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The generalized diffusion equations with fractional order derivatives have shown be

quite efficient to describe the diffusion in complex systems, with the advantage of

producing exact expressions for the underlying diffusive properties. Recently, researchers

have proposed different fractional-time operators (namely: the Caputo-Fabrizio and

Atangana-Baleanu) which, differently from the well-known Riemann-Liouville operator,

are defined by non-singular memory kernels. Here we proposed to use these new

operators to generalize the usual diffusion equation. By analyzing the corresponding

fractional diffusion equations within the continuous time random walk framework, we

obtained waiting time distributions characterized by exponential, stretched exponential,

and power-law functions, as well as a crossover between two behaviors. For the mean

square displacement, we found crossovers between usual and confined diffusion, and

between usual and sub-diffusion. We obtained the exact expressions for the probability

distributions, where non-Gaussian and stationary distributions emerged. This former

feature is remarkable because the fractional diffusion equation is solved without external

forces and subjected to the free diffusion boundary conditions. We have further shown

that these new fractional diffusion equations are related to diffusive processes with

stochastic resetting, and to fractional diffusion equations with derivatives of distributed

order. Thus, our results suggest that these new operators may be a simple and

efficient way for incorporating different structural aspects into the system, opening new

possibilities for modeling and investigating anomalous diffusive processes.

Keywords: fractional-time operators, anomalous diffusion, continuous time random walk, fractional order

derivatives, fractional calculus

1. INTRODUCTION

The random walk concept is one of the broadest and versatile paradigms to deal with statistical
fluctuations. The term “random walk” was coined in 1905 by Pearson [1], but the fundamental
relationship between this concept and the usual diffusion equation was reported earlier in the
seminal works of Rayleigh [2–4] in sound theory, Bachelier [5] in economics, Einstein [6], and
von Smoluchowski [7] in the Brownian motion theory. Due to this intrinsic relation, the usual
random walk is characterized by Gaussian, Markovian, and ergodic properties, which lead to a
linear time dependence of the mean square displacement, (1x)2 ∼ t. The versatility of this
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concept relies on the possibility of generalizations and extensions
to describe systems with one or more characteristics of
anomalous diffusion: non-Gaussian distributions; long-range
memory effects (non-Markovian); non-ergodicity; divergent
mean square displacement (Lévy walks); and nonlinear mean
square displacement, (1x)2 ∼ tα (sub-diffusion: α < 1,
superdiffusion: α > 1, confined or saturated diffusion: α = 0).

In the context of generalizations, the first landmark is the
work proposed in 1965 by Montroll and Weiss [8], in which
they introduce the continuous time random walk concept (see
[9] for a general overview). This framework is characterized by a
joint distribution of jump length and waiting time ψ(x, t), where
λ(x) =

∫ ∞
0 dtψ(x, t) is the jump length distribution and ω(t) =

∫ ∞
−∞ dxψ(x, t) is the waiting time distribution. Subsequently, a
connection with a generalized master equation is proposed to
discuss memory effects in the continuous time randomwalk [10–
12]; the waiting time distribution ω(t) is strictly related to the
memory kernel of the generalized master equation. Moreover,
natural extensions of both random walk and continuous time
random walk were proposed to study transport properties in
systems with structural complexity, such as disordered, random,
and fractal environments [13].

The second landmark, “a modern era of the continuous
time random walk” according to Kutner and Masoliver [9],
is the development of the intrinsic relationship between this
formalism and the fractional diffusion equations. Among the
seminal works, we have found a simple mention in the
work of Klafter et al. [14] on the possibility of having a
fractional diffusion equation to describe anomalous transport.
However, were Hilfer et al. [15] that, 90 years after Einstein’s
work [6], established a rigorous and precise connection between
the continuous time random walk and the fractional master
equation as well as with the fractional diffusion equation (a
special case of the former). This result was later extended
by Compte [16] in the long-time limit, where it is shown
that any decoupled continuous time random walk having no
characteristic scale of time or space (power-law memories)
corresponds to a time- or space-fractional diffusion equation,
respectively with Riemann-Liouville time derivative or Riesz
space derivate. The subsequent success and development of the
fractional approach are well documented in two review articles by
Meztler and Klafter [17, 18], and in several articles by Barkai [19–
22].

Since memory effects underlying a continuous time
random walk are implicitly considered by the differential
operators, the versatility of the fractional formalism is mainly
related to two remarkable features. First, this formalism
handles very well the physical requirements of a system
by dealing boundary conditions and external forces in a
simple manner. Second, it takes advantage of traditional tools
from mathematical physics and statistics for obtaining exact
expressions to describe complex systems with anomalous
behaviors. For instance, in the following fractional differential
equation

∂

∂t
ρ(x, t) = 0D

1−α
t

(

L{ρ(x, t)}
)

, (1)

where

L{ρ(x, t)} = D
∂2

∂x2
ρ(x, t)−

∂

∂x
[F(x, t)ρ(x, t)],

the nonusual relaxation can be associated with a continuous time
random walk where the waiting time distribution is a power-
law. This process is also strictly related to the Riemann-Liouville
fractional operator [23]

0D
1−α
t ρ(x, t) =

1

Ŵ (α)

d

dt

∫ t

0

ρ(x, t′)

(t − t′)1−α
dt′ , (2)

where 0 < α < 1 is the fractional order exponent (or the
anomalous exponent), a quantity that can be interpreted as
an index of memory in empirical systems [24]. The fractional
operator is also responsible for introducing a nonlinear time
dependence in the mean square displacement of the system [17].
Thus, a large class of complex phenomena can be effectively
described by extending the standard differential operator to a
non-integer order [25–34]; indeed, as pointed out by West [35],
the fractional calculus provides a suitable framework to deal with
complex systems.

Recently, researchers have made and promoted remarkable
progress toward improving experimental techniques for
investigating diffusive processes, mainly illustrated by the
developments in the single-particle tracking technique [36–39].
Such improvements yield novel insights into transport properties
of biological systems [40–42] and nanomaterials [43–45], where
the high-resolution of the experiments has found different
diffusive behaviors depending on the time scale. In this context,
an important question is whether other forms of fractional
differential operators (replacing the Riemann-Liouville one)
such as those recently-proposed with non-singular kernels [46–
51] are suitable to describe the aforementioned situations. To
answer this question, we investigate an one-dimensional diffusive
process described by the fractional diffusion equation

∂

∂t
ρ(x, t) = DFα

t

(

∂2

∂x2
ρ(x, t)

)

, (3)

where D is the generalized diffusion coefficient. This equation
is also subjected to the free diffusion boundary conditions
ρ(±∞, t) = 0 and to the initial condition ρ(x, 0) = ϕ(x).

The fractional operator in Equation (3) is defined as

F
α
t ρ(x, t) =

∂

∂t

∫ t

0
ρ(x, t′)K(t − t′)dt′ , (4)

in order to consider situations with singular and non-singular
kernels in a unified way. It is worth noting that K(t) = δ(t)
recovers the usual diffusion equation. Here we consider three
different forms for the kernel K(t). The first one is

K(t) = tα−1/Ŵ (α) , (5)

which corresponds to the well-known Riemann-Liouville
fractional operator [52] for 0 < α < 1. The second one is

K(t) = b exp

(

−
α t

1− α

)

, (6)
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which corresponds to the fractional operator of Caputo-
Fabrizio [46, 53, 54]. As discussed in Caputo and Fabrizio [46],
the ratio α/(1 − α) maps the time from the range [0,∞] to the
range [0, 1] (see also [54] for details on the role of the fractional
order α).

Finally, the third one is

K(t) = b Eα

(

−
α tα

1− α

)

, (7)

where Eα(. . . ) is the Mittag-Leffler function [52]. This kernel
corresponds to the fractional operator of Atangana and
Baleanu [47]. Further possibilities for the kernel K(t) are
discussed by Gómez-Aguilar et al. [48]. We observe that the
Riemann-Liouville operator have a singularity at the origin (t =
0), while the recently-proposed Caputo-Fabrizio and Atangana-
Baleanu are non-singular operators [46–51]. In the previous
definitions, the parameter b is a normalization constant and α
is the fractional order exponent.

Our main goal here is to verify how these different fractional
operators modify the fractional diffusion Equation (1) and what
are the effect of these choices on the underlying diffusive
properties of a system modeled by this equation. The rest of this
manuscript is organized as follows. In Section II, we investigate
general solutions and processes related with Equation (3) when
considering different choices (singular and non-singular) for the
kernel K(t). In Section 3, we present a summary of our results
and some concluding remarks.

2. DIFFUSION AND FRACTIONAL
OPERATORS

We start by noting that the solution of the fractional diffusion
Equation (3) in the Fourier-Laplace space is

ρ(k, s) =
ϕ(k)

s+ sDK(s)k2
, (8)

where ρ(k, s) is the Fourier-Laplace transformation of the
probability distribution ρ(x, t). This result can be related to
different situations depending on the choice of the kernel K(s).

Within the continuous time random walk formalism and by
following the works of Meztler and Klafter [17], we can show that
the waiting time ω(t) and the jump λ(x) probability distribution
associated with Equation (3) are (in the Laplace and Fourier
spaces)

ω(s) =
K(s)/τc

1+ K(s)/τc
(9)

and λ(k) = 1−k2Dτc , where τc is a characteristic waiting time of
the underlying continuous time random walk. We observe that
the jump probability distribution is characterized by a Gaussian

asymptotic behavior [λ(x) ∼ e−x2/(2Dτc)2 ] and thus has a finite
characteristic jump length, regardless of the choice for the kernel

K(t). On the other hand, the inverse Laplace transform of the
waiting time distribution is given by

ω(t) =
1

τc

∫ t

0
dt′K(t′)+

∞
∑

n=1

(

−
1

τc

)n ∫ t

0
dtnK(t − tn) · · ·

×
∫ t4

0
dt3K(t4 − t3)

∫ t2

0
dt1K(t2 − t1)K(t1) , (10)

yielding different situations that depends on K(t).
The choice K(t) = δ(t) leads to usual diffusion and an

exponential distribution for the waiting times

ω(t) =
1

τc
e−t/τc . (11)

For the fractional operator of Riemann-Liouville, we find

ω(t) =
1

τc
tα−1Eα,α

(

−
1

τc
tα

)

, (12)

where Eα,α(. . . ) is the generalized Mittag-Leffler function [52]
whose asymptotic behavior is described by a power-law, ω(t) ∼
1/t1+α for t → ∞. For the Atangana-Baleanu operator
(Equation 7), the waiting time distribution is given by

ω(t) =
ξb γ

πτc
sin (πγ )

∫ ∞

0
dη

ηγ e−ηb(1−α)t/τc

(1− η)2 + 2ξ (1− η) ηγ cos (πγ )+ η2γ

(13)

where γ = 1 − α and ξ = αb/τc. This expression is
very interesting because for small times we have a stretched
exponential, that is,

ω(t) ∼ Eα

(

−
α tα

1− α

)

∼ exp

(

−
α tα

(1− α) Ŵ(α)

)

, (14)

while for long times we have the same power-law behavior of
the Riemann-Liouville operator. Thus, the Atangana-Baleanu
operator yields a crossover between a stretched exponential and
a power-law distribution.

In the case of the Caputo-Fabrizio operator, the connection
with the continuous time random walk is more complex and not
compatible with its standard interpretation. As we shall discuss
later on, the diffusion equation associated with this operator is
connected to a diffusive process with stochastic resetting [55, 56],
where the waiting time distribution is exponential.

Figure 1 depicts the behavior of the waiting time distribution
ω(t) for the different kernels previously-discussed. For long
times, we confirm that the operators of Riemann-Liouville and
Atangana-Baleanu yield the same power-law decay for ω(t). We
further note that the Atangana-Baleanu operator yields a non-
divergent ω(t), an interesting feature that is not observed for the
singular kernel of Riemann-Liouville.

We now focus on finding the formal solutions for the
fractional diffusion Equation (1) when considering the three
different fractional operators. These solutions are obtained by
performing the inverse of Fourier and Laplace transforms of the
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FIGURE 1 | Changes in the waiting time distribution ω(t) caused by the

different forms of the kernel K(t) defining the fractional operator of Equation (4).

The different curves correspond the ω(t) when choosing the kernels of

Riemann-Liouville (Equation 5, blue), Atangana-Baleanu (Equation 7, red), and

the usual (Brownian motion) case [K(t) = δ(t), green]. For simplicity, we have

considered τc = 1 and α = 1/2. We note that the asymptotic behavior of ω(t)

is a power-law for the kernels of Riemann-Liouville and Atangana-Baleanu,

that is, ω(t) ∼ 1/t1+α . In the usual, we have an exponential behavior.

ρ(k, s) expressed in Equation (8), where the Laplace transform of
the kernel K(s) appears. In the well-known case of the Riemann-
Liouville operator [17], we have

K(s) = s−α (15)

and consequently

ρ(x, t) =
∫ ∞

−∞
dx′G(x− x′, t)ϕ(x′) , (16)

where the Green function is

G(x, t) =
1

2|x|
H1,0

1,1

[

|x|
√
D tα

∣

∣

∣

∣

(1, α2 )
(1,1)

]

. (17)

HereH(. . . ) stands for the Fox H-function [57]. Having found
the probability distribution, we can show that the mean square
displacement is

(1x)2 =
〈

(x− 〈x〉)2
〉

=
2D tα

Ŵ(1+ α)
, (18)

which corresponds to the typical case of anomalous diffusion,
where α < 1 represents sub-diffusion and α → 1 recovers
the usual diffusion. The time-dependent behavior of a typical
probability distribution ρ(x, t) (with α = 1/2) is shown in
Figure 2A. We observe that the Riemann-Liouville operator
leads to a tent-shaped distribution, whose tails are longer than
the Gaussian distribution of the usual diffusion (Figure 2D).
Figure 3 shows the corresponding behavior for mean square

displacement of Equation (18), which is a power-law function of
the time t with an exponent α.

For the Caputo-Fabrizio operator, the Laplace transform of
the kernel in Equation (6) is

K(s) =
b

(

s+ α
1−α

) , (19)

which substituted into Equation (8) yields

ρ(k, s) =

(

s+ α
1−α

)

ϕ(k)

s
(

s+ α
1−α + Db k2

) . (20)

By performing the inverse Fourier and Laplace transforms, we
have

ρ(x, t) =
∫ ∞

−∞
dx′G(x− x′, t)ϕ(x′)

+
α

1− α

∫ t

0
dt′

∫ ∞

−∞
dx′G(x− x′, t′)ϕ(x′) (21)

where the Green function is

G(x, t) =
e−

αt
1−α

√
4πDb t

e−
x2

4Db t , (22)

A typical shape of this distribution is shown in Figure 2B. We
observe that this distribution is very similar to a Gaussian for
small times, and exhibits a tent-shape to long times. However,
differently from the distribution obtained for the Riemann-
Liouville operator (Equations 16 and 17), the distribution
obtained from Equations (21) and (22) displays a stationary
behavior for t → ∞, that is,

ρ(x, t → ∞) ∼
∫ ∞

−∞
dx′ϕ(x′)e−

α|x−x′ |
(1−α)Db , (23)

a result that corresponds to confined diffusion. Figure 2B also
shows this stationary solution (dashed line); in particular, we
observe that the shape of ρ(x, t) is practically constant for t &

5 in that case. This behavior also appears in the mean square
displacement

(1x)2 =
2Db (1− α)

α

(

1− e−
α t
1−α

)

, (24)

which behaves linearly in time for small times and saturates in
2Db (1− α)/α for long times. Figure 3 illustrates this crossover,
a common feature of systems where diffusion is confined or
hindered [41, 58]. In particular, the same crossover between usual
and confined diffusion is observed in simulations of diffusion
with immobile obstacles or obstacles moving according to an
Ornstein-Uhlenbeck process [59, 60].

An intriguing feature of the diffusion equation with the
Caputo-Fabrizio fractional operator is that it can be related to
a diffusion with stochastic resetting [61]. Indeed, we find out
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FIGURE 2 | Changes in the profile of probability distribution ρ(x, t) caused by the different fractional time operators. The plots show a typical shape of ρ(x, t) for different

values of t (indicated by the color code) when considering the operators of Riemann-Liouville (A), Caputo-Fabrizio (B), Atangana-Baleanu (C), and the usual case (D).

For simplicity, we have considered ϕ(x) = δ(x), α = 1/2, and Db = 1. The dashed line in (B) indicates the stationary solution in the Caputo-Fabrizio (Equation 23).

that the fractional diffusion Equation (3) with the kernel of
Equation (6) can be rewritten as

∂

∂t
ρ(x, t) = Db

∂2

∂x2
ρ(x, t)

−
α

1− α
Db

∫ t

0
dt′e−

α
1−α (t−t′) ∂

2

∂x2
ρ(x, t′) . (25)

This equation is essentially the same obtained by Hristov [49]
when by analyzing a heat diffusion equation with non-singular
memory. Also, by integrating both sides of the fractional
diffusion Equation (3), we obtain

Db

∫ t

0
dt′e−

α
1−α (t−t′) ∂

2

∂x2
ρ(x, t′) = ρ(x, t)− ϕ(x) , (26)

which after substituting into Equation (25) yields

∂

∂t
ρ(x, t) = Db

∂2

∂x2
ρ(x, t)−

α

1− α
[

ρ(x, t)− ϕ(x)
]

. (27)

Equation (27) with ϕ(x) = δ(x − x0) is the same obtained by
Evans andMajumdar [61] when studying a randomwalker whose
position is redefined to the position x0 with a rate r = α/(1 −
α). Thus, the fractional exponent α in the fractional diffusion

equation of Caputo-Fabrizio can be related to a well-defined
physical quantity (resetting rate).

Also, the mean square displacement of Equation (24) is
analogous to results obtained from a random walk description
of a diffusive process with stochastic resetting, subjected to an
exponential waiting time distribution [55, 56]. As discussed
in these works, a suitable continuous time random walk
formulation is established by considering a density of particles
J (x, t) whose dynamics is governed by

J (x, t) = δ(t)δ(x)+ rδ(x)

∫ t

0
dt′ω(t′)J (x, t − t′)

+ (1− r)

∫ t

0
dt′ψ(x′, t′)J (x− x′, t − t′) , (28)

when particles start the random walk at the origin (x = 0) with

ρ(x, t) =
∫ t
0 8(t

′)J (x, t − t′)dt′ and 8(t) =
∫ ∞
t ω(t′)dt′. In

Equation (28), r is a resetting rate, ψ(x, t) is joint distribution
of jump length and waiting time, λ(x) =

∫ ∞
0 dtψ(x, t) is

the jump length distribution, and ω(t) =
∫ ∞
−∞ dxψ(x, t) is

waiting time distribution. By considering λ(x) Gaussian and ω(t)
exponentially distributed, we can show that this formalism leads
to Equation (27). It is worth remarking that by comparison with
this framework, we can infer that the diffusion equation with

Frontiers in Physics | www.frontiersin.org 5 October 2017 | Volume 5 | Article 52

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tateishi et al. Diffusion and Fractional Time-Derivatives

FIGURE 3 | Changes in the evolving behavior of the mean square

displacement (1x)2 caused by the different fractional time operators. The

curves show (1x)2 vs. t when considering the operators of Riemann-Liouville

(blue, Equation 18), Caputo-Fabrizio (purple, Equation 24), Atangana-Baleanu

(red, Equation 35), and the usual case [green, (1x)2 ∝ t]. For simplicity, we

have considered α = 1/2 and Db = 1. It is worth noting the

Atangana-Baleanu operator shows a crossover between usual (for small times)

and sub-diffusion (for long time). In the Caputo-Fabrizio case, the diffusion is

usual for small times and saturates for large times.

the Caputo-Fabrizio operator leads to the same waiting time
distribution of the usual diffusion, that is, an exponential.

Finally, for the Atangana-Baleanu operator, the Laplace
transform of the kernel in Equation (7) is

K(s) =
bsα−1

(

sα + α
1−α

) , (29)

which substituted into Equation (8) yields

ρ(k, s) =

(

sα + α
1−α

)

ϕ(k)

sα
(

s+ α
1−α s

1−α + Db k2
) , (30)

the solution for the fractional diffusion Equation (3) in the
Fourier-Laplace space. By evaluating the inverse Fourier and
Laplace transforms, we obtain

ρ(x, t) =
∫ ∞

−∞
dx′G(x− x′, t)ϕ(x′)

+
α

Ŵ(α)(1− α)

∫ t

0

dt′

(t − t′)1−α

∫ ∞

−∞
dx′ϕ(x′)G(x− x′, t′),

(31)

where the Green function is

G(x, t) =
e−

x2

4Db t

√
4πDb t

+
1

|x|

∞
∑

n= 1

(

− α
1−α

)n

Ŵ(1+ n)
tnαH2,0

2,2

[

x2

Db t

∣

∣

∣

(1+αn,1),(1,1)
(1,2),(1+n,1)

]

.

(32)

Once again,H(. . . ) stands for the Fox H-function [57]. We can
also show that for |x| → ∞, Equation (32) is approximated by

G(x, t) ≈
1

√
4πDb t

e−f (x,t) , (33)

where

f (x, t) =
x2

4Db t
+

α

1− α
tα

(

x2

4Db t

)1−α
. (34)

A typical behavior for the distribution ρ(x, t) for this operator is
shown in Figure 2C. Similarly to the Caputo-Fabrizio operator,
the profile of ρ(x, t) resembles a Gaussian for small times, while
exhibits a tent-shape for long times. However, the distribution
does not have a stationary solution for the Atangana-Baleanu
operator. This crossover between two behaviors for ρ(x, t) is
also present in Equation (34), and can be better quantified by
analyzing the mean square displacement. For this operator, we
have

(1x)2 = 2Db tEα,2

(

−
α

1− α
tα

)

, (35)

where Eα,2(. . . ) is the generalizedMittag-Leffler function [52]. By
considering the asymptotic limits of this function, we can show
that (1x)2 ∼ t for small times, and (1x)2 ∼ t1−α for long times.

This crossover between usual and sub-diffusion is present
in several biological systems [62–66] and is also illustrated in
Figure 3 for α = 1/2. A similar situation appears in simulations
of diffusion with obstacles moving according to a usual random
walk [59, 60], where the same crossover between usual and sub-
diffusion with α = 1/2 is observed. It is worth mentioning
that crossovers between diffusive regimes can also be described
by generalized Langevin equations [67] and fractional (with the
Riemann-Liouville operator) Kramers equations [19], among
other approaches [68, 69]. In particular, the usual Langevin
equation [70] predicts a crossover between ballistic and usual
diffusion, which has been experimentally observed only in
2011 [71]. However, the diffusion equation in terms of these new
operators lead to these crossovers without explicitly considering
external forces, inertial effects, and reaction terms.

The fractional diffusion equation with the Atangana-Baleanu
operator can be further related to fractional derivatives of
distributed order as proposed by Caputo [72, 73] and worked out
in Chechkin [68] and Lenzi et al. [69], that is,

∫ 1

0
dν w(ν)

∂ν

∂tν
ρ(x, t) = D

∂2

∂x2
ρ(x, t) , (36)
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TABLE 1 | Summary of the changes caused by the different fractional operators on the diffusion Equation (1).

Fractional operator Waiting time distribution Mean square displacement Probability distribution

Riemann- Liouville Power-law Power-law and scale-invariant Non-Gaussian

Caputo- Fabrizio Exponential Crossover from usual to confined diffusion Crossover from Gaussian to non-Gaussian with

steady state

Atangana- Baleanu Crossover from stretched exp. to power-law Crossover from usual to sub-diffusion Crossover from Gaussian to non-Gaussian

where w(ν) is the distribution of the fractional order exponent ν
and

∂ν

∂tν
ρ(x, t) =

1

Ŵ (1− ν)

∫ t

0

dt′

(t − t′)ν
∂

∂t′
ρ(x, t′) (37)

is the fractional time derivative of Caputo. Indeed, by substituting
the kernel of Equation (7) into Equation (3) and taking the
Laplace transform, we have

sρ(x, s)− ρ(x, 0) = Db
s1−α

s1−α + α
1−α

∂2

∂x2
ρ(x, s) , (38)

which can be rewritten as

sρ(x, s) − ρ(x, 0)+
α

1− α
s−α

[

sρ(x, s)− ρ(x, 0)
]

= Db
∂2

∂x2
ρ(x, s) . (39)

By calculating the inverse Laplace transform of the previous
equation, we find

∂

∂t
ρ(x, t) +

α

Ŵ(α)(1− α)

∫ t

0

dt′

(t − t′)1−α
∂

∂t′
ρ(x, t′)

= Db
∂2

∂x2
ρ(x, t) , (40)

which can also be written as

∂

∂t
ρ(x, t)+

α

1− α
∂1−α

∂t1−α
ρ(x, t) = Db

∂2

∂x2
ρ(x, t) . (41)

We note that Equation (41) is a special case of Equation (36) with
w(ν) = δ(ν−1)+ α

1−α δ(ν+α−1). Analogously to results reported
here, the solutions of Equation (41) are also characterized by two
diffusive regimes [68, 69].

3. DISCUSSION AND CONCLUSIONS

We presented a detailed investigation of the changes in the
fractional diffusion equation when the well-established Riemann-
Liouville operator is replaced by the recently-proposed operators
of Caputo-Fabrizio and Atangana-Baleanu. These changes are
summarized in Table 1. Within the context of the continuous
time randomwalk, we verified that these new fractional operators
modify the behavior of the waiting time distribution. In the

Caputo-Fabrizio case, we found that the waiting time distribution
is described by an exponential distribution; while the Atangana-
Baleanu operator yields a distribution that decays as a stretched
exponential for small times and as a power-law (with the same
exponent of the Riemann-Liouville operator) for long times.

We obtained the exact solutions of the fractional diffusion
equation and the time dependence of the mean square
displacement when considering these different fractional
operators. Our results reveal that these new operators lead
to non-Gaussian distributions and different diffusive regimes
depending on the time scale. For the Caputo-Fabrizio operator,
the probability distribution ρ(x, t) displays a stationary state as
well as saturated diffusion for long times. This is a remarkable
feature because the fractional diffusion equation is solved
without external forces and subjected to the free diffusion
boundary conditions. For the Atangana-Baleanu operator, we
found a crossover between two diffusive regimes: a usual for
small times and a sub-diffusive for long times, a feature observed
in several empirical systems.

By properly manipulating the fractional diffusion equations,
we demonstrated that the results obtained with these
new fractional operators could be connected with other
diffusive models. The fractional diffusion equation with the
Caputo-Fabrizio operator recovers a diffusive process with
stochastic resetting, where the fractional order exponent
is directly related to the resetting rate. Also, the equation
with the Atangana-Baleanu operator can be associated
with a fractional diffusion equation with derivatives of
distributed order. Our results thus suggest that these new
fractional operators may be a simple and efficient way
for incorporating different memory effects, opening new
possibilities for modeling and investigating the anomalous
diffusive processes.
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