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Diffusion MRI is arguably the method of choice for characterizing white matter

microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of

water molecules is conveniently on a length scale similar to that of the underlying cellular

structures. Moreover, water molecules in white matter are largely compartmentalized

which enables biologically-inspired compartmental diffusion models to characterize and

quantify the true biological microstructure. A plethora of white matter models have

been proposed. However, overparameterization and mathematical fitting complications

encourage the introduction of simplifying assumptions that vary between different

approaches. These choices impact the quantitative estimation of model parameters

with potential detriments to their biological accuracy and promised specificity. First,

we review biophysical white matter models in use and recapitulate their underlying

assumptions and realms of applicability. Second, we present up-to-date efforts to

validate parameters estimated from biophysical models. Simulations and dedicated

phantoms are useful in assessing the performance of models when the ground truth

is known. However, the biggest challenge remains the validation of the “biological

accuracy” of estimated parameters. Complementary techniques such as microscopy

of fixed tissue specimens have facilitated direct comparisons of estimates of white

matter fiber orientation and densities. However, validation of compartmental diffusivities

remains challenging, and complementary MRI-based techniques such as alternative

diffusion encodings, compartment-specific contrast agents and metabolites have been

used to validate diffusion models. Finally, white matter injury and disease pose additional

challenges to modeling, which are also discussed. This review aims to provide an

overview of the current state of models and their validation and to stimulate further

research in the field to solve the remaining open questions and converge toward

consensus.

Keywords: diffusion MRI, white matter, modeling, microstructure, tissue compartments

Diffusion weighted MRI (DWI) is unique in its ability to detect brain microstructure
non-invasively. Characterization of white matter microstructure using DWI has shown high
sensitivity to changes associated with normal brain development and aging and to the wide
array of neurological diseases, injuries, and potential treatments. DWI is an excellent probe of
microstructure, whose characteristic features are on the same length scale as the micrometer-scale
displacement of water molecules. However, it remains an indirect probe, because extracting
quantitative metrics that characterize the underlying tissuemicrostructure requires modeling of the
DWI signal. Decisions regarding model choice and fitting procedures have considerable influence
on the accuracy, reliability, and validity of the extracted metrics.
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This review first presents an overview of current white matter
models “in circulation” and exposes their common features
and individual limitations (Part 1), noting that the discussion
is restricted to long-time limit diffusion models, where axons
are modeled as sticks. Next, efforts to validate models in
the normal white matter using complementary techniques are
discussed (Part 2), followed by a brief discussion of the additional
challenges related to modeling of the diseased tissue (Part 3).
Future directions of research are highlighted at every step.

MODELS

Two complementary approaches have emerged for extracting
information about the tissue microstructure from the diffusion
signal: signal representations and tissue models.

Signal representations—sometimes also referred to as
“statistical models”—aim at empirically describing the diffusion
signal behavior in a given voxel without assumptions about the
underlying tissue. Thus, they are applicable to any tissue type,
healthy or diseased, but the estimated parameters lack specificity
and remain an indirect characterization of microstructure.

Tissue models, on the other hand, assume a given (schematic)
geometry—a “picture” of the underlying tissue [1]. The analytical
expression of the diffusion signal in the chosen environment is fit
to the diffusion data, which allows the estimation of the relevant
parameters of the microstructure. Tissue models can potentially
provide greater specificity and interpretation of biologically-
relevant parameters, but only if the assumption is met that the
chosen model accurately captures all of the relevant features of
the tissue, i.e., all those that effectively and substantially impact
the diffusion signal in a given acquisition range.

In this section, we will first briefly review examples of
signal representations, in order to reinforce the distinction with
modeling.We will then reviewmajor biophysical models of white
matter, with clear identification of their main assumptions and
estimated parameters.

Signal Representations
The most widespread signal representation is the cumulant
expansion [2–4], which relies on an expansion of the logarithm of
the signal in polynomials up to a given order in b—i.e., a Taylor
series:
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where D is the rank-2 diffusion tensor, W is the rank-4 kurtosis
tensor, D is the mean diffusivity and g is the direction of the
applied diffusion weighting.

Diffusion tensor imaging (DTI) is thus an expansion up to the
first order in b, valid for low diffusion weighting (b ≪ 1/(DK))

[5]. It is important to stress that DTI does not assume that the
tissue is a Gaussianmedium (K = 0)—which is reputedly not true
for biological tissue, but rather that it is indistinguishable from a
Gaussian medium when b≪ 1/(DK).

Naturally, going beyond this low b-value regime and
estimating the kurtosis of the diffusion probability distribution
function—i.e., by how much it deviates from a Gaussian
distribution—provides information about tissue complexity that
is complementary to DTI metrics [2].

In order to estimate the six independent components of
the diffusion tensor, the minimal required data is one b = 0
(unweighted) image and six non collinear directions on a single
diffusion weighting, or “shell.” The additional estimation of the
15 independent components of the kurtosis tensor requires a
minimal acquisition of one b = 0 image and 21 measurements
distributed over 2 shells. The choice of the shell b-values is a
trade-off between accuracy—they should be as low as possible,
since the Taylor expansion is valid for bD → 0— and precision—
they should be as high as admittedly possible to limit the impact
of noise [6]. This trade-off value is typically around b = 1
ms/µm2 for DTI and b = 2 ms/µm2 for DKI, in vivo. Largely
improved algorithms for unbiased estimation of the diffusion and
kurtosis tensors have been developed [7]. It is also noteworthy
that fitting the kurtosis tensor greatly improves the accuracy of
the diffusion tensor estimation [8]. Extending the series to the
sixth order cumulant (in b3) increases the accuracy of the kurtosis
estimation, albeit with a penalty on precision [9].

Since no assumption is made about the tissue structure,
metrics derived from the diffusion tensor, such as mean
diffusivity and fractional anisotropy are used extensively for brain
and body tissue characterization in a wide variety of conditions
[10, 11]. DKImetrics, such as mean kurtosis, are also increasingly
used as complementary biomarkers to DTI metrics in a large
panel of applications [12–17]. With acquisition acceleration
options available on most clinical scanners, and new reduced
acquisition schemes [18, 19], DKI is expected to become more
and more widespread.

Other signal representations than the cumulant expansion are
of course possible. Yablonskiy et al. [20] proposed to introduce a
distribution of diffusion coefficients ρ(D) in the tissue, which can
theoretically be estimated by inverse Laplace transform:

S

S0
=

∫ ∞

0
ρ(D)e−bDdD (3)

However, because the inverse Laplace transform is a
mathematically ill-posed problem, in practice some functional
form is assumed for ρ(D) and its characteristic parameters
estimated [20, 21]. Moreover, the estimated distribution does
not mirror the actual distribution of diffusion coefficients in the
tissue unless the measurement is performed in a very strong
diffusion weighting regime (qlc ≫ 1, where q is the amount of
spatial phase-warping introduced and lc is the diffusion distance)
[9, 22]. Thus, this approach remains an empirical description of
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the diffusion-weighted signal and falls in the category of signal
representations rather than biophysical models.

The departure from Gaussianity can also be captured
empirically as a “stretched exponential” expression of the
diffusion signal [23]:

S

S0
= exp

(

−
(

b · ADC
)α)

(4)

The stretched exponential function has later been associated with
the theory of anomalous diffusion, which represents a departure
from Brownian motion (

〈

x2
〉

∝ t), by several groups [24–26]. A
comprehensive discussion on the implications of such a theory
for biological tissue can be found in Kiselev [9] and Novikov et
al. [1]. Although devoid of biophysical meaning, the stretching
parameter α is largely used in the literature for tumor delineation
and characterization [27–30].

Another example of signal representation is the expansion
of the diffusion signal using harmonic oscillator basis functions
(Hermite polynomials), as proposed by Özarslan et al. [31],
a method dubbed mean apparent propagator (MAP-MRI). In
addition to the reconstruction of a diffusion tensor, the method
allows the estimation of the return-to-origin probability, which is
sensitive to compartment sizes, and of non-Gaussianity indices,
indicative of tissue complexity. The data required for MAP-MRI
can be acquired in under 10min on a clinical scanner [32].

Biophysical Models of White Matter
The first attempts at modeling the diffusion signal as multi-
compartmental can be attributed to Latour et al. [33] in red blood
cells and Szafer et al. [34] who modeled “tissue” as cuboids on
a regular lattice, surrounded by extracellular medium. Building
on their work, Stanisz et al. [35] proposed the first white matter
model based on electron micrographs of bovine optic nerve. In
their model, axons were represented as prolate ellipsoids and
glial soma as spheres, the extracellular space constituting the
third compartment. The model also accounted for membrane
permeability of axons and glial cells. The authors noted that the

nine-parameter model required a wide range of diffusion times
and gradient strengths, and that even with extensive data, the
goodness of fit remained unsatisfactory. They also underlined
that releasing some of the assumptions and increasing the
number of parameters would make the fit unstable. Twenty years
later, those insights are still very much topical.

At long diffusion times, the diffusion distance across the
axon becomes constant (it is limited by the axon diameter)
and the diffusivity tends to zero: axons can thus be modeled
as infinitely long “sticks” (cylinders with zero radius). The first
group to introduce the stick geometry was Behrens et al. [36]
and assumed that water in and around the axons similarly
diffused only in the fiber direction with a second compartment
of free, isotropically diffusing water. Shortly after, Kroenke et
al. [37] used a biophysical model of isotropically oriented sticks
to characterize the diffusion of N-acetyl aspartate (NAA) in the
neurites. A similar description to Behrens’ of two compartments
was later adopted by Jespersen et al. [38], who also formulated for
the first time the clear goal of estimating dendrite density—i.e., a
specific biomarker of themicrostructure—in vivo, using diffusion
MRI modeling.

Building on these initial works, most white matter models
“in use” today rely on the same common picture: water signal
is assumed to originate from two or three non-exchanging
compartments, each weighted by their relative volume fractions
(Figure 1).

The first compartment is the collection of axons, which
are modeled as infinitely long sticks, and whose collective
orientations are characterized by some orientation distribution
function (ODF). Water diffusivity inside each axon is Da,‖ along
the axon and zero perpendicular to it. The parametrization of the
ODF varies between models.

The second compartment is the extra-axonal space which, by
exclusion, includes features not explicitly ascribed to the axonal
space, including extracellular water, cell somas, and glial cells, all
assumed to be in fast exchange. This compartment is modeled
as Gaussian anisotropic, with axial and radial diffusivities De,‖

FIGURE 1 | Correspondence between model compartments (Left) and tissue components (Right). (Left) Schematic of a typical three-compartment model with

relevant parameters. De,‖ and De,⊥ are local extra-axonal diffusivities, and D′
e,‖ and D′

e,⊥, are apparent extra-axonal diffusivities, depending how the model defines

them. (Right) Cross-sectional electron microscopy image of a white matter bundle. Adapted from Mikula and Denk [39] with permission. While myelin is present in

WM, it is absent from DWI models due to its short T2.
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and De,⊥, respectively. These extra-axonal diffusivities are either
defined locally in proximity of a coherent axon sub-bundle
with the resulting signal response convolved with the ODF,
or as apparent extra-axonal diffusivities over the entire voxel
(indicated with a “prime” symbol in Figure 1 and hereafter, for
disambiguation).

The third compartment, if included, is modeled as Gaussian
isotropic, with a diffusivity Diso. If it represents freely diffusing
water such as cerebrospinal fluid (CSF), Diso (Dfree) is set to
3 µm2/ms in vivo. If it represents water with a negligible
diffusivity in all directions, often referred to as “still water,”
and non-exchanging with the extracellular space, Diso = 0.
The parametrization, constraints, and nomenclature of Diso vary
between models.

Modeling necessarily comes with a level of simplification,
since the entire biological complexity certainly cannot be
rendered. The most difficult part of the modeling task is perhaps
figuring out which features of the microstructure are relevant to
the voxel-averaged diffusion signal and should be represented
in the model, and which ones can be omitted without violating
assumptions or accuracy. For a more detailed discussion on
coarse-graining and effective medium theory, we direct the
reader to a very comprehensive review by Novikov et al. [1].

In what follows, we will briefly review the main white matter
models that have, for the most part, emerged in the last decade
and that share the common features outlined above. While
many different diffusion models and corresponding applications
have been proposed, this review will only focus on models of
tissue microstructure pertaining to the brain and spinal cord
and in the long-time limit where axons are modeled as sticks.
We also neglect potential measures of permeability between
compartments, though they could have substantial impact on
modeling, especially in the case of pathologies [40].

NODDI
The tissue model in Neurite Orientation Dispersion and Density
Imaging (NODDI) matches exactly the cartoon in Figure 1

[41]. It is a three-compartment model fully described by
seven parameters: two volume fractions (f intra and f iso), four
diffusivities (Da,‖, De,‖, De,⊥, and Diso) and the orientation
dispersion, modeled by a Watson distribution of concentration
parameter κ. The latter can be related to the angular spread via

〈

(cosψ)2
〉

= − 1

2κ
+ 1√

πe−κerfi(
√
κ)
√
κ
.

where ψ is the angle between an axon and the main diffusion
orientation in the voxel. In order to stabilize the fitting procedure,
NODDI constrains all diffusivity values, effectively leaving only
the two volume fractions and the orientation dispersion to be
estimated, i.e., the underlying geometry. The model assumptions
are as follows:

Da,‖ = De,‖ = 1.7 µm2/ms (5)

De,⊥ = (1− fintra) · De,‖ (6)

Diso = 3 µm2/ms (7)

The popularity of NODDI is indisputable, with applications to
a very large panel of brain alterations and pathologies [42–
48]. However, there are important assumptions within NODDI
related to its design that have strong implications to its specificity.

NODDI imposes assumptions on the intrinsic diffusivities to
the point of fixing Da,‖ and De,‖ to the same predetermined value
for all tissues (Equation 5). First, any deviation from these fixed
values can bias the remaining parameters and they will lose their
desired specificity. Substantial changes in diffusivity, such as that
occurring in cerebral ischemia, for example, will impart a false
change in orientation dispersion, neurite density, or CSF partial
volume that does not accurately capture the underlying tissue
pathology—as will be discussed in more detail in the third part
of this review. The decision to fix the axial intra- and extra-
axonal diffusivities equal to one another is another assumption
that can lead to unpredictable effects. Recent work has shown
that fixing Da,‖ = De,‖ masks a fundamental property of multi-
compartment models, namely the multiplicity of mathematical
solutions [49, 50]. Indeed, it has been shown that, if all parameters
in the fitting procedure are released, namely f intra, Da,‖, De,‖,
De,⊥, and κ (ignoring the CSF compartment), there are two
distinct solutions to the parameter estimation problem, both
within biologically plausible ranges (Figure 2). The two solutions
of a two-compartment model can roughly be described as one
where Da,‖ < De,‖, and another where Da,‖ > De,‖. Establishing
which inequality is biologically valid is an active field of research,
with most studies pointing toward Da,‖ > De,‖. This will be
covered in detail in the second part of the review. Finally, the
tortuosity approximation that relates De,‖ and De,⊥ (Equation 6)
has been shown not to hold for tight packings of axons [51].

WMTI
White Matter Tract Integrity (WMTI) is a two-compartment
model of sticks embedded in a Gaussian anisotropic extra-axonal
medium [52]. The tissue can be described as a combination
of two Gaussian compartments (intra- and extra-axonal) each
characterized by a tensor (D̂a and D̂e

′) which can be directly
derived from the overall diffusion and kurtosis tensors D̂ and K̂
[53]. In any direction j,

Dj = fintraDa,j + (1− fintra)D
′
e,j (8)

Kj = 3fintra · (1− fintra)

(

D′
e,j − Da,j

)2

D2
j

(9)

This approach by-passes inherent limitations associated with
non-linear fitting (local minima and long computation time): the
linear estimation of the diffusion and kurtosis tensors is followed
by a direct derivation of the WMTI model parameters. The
quadratic expression in Equation (9) demonstrates, as previously
mentioned, that for a two-compartment model, there are two
mathematical solutions, where either Da,‖ < De,‖, or Da,‖ > De,‖.
Establishing which inequality is biologically valid is an active field
of research, which will be covered in detail in the second part of
the review.

In WMTI, the authors had chosen the inequality Da,‖ < De,‖
to solve the system (which is the opposite of the inequality that
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FIGURE 2 | NODDIDA optimization landscape reveals the existence, in the full 5-parameter space, of two disconnected minima, each surrounded by a pipe-like

ensemble of low objective function values. Shown are 3D isosurfaces of the objective function F (f, Da,‖, κ ). (Aa) F calculated with (De,||; De,⊥) = (2.10; 0.74) and SNR

= ∞, thus containing the true global minimum. (Ab) F calculated with (De,||; De,⊥) = (0.32; 0.85) and SNR = ∞, thus containing the second local minimum of the 5D

minimization problem. (Ac) The same as (Aa), but SNR = 50. (Ad) The same as (Ab), but SNR = 50. The theoretical minimum of F along each pipe is identified by a

black bullet. Noise can displace the effective minimum along the pipe very far from the true one (see Ac). Figure taken from Jelescu et al. [49], with permission.

seems to hold from recent work), hence:

fintra =
Kmax

Kmax + 3
(10)

D′
e,j = Dj

[

1+
√

Kj · fintra
3(1− fintra)

]

(11)

Da,j = Dj

[

1−
√

Kj(1− fintra)

3fintra

]

(12)

WMTI has been used in studies of a large variety of conditions,
with substantial validation efforts using animal models of altered
myelin [12, 13, 54–58].

In WMTI, the collection of axons is modeled as a Gaussian
compartment, which is an assumption that only holds if the
axons are highly aligned in a single bundle. Fieremans and
colleagues estimated a maximum orientation dispersion of 30◦

for this approximation to hold, in the case of coplanar dispersion
only. The validity of the approximation for three-dimensional

dispersion has not been evaluated. Thus, while WMTI captures
changes in diffusivities, it is best applied to regions of highly
aligned single fiber bundles as per the recommendations. A
more recent approach consists in deriving the WMTI equations
assuming a Watson distribution of axons, like in NODDI, thus
alleviating one of the strongest assumptions of WMTI [59]. The
authors then further use time dependent functional forms of
model parameters to evaluate which of the two possible solutions
is the biologically valid one.

Another limitation is that sinceWMTI is based on the kurtosis
model, it is restricted to the low b-value regime which could
lead to some bias, although this may also be advantageous for
compatibility with clinical hardware systems.

Rotationally Invariant Features: LEMONADE & co.
In a two-compartment model, estimating compartment
diffusivities and orientation dispersion of axons simultaneously
is problematic and prone to bias, hence requiring fixed
parameter assumptions (NODDI) or limitations to coherent
fibers only (WMTI). Loosening these constraints to achieve
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greater specificity comes at the expense of a larger number of
parameters to be estimated in the model, which is problematic
for non-linear fitting. In particular, allowing for a complex
ODF quickly increases the number of parameters. NODDI
for example also has a declination that uses a Bingham rather
than Watson distribution (2 free parameters) [60]. Jespersen
and colleagues modeled the ODF using a spherical harmonic
expansion up to L = 2 (5 free parameters) [38] and later L = 4
(14 free parameters) [61].

For the purpose of extracting a reliable ODF for tractography,
several groups had modeled the diffusion signal as a convolution
between the response of a perfectly aligned fascicle (axons and
their immediate extra-axonal space) pointing in direction n, and
the fiber ODF P(n) [62–64]:

Sg
(

b
)

= S(0) ·
∫

|n|=1
K

(

b, g · n
)

P (n) dn (13)

Equation 13 factorizes in the spherical harmonics basis, thus
separating the estimation of the scalar parameters of the kernel
K from that of the ODF parameters. Recently, Novikov et al. [50]
and Reisert et al. [65] have exploited this property to estimate the
scalar parameters of a two-compartment kernel separately from
the ODF:

K
(

b, g · n
)

= fintrae
−bDa,‖(g·n)2

+(1− fintra)e
−bDe,‖(g·n)2−bDe,⊥(1−(g·n)2) (14)

The approach of Novikov et al. [50] can be decomposed into
two steps. The first step relies on solving an algebraic system
of equations which relates the kernel parameters to the signal
moments. More specifically, using “low b-value” data (e.g.,
bmax = 2.5 ms/µm2), the scalar parameters and a few basis-
independent ODF parameters pl can be directly derived from
the first moments of the diffusion signal (up to 6th order) in a
similar fashion to whichWMTI uses direct relationships between
model parameters and cumulants up to the 4th order. This
method was dubbed LEMONADE (Linearly Estimated Moments
provide Orientations of Neurites And their Diffusivities Exactly),
and requires diffusion data distributed over 3 non-zero b shells.
Circumventing issues related to non-linear fitting, LEMONADE
provides estimates for f intra, Da,‖, De,‖, De,⊥, and p2 =
3
〈

(cosψ)2
〉

−1
2 , which gives an estimate of the orientation dispersion

in a similar way to κ from theWatson distribution. The spherical
harmonic expansion of the ODF can then be fully reconstructed
up to L = 6. In a second step, all available data (including high
b-values) can be exploited to minimize the rotationally invariant
(RotInv) energy function of the system, using the LEMONADE
estimates as initialization values. In other words, the projections
of the scalar kernel onto Legendre polynomials, weighted by
rotational invariants of the ODF, are fitted to rotational invariants
of the spherical harmonics decomposition of the signal, in a
least-squares sense.

LEMONADE provides further evidence for the existence of
two mathematical solutions to the two-compartment model and
that, in principle, the degeneracy can be lifted with robust
measurements up the 3rd order in b. In practice, solution

selection based on noisy data remains challenging and should be
validated independently.

The approach of Reisert et al. [65] relies on machine
learning to estimate the model parameters. A choice of
plausible parameter values is made using insight from isotropic
diffusion weighting results, as will be discussed in Validating
Microstructural Features. This method also allows renouncing to
the determination of specific parameters of the model when data
proves insufficient.

The remaining assumptions behind these two methods are:
the existence of only two compartments (intra- and extra-
axonal), the consistency of kernel parameters across all fascicles
in the voxel (e.g., all axons in the voxel have the same diffusivity
Da,‖), and axial symmetry of the elementary fiber response
(kernel).

By contrast to these two approaches, the method described by
Kaden et al. [66] based on the spherical mean technique is similar
in spirit, in the sense that it factors out the fiber ODF, but it only
exploits the lowest order rotational invariant and the estimation
of the scalar kernel is constrained by Da,‖ = De,‖ and by the
tortuosity approximation for the extra-axonal space (Equation 6).

DBSI
Another model was proposed with the intent of covering regions
of multiple fiber crossings; this model is DBSI (Diffusion Basis
Spectrum Imaging) [67], and its general formulation is the
following:

Sg
(

b
)

=
NAniso
∑

i=1

fi · e−bD‖,i(g·ni)2−bD⊥,i(1−(g·ni)2)

+
∫ β

α

f (D)e−bDdD (15)

where the tissue is described as a collection of NAniso

axially symmetric anisotropic tensors (each with unknown
fraction f i, axial and radial diffusivities D‖,i and D⊥,i and
orientation ni) and a continuous spectrum f (D) of isotropic
diffusion tensors. The anisotropic tensors represent water
inside and just outside myelinated and unmyelinated axons
of varied directions, while the continuum of isotropic tensors
represents water in cells, sub-cellular structures, and edematous
water.

The DBSI fitting procedure is complex and details can be
found in Wang et al. [67]. Briefly, it is a two-step process
where first the number of anisotropic tensors and their principal
orientations are estimated. These parameters are then fixed in
the second step of the procedure, which aims at estimating
f i, D‖,i, and D⊥,i for each anisotropic tensor, as well as f (D).
This is achieved by optimizing f i and f (D) for recursively
chosen combinations of D‖,i and D⊥,i and finally selecting the
combination providing a global minimum.

DBSI has been applied to a variety of pathologies [68–72],
but has not been extensively validated outside of the originating
group. Given the unfavorable fitting landscape in a comparatively
much simpler model such as NODDIDA [49], especially in
the presence of limited signal-to-noise ratio (SNR) (Figure 2),
the reliability of DBSI model estimates remains to be clarified.
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Moreover, the biophysical interpretation of the continuous
distribution of diffusion coefficients f (D) is also problematic, as
explained in connection with Equation (3).

Hybrid Models
Hybrid models are based on a combination of biophysical
modeling and signal representations.

Free Water Elimination (FWE)
The motivation of the free water elimination technique is
to separate CSF contamination from “brain tissue” diffusion
properties. The overall signal is separated into an isotropic
component of free diffusion (Dfree) and a single diffusion
tensor representing the rest of the tissue signal (Dtissue). This
approach was first proposed by Pierpaoli and Jones [73] using a
comprehensive q-space acquisition (107 directions over 8 shells,
bmax = 1.2 ms/µm2). Its potential advantages are the extraction
of a free water map (as a new biomarker), improved tissue
tensor estimation, and benefits for fiber tracking. The direct
correspondence between “free water” and CSF is however not
straightforward.

Its application was further extended to single-shell DTI data
by Pasternak et al. [74]. Naturally, estimating a system which
includes a tensor and an isotropic compartment from single-shell
data is an underdetermined problem. To circumvent this issue,
Pasternak and colleagues initially imposed additional constraints:
spatial regularization and tighter upper and lower bounds on
the tissue volume fraction, dependent on tissue diffusivities. This
constrained implementation has been applied to a variety of
conditions [75–78].

While the intention of making the method applicable to
the most widespread acquisition scheme (i.e., single shell)
is understandable, the ill-posed nature of the mathematical
problem and the issue of constraints has been recognized by
the authors, who proposed incorporation of an additional low
b-value shell for accuracy and stability [79]. The initial, more
conventional, multi-shell approach proposed by Pierpaoli and
Jones has also been reintroduced in parallel byHoy et al. [80]. The
latter work included simulations showing that in the absence of a
CSF compartment, fitting the FWE model indeed overestimated
tissue FA. Later work by the same group compared the FWE
technique to the more standard FLAIR-DTI approach where
the CSF signal was directly suppressed at the acquisition stage
[81, 82]. They reported similar performance between the two
techniques inWM tracts where CSF contamination was expected
to be high (i.e., fornix and corpus callosum), but unlike FLAIR-
DTI, the FWE technique resulted in greater FA and reduced
diffusivity measures even in tissues without CSF partial volume
effects (e.g., cingulum). The proposed explanation that the “free
water” signal arises from the extracellular space [79] highlights
the complications of assigning a single tensor to a “tissue”
compartment which is known to exhibit non-Gaussian behavior.

DIAMOND
A new hybrid model, termed DIAMOND (DIstribution of
3D Anisotropic MicrOstructural eNvironments in Diffusion-
compartment imaging) [83] has recently been proposed. It
expands on the concept of distribution of diffusion coefficients

introduced by Yablonskiy et al. [20], by accounting for
several discrete compartments (biophysical modeling), each
withholding a continuous distribution of diffusion tensors
(statistical modeling). In mathematical terms:

Sg
(

b
)

= S0

Np
∑

i=1

fi ·
∫

D∈Sym+(3)
Pκi ,6i (D) e

−bgTDgdD (16)

where Np is the number of compartments (or spin populations),
each with its associated volume fraction, and Pκi ,6i (D) is the
distribution of diffusion tensors within the compartment, chosen
to be a multi-variate Gamma distribution of shape parameter
κ and scale parameter 6. The diffusion tensors are symmetric
positive definite matrices [Sym+(3)].

Starting from the generic expression in Equation (16), three
types of particular compartments are considered and their
presence in each voxel is evaluated using model selection
techniques. The three types of compartments are free isotropic
(attributed to CSF), restricted isotropic (attributed to water in
glial cells) and water in and around white matter fascicles.

In practice, DIAMOND uses an iterative approach in defining
the number of compartments in each voxel. The optimization
begins with a freely-diffusing compartment and zero fascicles,
and the number of fascicles is gradually increased up to three—
the higher complexity is retained only if the general error of the
model is significantly reduced compared to the previous simpler
model. Spatial regularization of voxel parameters is also used.
While the goodness of fit has been extensively used in the past to
choose which model is most appropriate for describing the data
[84, 85], recent insights into the topology of the fitting landscape
for a two-compartment model (Figure 2) advises against relying
solely on such metrics for model selection [49, 50].

As an extension of the concept of continuous distribution
of diffusion coefficients (Equation 3), DIAMOND also inherits
from its associated issues, discussed in the section on Signal
Representations.

Microstructure metrics estimated using DIAMOND will need
to be subjected to substantial validation studies in the near future.
Recent work on traumatic brain injury in the mouse suggests that
DIAMOND, as any higher order model, is more sensitive than
DTI in detecting differences, but a more thorough validation of
specificity against histology remains to be performed [86].

Summary
Main approaches for deriving quantities from the diffusion
weighted signal include signal representations (also known
as statistical models), biophysical models of white matter,
and hybrid models that contain features of both approaches.
Table 1 summarizes the properties of each of these approaches.
Essentially, single-shell diffusion MRI data only enables the
estimation of a single diffusion tensor for the voxel, i.e., DTI.
Any othermore complex analysis that accounts for non-Gaussian
diffusion effects in the tissue requires at least two non-zero
b-shells, each with sampling along a minimum number of
directions.

Biophysical models come with the promise of characterizing
tissue microstructure with improved specificity. However, their
intrinsic assumptions have the potential to introduce bias.
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TABLE 1 | Summary of method characteristics.

Method Minimum/typical data requirements Estimated metrics Assumptions/constraints

Statistical models DTI 1 b = 0; 6 b = 1 Diffusion tensor (and derived FA, MD, AD,

RD)

None

DKI 1 b = 0; 6 b = 1; 15 b = 2 Same as DTI + kurtosis tensor (and

derived MK, AK, RK)

None

Biophysical models NODDI 1 b = 0; 30 b = 0.7; 60 b = 2 f intra, f iso, κ Da,‖ = De,‖ = 1.7

De,⊥ = (1– f intra)De,‖
Diso = 3

WMTI 1 b = 0; 6 b = 1; 15 b = 2 f intra, Da,‖, De,‖, De,⊥ Limited dispersion

f iso = 0

Da,‖ ≤ De,‖
LEMONADE /

RotInv

1 b = 0; minimum 3 non-zero shells with

e.g., 64 dirs per shell

f intra, Da,‖, De,‖, De,⊥
SH up to 6th order for ODF

f iso = 0

Reisert et al.

[65]

2 non-zero shells or uniform filling of

q-space

f intra, f iso, Da,‖, De,‖, De,⊥ Some parameters will not be

estimated if insufficient data

DBSI 99 directions over 9 b-shells, bmax = 1 Number of anisotropic tensors N and their

respective f i, λ‖,i and λ⊥,i, + isotropic

tensor distribution f (D)

Two-step fitting process, with some

parameters temporarily fixed

Hybrid models FWE 1 b = 0; 32 b = 0.5; 32 b = 1.5 f iso + tissue diffusion tensor Diso = 3

Tissue described by a tensor

DIAMOND “CUSP90”:

12 b = 0; 6 b = 0.4; 6 b = 0.6; 6 b = 0.8;

30 b = 1

+ 30 directions on a cube (1 ≤ b ≤ 3)

f iso, number of fascicles (up to 3) and their

respective f i, κi and Σi

Iterative fitting for number of

compartments;

Spatial regularization;

mv-Ŵ distribution of tensors within

compartment

b-values are in ms/µm2 and diffusivities in µm2/ms.

Nearly all models outperform DTI in capturing tissue diffusion
properties, but this is a very low benchmark. Biophysical models
need to be increasingly compared to one another, and to
higher order signal representations such as DKI, to understand
convergent model properties likely to be successful in broad
applications [57, 65, 87, 88]. Their reliability in the case of
pathological tissue also needs thorough investigation.

VALIDATING DIFFUSION MODELS

Most biophysical diffusion models share at least partial similarity
with one another with respect to their common geometry, as
represented in Figure 1. This section will review validation efforts
for each of the model features (compartment volume fractions,
axon orientation dispersion, and compartment diffusivities).
While many validation studies have been performed for DTI,
the goal is to emphasize results in the context of biophysical
models and how well their derived parameters reflect the true
biology of interest. The first two sub-sections focus on method
validation using either computer simulations or phantoms, while
the following ones discuss the validation of quantitative estimates
for each microstructural feature of white matter.

Computational Simulations
Simulating the random walk of diffusing spins within simple
or complex environments is often the first step to establish a
connection between derived estimates of physical features and
their ground truth values. Simulations have been used where
analytic solutions are difficult or impossible, and their use is so

common that it is impossible to list them here. Notable examples
are those that have also released accompanying software packages
[89–92]. Synthetic geometries, which are typically composed
of cylindrical axons, have been used to model the effects of
axon diameter, packing, volume fractions, permeability, and
other features that can be easily modulated synthetically, and
these have in turn been performed under many different
simulated experimental conditions such as modulation of
diffusion times, gradient waveform shapes, signal to noise ratios,
and other features that would be difficult or time-consuming to
perform experimentally. As the diffusion models have evolved
to include more complex features such as bending, crossing,
and asymmetric fiber orientations, simulations have followed
suit and implemented similar physical features. In addition to
purely fiber models, other notable examples include complex
axonal geometries to demonstrate the effects of swelling [93],
beading [94], undulation [95], and other features. Geometrical
substrates derived from tissue specimens [96] have been also
demonstrated recently, although these remain challenging due
to the difficulties in obtaining high-resolution, 3D images of
tissues and their subsequent conversion to physical substrates.
As 3D microscopy and connectomic techniques push for high
resolution and large-scale imaging of brain tissues at microscopic
resolutions, parallel advances in relating diffusion indices with
more realistic models will likely follow. Importantly, the fidelity
of the simulation geometry to the true underlying biology is a
major concern. To the extent possible, these should encompass
realistic and accurate distributions of axon diameters consistent
with histological reports, random packing as opposed to a regular
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lattice, and other physical features that have been validated in
tissue preparations. Although geometrical models are simplistic,
simulations ensure that the estimated parameters are at least
accurate and precise with respect to known ground truth features,
and if this criteria is not met, acceptable performance in real
tissues is likely compromised.

Phantoms
Ground truth hardware phantoms have been developed
to estimate relevant parameters and calibrate multi-center
studies. Ideally, phantoms mimicking WM structure possess
certain desirable qualities most notably being tubular hollow
structures with diameters approximating those of axons. Another
desirable feature is to organize axon-like structures in different
configurations that mimic complex features such as dispersed
and crossing fibers. Intrinsic diffusivity of the filling material
may also be considered, as well as magnetic susceptibility of
the scaffolding material. Vegetables with tubular structures
or domains, such as celery, asparagus, and chives, have been
routinely used to demonstrate the effects of anisotropic diffusion,
but these substances are clearly not amenable to long-term or
cross-center studies, and phantoms with high consistency and
longevity were sought. Most hardware phantoms have so far
been developed for the purpose of optimizing DTI acquisitions
or validating tractography rather than microstructure models.
Textile fiber phantoms were developed with the scope of easily
mimicking bending or dispersed fibers but their diameters
typically far exceed the range of axons and they are of course not
hollow [97]. Microcapillaries have the advantage of producing
both an intra-axonal and an extra-axonal space to be filled
[98–100], and most recent designs display somewhat more
realistic diameters between 9 and 20 microns [101]. However,
while crossing bundles can be designed, within each bundle the
capillaries are highly aligned, which is a limitation for modeling
true white matter.

Two types of phantoms have so far been developed for the
purpose of validating higher order diffusion models. Fieremans
et al. proposed a phantom of tightly packed solid fibers of
Dyneema and compared the measured signal to simulations for
diffusion, kurtosis and time dependence [102–104]. While it used
reasonable diameters (20µm) the drawback was that it only

modeled the extra-axonal space. Better magnetic susceptibility
matching between water and the Dyneema material can be
achieved using magnesium chloride [105]. A complementary
phantom design of the intra-axonal space has recently been
proposed using co-electrospun fibers that produce a hollow
honeycomb-like arrangement and a distribution of diameters
of about 9.5µm [106]. The ideal phantom for diffusion
microstructure model validation would mimic both intra- and
extra-axonal water with diameters matching those of white
matter axons, randomly packed to appropriate volume fractions,
and orientation dispersion. Clearly, it is challenging to meet all of
these conditions simultaneously.

The advantages of phantoms are well recognized and aim to be
standardized instruments for calibration ofMRI experiments and
assessments of multi-site variability. The disadvantages include
sophisticated chemistry, limited availability to materials and
specialized equipment, and non-standardization. Despite these
current limitations, the role of consistent and widely-accepted
phantoms has been well-recognized [107]. With the push for
reproducibility and precision medicine, physical phantoms will
continue to emerge as a solution to multi-center and multi-
vendor diffusion MRI data acquisition and modeling.

Validating Microstructural Features
Fiber Orientation and Dispersion
Diffusion MRI and its associated models offer the unique ability
to track fiber pathways non-invasively. Diffusion tractography
has been widely used in research settings to probe structural
connectivity in health and disease and has seen success in
clinical scenarios. Most notably, tractography has been used
to identify fiber pathways during tumor resection [108] or
other neurosurgical applications [109]. Tractography is based
on the coherence in fiber orientation between adjacent voxels
and is therefore fundamentally based on the accuracy of the
estimated fiber orientation within each voxel. Validation efforts
to demonstrate the accuracy of diffusion MRI have typically
focused on applications to tractography, but these findings are
also pertinent to microstructural modeling to derive local (i.e.,
voxel level) estimates of fiber orientations and dispersion. While
the diffusion tensor models a single fiber orientation within
each voxel, several methods have been developed to provide

FIGURE 3 | Fiber Orientation Measurements in Fixed Tissues. Examples of fiber orientation measurements in human brain specimens. Structure tensor analysis (A)

uses a digital texture analysis method to detect fiber orientations in stained sections imaged with bright-field or fluorescence microscopy. Both polarized light imaging

(B) and polarization-sensitive optical coherence tomography (C) exploit the intrinsic birefringence of myelin to obtain fiber orientations. Sections in (A) [114] and (B)

[115] (reproduced under the Creative Commons Attribution License) are from the human brain white matter, and (C) [116] from the human medulla oblongata (with

permission).
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a comprehensive estimate of the number and distribution
of fiber orientations within each voxel [64, 110], each with
their own implications for tractography. Although, they have
potential applications to tractography [111–113], diffusion MRI
microstructural models aim to estimate intra-voxel orientation
dispersion as its own unique feature to reveal interesting
characteristics of the healthy, developing, or diseased brain.

Validating the intravoxel fiber dispersion, or ODF, is
typically accomplished through imaging of the tissues using
light microscopy or similar modalities and deriving quantities
reflecting the neurite orientations (Figure 3). Thus, there is
a more direct relationship between diffusion MRI quantities
and those measured from histological samples than for volume
fractions (see following section) because fiber orientations are
largely unaffected by fixation and can be reliably measured in
tissues with relative ease. Among the first examples to conduct
direct validation studies, manual segmentation of axons in
stained tissue white matter sections were compared to DTI and
Diffusion Spectrum Imaging (DSI) estimates [117]. A variety of
automated image processing techniques have been used to derive
the angular orientation profiles of stained tissues, permitting
large-scale automated analysis of tissue specimens [118–127].
These methods generally fall into classes of algorithms that use
pattern-matching, Fourier analysis, or edge detection. Pattern
matching attempts to identify discrete fibers within the image
to build a full distribution of fiber dispersion. On the other
hand, Fourier analysis and structure tensor analysis instead use
the texture of the images to derive angular profiles of edges or
spectral content. Structure tensor analysis has been particularly
attractive since its interpretation is analogous to the diffusion
tensor. Typically, the histological specimens were limited by two-
dimensional samples, but the structure tensor analysis has also
been extended to 3D sections using confocal imaging [128, 129].
Collectively, the results from these studies all demonstrate a
consistent and expected finding that while DTI fails to capture the
full complexity of the underlying fiber orientation distributions,
diffusion models that include dispersion as a feature better
reflect the underlying structures. However, most studies thus
far have validated orientation in tractography-driven approaches
that focus solely on retrieving orientation without regard for
diffusivities and volume fractions and do not fall into the category
of microstructure models.

Stained histological sections for validation have several
disadvantages and potential complications and confounds.
Tissue processing and cutting can lead to distortion or
artifacts, and histological staining may also be complicated
by staining irregularity or artifacts. Moreover, sectioning,
staining, and imaging large volumes at high magnification is
very time consuming [130]. Although the brains and spinal
cords of small animals can be captured with most laboratory
microscopes, imaging large-scale tissues at high resolution such
as human brain slices may require custom equipment and high-
performance computing. Advances in large-scale microscopic
imaging of fixed tissues have circumvented some of the issues
with traditional sectioning and staining by using blockface
imaging and intrinsic contrasts. Myelin exhibits the property of
birefringence [131] which permits imaging of fiber architecture

in fixed but unstained tissue sections. Somewhat analogous
to diffusion encoding, rotating the polarization angle along
different directions enables the estimation of fiber orientations
in both 2D and 3D to examine human brain sections in their
entirety [115, 132, 133]. Blockface microscopy, which consists
of repeated imaging of the exposed surface of a tissue cut
using serial sectioning, has also emerged as a powerful tool for
large-scale imaging. Notably, compared to traditional sectioning,
blockface imaging reduces distortions and the full process can
be automated [116, 134, 135]. Modalities such as two-photon
microscopy [136] or optical coherence tomography [137, 138]
also image up to tens of microns below the surface and can
provide contiguous 3D images of large tissue. Many of the
whole-specimen imaging techniques developed for local neuron
connectomic studies [139–141] have demonstrated utility when
coupled with diffusion MRI [142].

Direct histological examination with microscopy has
consistently demonstrated that white matter tracts are not
strictly composed of uniform bundles. Even in the corpus
callosum, an intravoxel dispersion of ∼18–20 degrees is
consistently evident from rodent [117], and human samples
[118, 143]. In the gray matter, Jespersen et al. demonstrated
strong agreement between the estimated neurite orientation
distributions and histological staining [144].

Volume Fractions or Neurite Density
The ability of diffusion MRI to monitor axon content in the
brain and spinal cord has demonstrated wide ranging utility
in a variety of applications across normal development, aging,
injury, and disease. Unlike fiber orientation, which is generally
preserved in fixed tissues, the relative volume fractions are
perturbed during fixation and processing which has made non-
MR measurements somewhat biased and inconsistent. It is
important to first distinguish the true physical cellular fractions
obtained from microscopy or other non-MRI methods from
those reported from diffusion MRI models. In the brain, the
extracellular volume fraction is typically around 20% [145],
but traditional tissue fixation and processing artificially reduces
this to ∼2–5% [146]. In white matter, the axoplasm constitutes
∼25–30% of the physical space in white matter tissues [147],
myelin constitutes ∼20–30% [147, 148], and glial cell bodies
and processes constitute ∼30–40% [147]. Recent extracellular
space-preserving methods of fixation support the approximation
of 15–20% extracellular space [149] and indicate that axonal
volumes are relatively unaffected by the method of fixation [150].
In typical diffusion MRI experiments, the signal from water
associated with myelin has a negligible contribution to the overall
signal due to its short T2 and is therefore routinely ignored
in diffusion models. Diffusion MRI measures of compartment
signal fractions are commonly referred to as neurite density or
axonal volume fraction. Since density implies axonal counts and
axonal volume fraction is ambiguous due to the myelin volume
fraction, the term axonal water fraction (AWF) is a more precise
terminology. Thus, derived from physical measurements alone,
the AWF in healthyWM should be∼33% [147, 148]. However, to
further complicate things, the relative fractions of the remaining
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“MR-visible” compartments are also weighted by their respective
T2’s.

Several studies have compared MR-derived axon water
fractions with direct histologic preparations of the same samples.
Estimates of the intra-axonal volume fractions fromDWImodels
consistently emerge around 40–60% [38, 151], which is generally
in line with histologic estimates although slightly higher than
estimated from microscopy [152]. Jespersen et al. demonstrated
agreement between neurite density estimates from DWI and
quantitative microscopy, notably using both ex vivo DWI and
histology [38, 61], and others have shown similarly strong
relationships [153], although lower fractions have been noted in
some samples [154]. Correlations (or absence thereof) between
diffusion-derived and electron microscopy (EM)-derived metrics
have also helped further establish the selective sensitivity of
biomarkers derived from diffusionmodeling to different features.
For example, using WMTI, AWF has been shown to correlate
with axon volume fraction but not with the g-ratio derived from
EM, while De,⊥ correlated with the g-ratio but not the with axon
volume fraction [56]. Measures of AWF have also been combined
with MRI measures of myelin content to estimate myelin g-
ratio in vivo, which compared favorably to that derived from EM
[155, 156]. However, a strong correlation is not necessarily proof
of parameter specificity. Notably, axon fractions derived from
microscopy typically correlate very strongly with radial diffusivity
(RD) derived from the diffusion tensor [61].

Compartment-Specific Diffusivities
Diffusivities of the various modeled cellular compartments are
both critical features that form the basis for diffusion models,
and have been arguably the most difficult to validate. Alternative
methods to NMR for measuring the self-diffusion coefficient of
water are not available, and NMR-based measurements include
signals from all compartments. In order to circumvent this issue
and gain information about compartment-specific diffusivities,
alternative approaches have been proposed: the use of model
systems, endogenous compartment-specific metabolites,
exogenous compartment-specific probes and tracers, signal
suppression in a given compartment, exploiting alternative
encoding methods, analyzing time-dependent properties, and
combining diffusion methods with other contrasts (T2). Early
studies examined compartment-specific diffusivities to glean
insight into the nature of diffusion in the nervous system,
with a particular focus on the biophysical basis of changes in
cerebral ischemia. More recently, as highlighted in Part 1, a
two-compartment model of diffusion shows a degeneracy that
only an independent determination of compartment diffusivities
can lift.

Model systems using invertebrates with large axons were
first used to identify the source of anisotropy in the nervous
system [157], demonstrating that biological membranes were
the primary determinants of diffusion restriction/hindrance.
These studies measured the intrinsic intra-axonal diffusivity,
demonstrating it was ∼70–80% that of pure water [158, 159].
Hence, these studies set the stage showing that intra-axonal
diffusion was largely unrestricted along the axon, and the

axonal membrane serves as a considerable barrier to diffusion
perpendicular to the fibers.

Endogenous MRI-detectable tracers to assess diffusion
primarily include metabolites detected through proton magnetic
resonance spectroscopy (MRS). These include NAA, creatine,
choline, and myo-inositol. NAA is a neuronal-specific metabolite
and a surrogate marker of the intra-axonal space in white matter.
Although, the neuronal specificity of NAA has recently been
called into question since it was found to be also localized
in myelin [160], the influence of myelin-associated NAA on
the MR signal remains unclear and diffusion of NAA has so
far been used to probe intra-axonal diffusion. Kroenke et al.
[37] performed diffusion-weighted MRS in the human corpus
callosum and rat brain, demonstrating that in vivo the Da,‖
of NAA was ∼50% (0.36 µm2/ms) of that of an aqueous
solution and Da,⊥ was effectively zero. Similar results were
shown for NAA in the human brain and in a peripheral nerve
preparation [161, 162]. Ronen et al. [143], accounting for both
the macro- and microscopic curvature of the human corpus
callosum, measured a slightly larger Da,‖ (0.51 µm2/ms) putting
it in the range of 60–70% of aqueous NAA. Palombo et al.
[163] have also demonstrated diffusion of NAA and other
metabolites can be modeled as occurring in long, cylindrical
fibers, having a Da,‖ of 0.33 µm2/ms. The diffusion weighted
signals of other metabolites were also fit well by assuming
long cylindrical processes [163–165]. Since metabolites have
differences in molecular size, affinity to charged surfaces, and
potential ambiguity in compartment selectivity, the intra-axonal
diffusivity of water cannot be unequivocally extrapolated from
metabolite diffusivities. However, these studies and those in
experimental preparations are consistent with the intra-axonal
water diffusivity being 60–80% of its temperature-matched
aqueous diffusivity.

Exogenous MRI-detectable tracers, most notably injectable
agents used in animal models, have also been used to probe
the diffusivity of specific environments. Non-proton probes
have been used to selectively probe either the extracellular
space (sodium-based [166]), the intracellular space (cesium-
based [167]) or each of them separately (fluorine-based [168]).
The diffusivity of extracellular proton-based agents such as
mannitol, phenylphosphonate, and polyethylene glycols has
also been investigated using diffusion spectroscopy [169].
Often though, the compartment specificity is not perfect
and transmembrane exchange is a complicating factor [170].
Nonetheless, using these approaches, it has been suggested that
the diffusivities in the intra- and extracellular environments
for molecules of these sizes are approximately similar to one
another. It should be noted though that these measurements
were typically limited to the apparent diffusion coefficient
(ADC) in rat gray matter, and should rather be interpreted
as: the traces of the diffusion tensors in the intra- and
extracellular environments are approximately similar to one
another.

Compartment selectivity can be also achieved by suppressing
the extracellular water signal using exogenous tracers.
Intracerebroventricular infusion of a gadolinium-based contrast
agent causes the T2 of the extracellular space to decrease,
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effectively suppressing its contribution during signal acquisition.
Following measurements in the rat gray matter, Silva et al.
reported similar ADCs with and without the suppression, which
supports the idea of comparable diffusion traces in the intra-
and extracellular environments for water molecules as well
[171]. Recently, this experiment was replicated in the rat corpus
callosum in a direction-specific manner and concluded that Da,‖
≥ De,‖ [172].

Non contrast-based alternatives using non-conventional
diffusion encoding have also provided insight into how axial
compartment diffusivities compare. A double diffusion encoding
(DDE) sequence was recently used to exploit Da,⊥ = 0 and
suppress the extra-axonal signal using a strong initial diffusion
gradient perpendicular to the spinal cord, with the results
suggesting Da,‖ ≈ De,‖ [173]. Isotropic diffusion weighting has
been used by two independent groups to show that isotropic
kurtosis is negligible in most brain structures, including white
matter tracts [174, 175], whereby the traces of the intra-
and extra-axonal compartments were similar. This recurrent
observation implied the Da,‖ ≥ De,‖ solution of the two-
compartment model was valid. Most recently, Jespersen et al.
have shown also that the time-dependence for compartment-
specific diffusivities in a Watson-WMTI model is physically
acceptable only forDa,‖ ≥De,‖, albeit in fixed rat spinal cord [59].
The inclusion of compartment T2’s in the LEMONADE model
also suggested likewise [176]. Thus, evidence from a variety of
experiments has generally favored Da,‖ ≥ De,‖, although true
independent validation is still lacking.

Validation of Model Parameter Choices
The choice and accuracy of diffusion model parameters can be
gleaned from these validation studies. The first observation is
that, for clinical diffusion times, the long-time limit applies and
intra-axonal diffusion perpendicular to a single fiber (Da,⊥) is
effectively zero: thus the “stick” model of axons is generally
appropriate for axon diameters in the central nervous system,
as has also been demonstrated recently [177]. Second, under
this stick model assumption, the orientations of fibers examined
histologically are reasonably well-approximated by diffusion
models that account for dispersion or crossing-fibers, but it
should be noted that most of these studies have not jointly
considered dispersion along with simultaneous estimates of
other microstructural properties. Third, the intra-axonal parallel
diffusivity (Da,‖) is ∼60–80% of the temperature-matched
aqueous solution of the same molecule (Dfree). Fourth, in the
healthy white matter, the intra-axonal parallel diffusivity Da,‖ is
likely faster than the extra-axonal diffusivity De,‖, although not
substantially.

PARAMETER CHOICE IN THE INJURED
AND DISEASED WHITE MATTER

In the healthy white matter, diffusion models have converged to
a relatively uniform set of parameters as described previously,
which has been proposed as the universal model of white
matter diffusion. To avoid model overfitting, each of the

biophysical model variants neglects, constrains, or holds
fixed certain parameters while leaving others free to fit to
the data. Importantly, while these constraints have nuanced
effects in the healthy brain and spinal cord, there is still
considerable disparity and disagreement about the necessary
and relevant model parameters in the injured or diseased
brain. A complication arises in which the pathologies of
different injuries or diseases may be different from one
another and are likely to evolve over time and therefore,
since there is no consistent pathology, there is unlikely to
be a diffusion model that universally captures it. Moreover,
while a specific pathology can lead to predictable diffusion
MRI outcomes, many different pathologies can lead to the
same diffusion behavior. Furthermore, single pathologies rarely
occur in isolation. While the diffusion model parameters
themselves are independent, there are often strong correlations
between pairs of diffusion parameters and specific pathological
features.

Diffusion MRI has been applied to nearly every brain and
spinal cord disease or injury. DTI represents the overwhelming
majority of studies related to validation, yet many investigators
have conducted comprehensive studies to relate biophysical
model parameters with the gold-standard techniques. While
a comprehensive review of all of the different disease and
injury categories is beyond the scope here, highlighting specific
examples will shed light on the issues.

Cerebral Ischemia
The most common clinically useful application of diffusion MRI
is in the detection of acute cerebral ischemia [178, 179]. Within
minutes of the onset, diffusion within the infarct is decreased
by approximately one half. Although the precise mechanism
has been debated, it is closely related to the loss of membrane
polarization, ion imbalance, and cell swelling characteristic of
acute ischemia [180]. Compartment-specific tracer studies have
indicated that the intracellular and extracellular compartments
exhibit similar decreases in diffusion [168, 171], while others
have shown that intracellular diffusivity decreases substantially
while the extracellular diffusivity experiences a somewhat lesser
decrease [167]. The extracellular decrease is consistent with a
reduction in the extracellular space and increase in tortuosity
that leads to decreased diffusivity in that compartment [33],
while the intracellular decrease is consistent with neurite beading
[94, 181]. Oscillating gradient measurements in the rat brain
have demonstrated that restrictions caused by ischemia occur
on the scale of several microns typical of cell sizes [182]. The
reduced diffusion in stroke can also relate to a larger fraction of
highly restricted diffusion [183, 184] which may be compatible
with a still water compartment (Diso = 0). Clearly, as the injured
tissue degenerates, multiple coincident pathologies exist and the
interpretation of diffusion MRI changes becomes increasingly
more complex. For example, both NODDI and WMTI have
been applied to acute human stroke, with contrasting results.
WMTI demonstrated a large reduction in Da,‖ in coherent fiber
pathways, with lesser reductions in De,‖ (under the assumption
Da,‖ < De,‖) consistent with neurite beading hypothesis [13]. On
the other hand, NODDI applied to human stroke demonstrated
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pronounced increases in the estimated orientation dispersion
[42]. Although these differences may be related to the time
after onset, animal models reveal almost no changes to neurite
organization in the acute aftermath [185]. Thus, the model
assumptions of NODDI of fixed diffusivities appear to cause
misleading interpretations when those assumptions are strongly
violated.

Demyelination and Myelin Disorders
Demyelination and other myelin disorders, despite having
hallmark pathologies of myelin loss, degeneration, or
dysfunction, also typically exhibit multiple overlapping
pathologies. Particularly in the acute inflammatory phases
of the disease or model, myelin pathologies are accompanied
by microglia and astrocyte activation and proliferation [186],
and axonal injury is also prominent in some models of multiple
sclerosis or optic neuritis [187]. Thus, multiple confounding
pathologies present significant challenges of both specificity
and sensitivity in relation to diffusion models. A chemical
model of demyelination induced through cuprizone toxicity
has been used by many groups to validate diffusion and
other MRI markers related to specific pathologies. Using the
WMTI framework, Guglielmetti et al. [12] demonstrated a
prominent reduction in Da,‖ during the acute inflammatory
phase, while a reduced AWF was observed throughout the
remyelination and recovery period. Jelescu et al. [56] showed
that the axonal fraction assessed with electron microscopy
correlated with AWF derived from WMTI, while the g-ratio
correlated with De,⊥. In a model of hypomyelination, Kelm et al.
[58] demonstrated strong correlations between axonal fractions
obtained from histology and MRI, again using WMTI, but no
significant correlations between other WMTI parameters and
histology measures were found. Using the DBSI framework,
Wang et al. [67] demonstrated strong correlations between
axial diffusivity (a DBSI parameter related to Da,‖) and axon
integrity, radial diffusivity (a parameter related to De,⊥), and
myelinated axons, and cell ratio (a parameter related to Diso)
and histological cell counts, with similar findings reported in
the experimental autoimmune encephalomyelitis [72] and optic
neuritis [68] animal models. However, most disease models
examined previously with DTI [188, 189] demonstrated strong
associations between many of the microscopy measures and
quantitative diffusion MRI measures, thus strong correlations
are not an indicator of specificity. These studies highlight the
challenges of diffusion MRI-based biomarkers since many
different pathologies can give rise to similar diffusion signatures
and separate pathologies rarely occur in isolation from one
another. Moreover, it is worth reiterating that diffusion is an
indirect marker of the entire water content of the voxel, and
while high specificity is desired, the reliability, sensitivity, and
clinical usefulness of these techniques will also be paramount.

SUMMARY

Diffusion MRI is uniquely sensitive to microscopic tissue
features that are nearly impossible to achieve through other

means. However, diffusion MRI is intrinsically limited since it
is an indirect measure of tissue microstructure and relies on
inferences from models and estimation of relevant parameters.
A plethora of approaches have emerged. The biologically-
inspired models have many similarities although each has
different inherent assumptions and algorithms. Consequently,
validating diffusion models and derived parameters is necessary
to demonstrate accuracy, and has relied on various approaches.
Simulations and phantoms have a role in demonstrating the
accuracy and precision to a known ground truth and can
identify sources of error and effects of violating the underlying
assumptions. The predominant approach to validate diffusion
MRI models is optical imaging of fixed tissue specimens since
it offers a direct assessment of the physical features of the
tissues and their true biological complexity. An increasing
body of literature has demonstrated that diffusion models
which account for intra-voxel fiber dispersion are generally
good approximations to the underlying white matter fiber
organization. Estimates of axonal volume fraction with diffusion
MRI are also approximately consistent with histological
measurements when accounting for potential bias of fixation
and tissue processing. The intrinsic diffusivities of the intra- and
extra-axonal compartments are more challenging to validate
independently since they can only be measured using NMR
itself, and alternative diffusion encodings seem promising in
providing the sought validation. In the injured and diseased
white matter, considerable ambiguity still exists in the choice
of model parameters along with their imposed constraints.
Critically, the range of possible pathologies is likely to be too
complex to be accurately captured with a single universal model
and avoid over-fitting. Validation studies will be important
to establish disease and pathology specific applications.
Ultimately, the goal of diffusion MRI modeling is to provide
a clinically meaningful insight for diagnosis and treatment
efficacy.
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