for some materials (Ag, Cu,
and Zn) the selected settings do not result in a HPPMS discharge
according to the classification by Gudmundson et al. [31]. For
all other materials the peak power density is well above the
defined threshold of 0.05 kW.cm−2 for direct current magnetron
sputtering (DCMS) and ranges between 0.1 kW.cm−2 (W) and
0.6 kW.cm−2 (Nb). Statistically significant correlations between
on the one hand some characteristics such as peak current
and plateau current, and on the other hand material properties
were systematically investigated. The results are discussed in the
following subsections.

3.3. Peak Current
The presence of a peak in the I-t diagram has been discussed
in the literature. The main reason is the rarefaction of the
working gas due to momentum transfer between the sputtered
atoms, and working gas atoms. This reasoning is substantiated

by experimental evidences based on different plasma diagnostic
techniques [32]. However, modeling also indicates there is an
alternative mechanism for gas rarefaction, i.e. ionization losses
[33]. Although the authors of the latter paper conclude that
the sputter wind contribution would become more important
at higher pressure. From a more conceptual viewpoint, the
above reasoning regarding gas rarefaction can easily be tested.
On the one hand, the applied voltage will, similarly to DCMS,
result in a current increase defined by the discharge impedance.
Indeed, as illustrated with the magnesium experiments, the peak
current increases if the discharge is run in a condition for
which ionization is more efficient. The latter can be explained
from an increased effective secondary electron emission. The
electrons are trapped closer to the target for a stronger magnetic
field. This results in more ionization within the sheath. The
electrons formed during the ionization can also gain energy
within the sheath which can be seen as a multiplication of the
initial secondary electron [34]. The electron yield is also strongly
material dependent, and therefore, as shown by Depla et al. [28],
the steepness of the I-V characteristic depends on the ion induced
electron yield of the target material. As the steepness of the I-
V characteristic increases with increasing electron yield, one can
therefore expect a higher peak current. On the other hand, the
discharge current will decrease due to the momentum transfer
as the local density of potential charge carriers will decrease.
The momentum transfer can be estimated on the average energy
of the sputtered atoms, and the target sputter yield. Based on
the energy transfer function 3 (see Equation 2), the average
momentum transferred to the argon atoms can be calculated.
For materials with a higher sputter yield, this transfer will occur
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FIGURE 2 | The current and voltage pulse measured for Mg for different

erosion groove depths. The peak current and the plateau current as a function

of the erosion depth is shown in the top panels. The left top panel shows the

slope of the I-V characteristic. The latter was determined by fitting the

empirical function I = kVn to the experimental data. Correlation coefficients

larger than 0.95 were obtained for all fits. To avoid any influence of target

contamination only experiments with an average discharge power above 75 W

were used. The right top panel shows the measured deposition rate as a

function of the erosion groove depth. The argon pressure was fixed at 1.8 Pa

for all shown results. For the deposition experiments, a 500 V rectangular

pulse was applied for 400 µs. The duty cycle was set equal to 10%.

more frequently. The above reasoning leads to the following test
parameter,

ptest,1 =
Y

√

23EavgmM

γISEE
(1)

where Y is the sputter yield of the target material, Eavg the average
energy of the sputtered atoms, mM the atomic mass of the target
material, and γISEE the ion induced electron yield. The energy
transfer function 3 equals

3 =
4mArmM

(mAr +mM)2
(2)

FIGURE 3 | The current and voltage pulse measured for 17 different metals.

The argon pressure was fixed at 1.8 Pa. A 500 V rectangular pulse was

applied for 400 µs. The duty cycle was set equal to 10%.

where mAr the atomic mass of argon. The sputter yield of the
target material can be calculated based on the approach published
before by our research group [35], i.e. the ion energy is set
equal to 0.75 times the average discharge voltage in the pulse,
and the sputter yield is corrected for the contribution of high
energetic neutrals. The average energy of the sputtered atoms was
calculated based on the simplified equation proposed by Eckstein
[36],

Eavg = 2Us ln

[

Emax

Us

]

(3)

where Us is the surface binding energy, and Emax the maximum
energy of the sputtered atoms. The latter is approached in the
paper by Eckstein as 3Eion, with Eion the ion energy. As shown
by Eisenmenger-Sittner et al. [37] a better approach for normal
incidence impact of the ion is f3Eion with f equal to 0.4. The
ion induced electron yield is calculated based on the equation
presented in Depla et al. [28]. The above reasoning is not
completely correct as one needs to account for the number of
collisions that occurs close to the target. Collisions between the
sputtered atoms and the argon atoms that take place far from the
target will not influence the discharge properties. As discussed
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FIGURE 4 | he natural logarithm of the peak current as function of the total

momentum transfer divided by the ion induced yield of the target material. The

definition of ptest,1 is given by Equation (4). The line is a fit through the data

points, excluding the value of Pb (open marker). The gray line is a linear fit

through the data, excluding the values of Ag, Cu, Pb, and Zn. The horizontal

striped line is the peak power density limit for DCMS as defined by

Gudmundsson et al. [31].

in section 2 the energy transferred per sputtered atom in a small
volume above the target can be simulated. This leads to a better
description of the test parameter as

ptest,1 =
Y
√
2EtransmM

γISEE
(4)

As the experimental pressure is relatively high, the number of
collisions that occur in the volume above the target is rather
high, i.e. on average approximately 15 collisions. Therefore, the
first approach overestimates the transferred momentum only by
a factor of 2. Moreover, there is a linear correlation between the
momentum transfer calculated with the two methods. Figure 4
shows the correlation between the calculated value for ptest,1 (see
Equation 4), and the (natural) logarithm of the measured peak
current. A strong significant correlation is found (correlation
coefficient r2 = 0.7416 for 17 data points, degree of confidence
99.9995%). One element, i.e. Pb, deviates from the fitted line
(based on studentized residual analysis with a significance level
of 0.05).

The much larger cross section for electron impact ionization
(see further) can probably explain this behavior. The return
probability toward the cathode will be higher for materials
with a higher cross section for electron impact ionization. As
the self-sputtering yield of Pb is lower than the argon based
sputter yield, the effective sputter yield of Pb will be lower, or
stated differently a lower value of ptest,1 can be expected. If

FIGURE 5 | The ratio between the average current measured in the plateau,

and in the peak, normalized with the electron yield defines the test parameter

2 (see also Equation 4). This parameter shows a linear correlation with the

ionization rate. The latter is calculated according the Deutsch-Mark formalism.

The linear fit (see black line), and the presented correlation coefficient are

calculated without the data for Mg (open marker). The gray line is the linear fit

excluding the datapoints for Ag, Cu, Mg, and Zn.

the Pb data point is considered as an outlier, the correlation
coefficient even increases to r2 = 0.8765 (16 data points, degree
of confidence is practically 100%). One could argue that the three
materials with a low peak current (Ag, Cu, and Zn) have a strong
impact on the linear correlation. However, even when these three
elements are dropped from the analysis, the correlation is still
statistically significant (r2 = 0.4425 for 13 data points, degree
of confidence 99.345%), and the fitted line (indicated in gray in
Figure 4) hardly changes. For these three elements the resulting
peak current is low, and a DC like discharge current density
is observed. Rossnagel [38] has studied gas rarefaction during
DCMS, and used a similar argumentation that leads to Equation
(1). Further, in a study on I-PVD by the same author [39], the
effect of gas density reduction on the ionization probability was
already discussed. It is interesting to notice that the correlation
between the peak current and the test parameter holds for
both the HPPMS and the DCMS like conditions. Hence, the
result shown in Figure 5 allows to significantly conclude that
the sputter wind contribution to gas rarefaction is an important
mechanism. This seems to be in contrast to the conclusion
made by Huo et al. [33] that ionization losses is the dominant
mechanism for gas rarefaction. This latter conclusion is based
on modeling of the HiPIMS current waveform solely recorded
for Al under identical conditions as presented in the current
paper, i.e. 400 µs long pulses at 1.8 Pa argon pressure for a
two inch diameter magnetron. From Figure 4 it is clear that in
the case of Al, the sputter wind contribution is rather small as
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compared to other metals which agrees with the conclusion by
Huo et al. [33]. However, Figure 4 also shows that the conclusion
cannot be generalized. Moreover, it is clearly necessary to analyze
sufficient materials. Based on a seven element study (Al, C,
Cr, Cu, Nb, Ti, and W) Anders et al. [22] conclude “The
very large differences between materials cannot be ascribed to
the different sputter yields but they indicate that generation and
trapping of secondary electrons play a major role for current-
voltage-time characteristics.” When a similar plot of the peak
current as Figure 4 is made but now as a function of the
sputter yield, a significant correlation is found (r2 = 0.5795, for
17 elements, degree of confidence 99.981%). When the plot is
however restricted to the same six elements as in the study of
Anders et al. no significant correlation is found. Hence, within
their experimental framework, the conclusion of Anders et al. is
correct according to our study, but clearly when the dataset is
expanded, another conclusion can be drawn.

3.4. Plateau Current
The peak is followed by a stabilization of the discharge current.
The constant current in this regime is referred to as the plateau
current. According to Wu et al. [21], the current waveform can
be understood as follows. Before the maximum the argon ions
are already replaced by metal ions, and the secondary electron
yield decreases because the metal ions contribute less to the
target secondary electron emission.When equilibrium is reached,
the plasma is a mixture of metal and argon gas ions. When no
highly charged metal ions are produced, the discharge current
will stabilize, and the waveform will show a plateau until the
end of the pulse. Again a simple conceptual calculation can be
performed to test this hypothesis. As the current decrease is the
result of the replacement of argon by metal ions, the relative
current decrease should scale with the ionization rate of the metal
atoms. Also, the magnitude of the current decrease will depend
on the steepness of the I-V characteristic, i.e. the sharper the I-V
characteristic, the stronger the effect. As mentioned before, the
sharpness of the I-V characteristic scales almost linearly with the
electron yield. As such the following test parameter is derived,

ptest,2 =
Iavg,plateau

Iavg,peakγISEE
(5)

The ionization rate can be calculated from the cross section for
electron impact ionization, and the electron energy distribution.
The latter is assumed to be Maxwellian with an electron
temperature of 6 eV. This approximation is also used in advanced
models for high power impulse magnetron sputtering (HiPIMS)
[27, 40, 41]. The exact electron temperature has however little
impact on our analysis. The cross section for electron impact
ionization was calculated according the Deutsch-Mark semi-
classical formalism [42–45]. The input data for this formalism,
such as the ionization energy in the (nl) subshell, and the radius
of maximum radial density of the atomic subshell characterized
by the quantum numbers n and l, were taken, as suggested in the
papers by Deutsch et al., from Desclaux [46]. Figure 5 shows the

test parameter ptest,2 as a function of the metal ionization rate. A
linear correlation is found which confirms the above reasoning.

When the DC like results (Ag, Cu, and Zn) are removed from the
analysis (see gray line) the relation correlation is hardly affected.

Again, one outlier, i.e. magnesium, is observed (based on
a studentized residual analysis with a significance level 0.05).
This is not surprising as the opposite reasoning as related to
Figure 4 can be made. In Figure 4, Pb was observed to deviate
from the found correlation. It was argued that the large cross
section for impact ionization is probably the cause. In the present
case, the replacement of argon by magnesium will be small
because the momentum transfer between magnesium and argon
is not efficient. This also agrees with the fact that this test
parameter is almost constant for Mg, irrespective of the steepness
of the I-V characteristic. Indeed, both the peak and the plateau
current increase with the erosion groove depth (see Figure 2).
As discussed before, the deposition rate for Mg scales linearly
with the erosion depth. So despite more Mg atoms are sputtered,
the effect on the decrease of the plateau is minimal because the
sputtered Mg atoms do not replace the argon atoms, and only a
limited impact of gas rarefaction is observed.

4. CONCLUSION

Based on two simple conceptually derived test parameters, the
influence of the target material on 400µs long current waveforms
during HPPMS can be understood. The peak current is defined
by gas rarefaction which seems to be dominated by the sputter
wind contribution. The plateau current noticed after the peak
correlates to the ionization rate of the metal. As this study
summarizes data of seventeen different metals, the correlations
allow to predict the discharge current waveform of other less
studied materials.
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