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Transport networks are crucial to the functioning of natural and technological systems.

Nature features transport networks that are adaptive over a vast range of parameters,

thus providing an impressive level of robustness in supply. Theoretical and experimental

studies have found that real-world transport networks exhibit both tree-like motifs and

cycles. When the network is subject to load fluctuations, the presence of cyclic motifs

may help to reduce flow fluctuations and, thus, render supply in the network more

robust. While previous studies considered network topology via optimization principles,

here, we take a dynamical systems approach and study a simple model of a flow

network with dynamically adapting weights (conductances). We assume a spatially

non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what

network configurations are dynamically stable. The network converges to a spatially

non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic

structures emerge locally in a transcritical bifurcation as the amplitude of the load

fluctuations is increased. The resulting adaptive dynamics thus partitions the network

into two distinct regions with cyclic and tree-like structures. The location of the boundary

between these two regions is determined by the amplitude of the fluctuations. These

findings may explain why natural transport networks display cyclic structures in the

micro-vascular regions near terminal nodes, but tree-like features in the regions with

larger veins.

Keywords: adaptive networks, flow networks, transport networks, heterogeneous network structures,

transcritical bifurcation, tree-like structures, cycles, loops

1. INTRODUCTION

Network structures are found in all of our everyday life, ranging from social interactions over
technological infrastructure to natural systems. Networks serve vital functions on microscopic
to macroscopic length scales, ranging from proteins, DNA, cells, organs and organisms [1].
An important function of networks is to transport people, goods, metabolites, and information
among other [2–7]. While in technology, transport networks are relatively rigid and yield
limited adaptivity, biological transport networks are capable of ensuring robust flow and operate
satisfactorily over a vast range of parameters to prevent operational failure even under extreme
conditions.

An example for one of the most advanced transport networks is the mammalian vascular
network. Every second, the vasculature is without interruptions serving regions of the brain
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despite ever changing neural activity [8] or changing demands
in other tissue [9]. The mammalian vasculature, composed
of bifurcations (nodes) and vessels (links), is highly adaptive
because vessel diameters (weights) dynamically adjust to changes
in flow properties such as pressure and shear stress via a variety
of vessel response mechanisms [9]. Several biophysical models
have investigated the response mechanism of single vessels [10–
13]. Here, we aim at understanding how an adaptive flow network
may respond on a global network level. Notably, the mammalian
vasculature forms a complex network [14, 15] displaying both
tree-like [16] and cyclic motifs [17] which also are found in the
leaves of trees or in power grid networks [18].

Recent work investigated optimal topology of flow networks
from the perspective of their energy efficiency, damage resilience,
or cost of repair [19–23], features which may be argued to
have evolved over long time scales. From the perspective of
optimization theory, it is interesting to note that depending on
the shape of the cost function, tree-like or cyclic structures may
be more effective [24–27], leading to phase transitions between
tree-like and cyclic structures. Moreover, cycles not only confer
redundant structures and thus improve damage resilience (i.e.,
another cost function), but may also be more favorable in the
presence of fluctuations [20, 28].

However, while research on adaptive (co-evolving) networks
from the perspective of theoretical physics is under active
development, the understanding of adaptive flow networks in
particular remains relatively un(der)explored in the field of
network theory [29]. Thus, we consider the dynamic stability
of particular network configurations given that vessels may
adapt their diameters slowly over relatively short time scales.
Specifically, we wish to address the following questions: given
a flow network with dynamically adapting weights, (i) what
network configurations (weights) are dynamically stable, and
(ii) if non-uniform flow (load) fluctuations are present in the
network, how far do these fluctuations affect adaptation into
network regions where fluctuations are absent? In other words,
when spatially inhomogeneous load fluctuations are present, does
the network partition into clusters exhibiting tree-like motifs and
cycles?

We wish to establish a fundamental understanding of the
possible dynamics and gain insights from the perspective of
network theory, nonlinear dynamics and physics, rather than
of specifically physiological aspects. Thus, to obtain answers to
the above questions, we dispose of the mathematical intricacies
inherent to solving biophysically detailed models. Instead of
building on physiological models of blood vessel changes which
occur via acute responses in tone or the slower remodeling of
the vessel [10–13, 30–32], we defer to simple conceptual models
of adaptive flow networks, based on basic physical principles,
allowing for analytical tractability.

We assume that the network has one constant inlet (source)
and many outlets (sinks) subject to load fluctuations. In the
language of vascular physiology, we model a bifurcating arterial
network where the only inlet is a feeding artery, bifurcating in a
tree-structure to the terminal nodes interfacing via capillaries to
the venous network. At this interface, changing supply demands
constitute load fluctuations which are rapid compared to the

adaptive network dynamics. A similar (though physiologically
different) situation is seen in (real) trees, where the stem feeds the
tree with water and nutrients at a more or less constant rate. In
the leaves, so-called stoma evaporate the sap, and their periodic
opening and closing correspond to fluctuating sinks [28, 33].
Inspired by these natural networks, we wish to address two
questions: How strong do load fluctuations need to be so that
cyclic shunts (loops)1 emerge in the network that break the
topology of a spanning tree? How far do these cyclic shunts
reach into the tree toward the feeding vessel, so that a non-
uniform network structure emerges, divided into two subgraphs,
one tree-like and the other with cycles?

The article is organized as follows. In the next section, we
introduce the model and simulations that we study. Sections 3
and 4 discuss the dynamics on simple networkmotifs (one source
and one sink, and one source and two sinks, respectively). In
section 5 we investigate the emergence of cyclic structures in a
larger network with one constant source and many fluctuating
loads, which we conclude in the Discussion in section 6.

2. MODEL

2.1. Network Structure
V denotes the set of nodes of the network with N = |V| < ∞
and A ⊆ N × N the set of edges. The edges are bidirectional,
so (i, j) ∈ A implies (j, i) ∈ A. Each node is assigned a pressure
pi. The edge flow is fij > 0 from node i to j. Furthermore we
assume that the network is resistive and linear, i.e., it is Ohmian
with fij = Cij(pi − pj), where an edge carries the property of a
conductance between nodes i and j with Cij = Cji > 0 only if
(i, j) ∈ A.

Here, we study the three kinds of wirings illustrated in
Figure 1: (a) one source and one sink, (b) one source and
two fluctuating sinks, (c) a tree-like network with height H
allowing for cross-edges on every bifurcation/branching level,
l = 0, . . . ,H, leading to cyclic structure. A cycle is a connected
subnetwork of m nodes such that each node has exactly two
neighbors.

To model sources and sinks in the network, we include non-
zero nodal flows hi. Denote by S ⊂ V the set of sink nodes,
|S| = n = 2H . We define one source at the edge feeding the
network, h1 = 1, and n sinks with hi(t) < 0 at all leaves of
the tree-like structure (i.e., where capillaries connect to the vein
network). For all other nodes, hi = 0. Mass balance requires that
∑

k∈V hk(t) = 0 for all t ∈ R.

2.2. Mass Conservation
Mass conservation demands that edge flows, fij from node
i to adjacent nodes j, and nodal flows, hi, match the local
accumulation rate at node i, dVi/dt, i.e.,

ρ
d

dt
Vi +

∑

j

fij = hi(t) (1)

1In parts of the literature, the term loop is used synonymous with cycle. Loop,

however, may also refer to an edge connecting a node with itself [34].
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FIGURE 1 | Network structures: (A) motif with 1 fluctuating source and 1 sink (2-node model), (B) motif with 1 constant source and 2 fluctuating sinks (3-node

model), and “augmented trees” (C,D), i.e., tree-like structures with cross-edges (dashed horizontal edges) that connect only nodes in each minimal subtree, thus

forming a “triangular tree” (C), or connect all nodes within one tree level l by a path as in (D). Thus, cross edges introduce cycles to the network. The constant source

at the root and the fluctuating sinks in the leaves of the tree are shown in blue and red, respectively, and l denotes the branching level in the tree-like structure.

where ρ is the fluid density and Vi is the vessel volume at node
i. However, assuming that accumulation is nearly instantaneous
or vessels are inelastic the nodal accumulation rate becomes
negligible [15]. Mass balance then becomes Kirchhoff’s first law
stating that

∑

j

Cij(pi − pj) = hi, (2)

which is re-written in vector/matrix notation by defining the
nodal flow h := (hi)i∈V and the Kirchhoff matrix K = (Kij)i,j∈V
with Kij := (δij

∑

j Cij)− Cij,

K · p = h (3)

which is solved for p := (pi)i∈V .

2.3. Dynamically Adapting Conductances
To impose adaptive dynamics to the network, we postulate the
generic ad-hoc law for the conductances:

d

dt
Cij = α1Cij(pj − pi)

2 − α2Cij. (4)

Thus, the first term on the right hand side induces growth
proportional to the power dissipated along the edge, thus
mitigating rising pressure differences by increasing the
conductance along the edge. Thus, the network adapts itself
toward minimizing power consumption. The last term prevents
unlimited growth of the conductances.

Rescaling variables with C′
ij : = h−1

1

√
α2/α1 Cij and p′i : =√

α1/α2 pi, h
′
:= h/h1 (so that h′1 = 1), t′ := α2t, the resulting

dimensionless model reads

d

dt′
C′
ij(t) = C′

ij(t)[(p
′
j(t)− p′i(t))

2 − 1], (5)

K′(t) · p′(t) = h′(t), (6)

0 =
∑

j

h′j(t). (7)

where we drop the primes and omit the argument t from now on.

2.4. Fluctuating Sinks
We consider sinks with periodic and stochastic drive, compliant
with

∑

k∈V hk(t) = 0. Sinks are assumed to fluctuate with a
characteristic time scale T ∼ 1/ω. Periodic driving may be
implemented for N = 2 with h1,2 = ±a cosωt and for N = 3
with h1 = 1, h2,3 = − 1

2 ± a cosωt. For networks with N > 3
(Figure 1C), we implement only stochastic driving2.

For stochastic driving, let (sk) be a sequence where for each
k ∈ N0, the random variable sk has support S and is distributed
identically, uniformly and independently. Then for time t and
sink i ∈ S,

hi(t) =























−
1

n
−

a
√
2

if i = sk with k = ⌊t/T⌋

−
1

n
+

1

n− 1

a
√
2

otherwise

(8)

In plain words, this reflects the situation where at each point t
in time, one of the sinks has higher load than the others; after
each time interval of length T, the sink with higher load is again
chosen uniformly at random. Independent of time, the source
(root node) has h1 = 1. For all other nodes j (neither source nor
sink), hj = 0.

In the systemwithH = 1 (one source, two sinks), Equation (8)
becomes

h2(t) =























−
1

2
−

a
√
2

if sk = 2 with k = ⌊t/T⌋

−
1

2
+

a
√
2

otherwise

(9)

and h3(t) = −1− h2(t).

2Note that periodic driving may be generalized to larger spanning trees with N =
2L > 3 where L denotes the number of branching levels: hl = − 1

2 ± almod 2 cosωt

where l = 2L−1 + 1, . . . 2L are indices for the leafs of the tree. Thus, there are

(2L − 2L−1)/2 pairs of leaves that balance each other. To break the symmetry, we

may permute the leaf indices l in hl .
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2.5. Solving the Flow
Equations (5) and (6) are invariant with regards to time-
dependent pressure shifts, pk(t) 7→ pk(t) + P(t) =: p′

k
(t). Thus,

we may let P(t) := −N−1
∑

k∈V pk(t) and

∑

k∈V
p′k(t) = 0, ∀ t ≥ 0. (10)

which we later use to obtain Equation (27).
A general solution of Equation (3) is of the form p =

phm + pin ∈ R
N , where phm and pin solve the homogeneous

and inhomogeneous problems, respectively. - Each row in the
Kirchhoff matrix K ∈ R

N×N in Equation (3) has sum zero which
implies that (1, . . . , 1) ∈ ker (K). Since rank(K) = N − 1 (no
isolated nodes), we have that ker(K) = span((1, . . . , 1)) and ph =
c · (1, . . . , 1), c ∈ R. In particular, by letting c := P(t) at any given
time t ≥ 0 wemay choose a specific instance of the homogeneous
solution during the simulation. - The inhomogeneous solution
pin is determined exactly by solving the reduced systemKr · p̃in =
hr , where the reduced KirchhoffmatrixKr ∈ R

N−1×N−1 with full
rank is given by deleting row l and column l inK, and hr ∈ R

N−1
is constructed by removing entry l in h. Finally, pin is given by
pin,l = 0 and complementing all other entries from p̃in ∈ R

N−1.

2.6. Simulations
We use a simple Euler scheme with time step 1t = 10−3 for
numerically integrating Equation (5). With a given parameter
value a, we run the dynamics for a duration of τsim = 104. We
take averages and standard deviations of conductances over the
time interval [τsim/2, τsim]. For a parameter scan, an outer loop
runs over values of driving amplitude a, starting at a = 1.0 and
decrementing with 1a = 10−3. For a = 1.0, the conductance
of each edge (i, j) ∈ A is initialized as Cij = 1. For a < 1.0, the
integration is initialized with the conductance averages obtained
in the previous run at parameter value a+ 1a.

We have checked that the results are robust under variation
of 1t and τsim. In the limit of fluctuations much faster than
adaptation, only the distribution values hi but not their temporal
order determines the conductance values obtained. This fact and
the symmetry of the tree topology under swapping sink nodes are
used to speed up the simulations.

3. ANALYSIS

3.1. One Source and One Sink (2-Node
Model)
Let us consider a system with only two nodes V = {1, 2} linked
by the edge with conductance C12, as depicted in Figure 1A.
We assume there are fluctuations driving the system but no net
pumping between the two nodes, hence 〈h1〉t = 〈h2〉t = 0.
Invoking Kirchhoff’s first law, C12(p1 − p2) = h1(t), the model
reduces to a single equation,

d

dt
C12 = C12

(

h21
C2
12

− 1

)

. (11)

Superficially, two equilibria seem feasible: (i) the trivial solution
with C12 = 0; and (ii) a non-trivial solution, defined via the
condition C2

12 = h21 > 0.
To obtain more insight into these solutions, let us assume

that the drive h1(t) has a well-defined characteristic time scale,
T = T(h1). Then we may consider two limiting cases: slow
driving (T ≫ 1) and rapid driving (T ≪ 1). For slow driving,
the conductance is slaved to the driving, i.e., C12 → h1(t)
as t → ∞. For rapid driving, we may average the equations
and seek solutions, 〈Ckl〉, averaged over rapid fluctuations with
characteristic time scale T, and observe that C2

12 → 〈C2
12〉

and C2
12 → 〈h1(t)2〉 as T → 0. For slow driving h1(t) is

quasi-stationary and for fast driving 〈h21〉 is constant. Therefore,
determining stability of the two equilibria is straightforward, as
we then simply may inspect the derivative of the right hand side
of Equation (11), −(h21/C

2
12 + 1). Since h21 > 0 and C2

12 > 0, the
non-trivial branch is always stable; however,C12 = 0 corresponds
to a singular (and unstable) solution.

For the case of periodic driving of the form

h1,2(t) = ±a cosωt, (12)

where a ≥ 0 and ω = 2π/T, we may find an explicit (positive
valued) solution for Equation (11),

C12(t) =
a
√
2

√

1+ T +
cos 2ωt + ω sin 2ωt

1+ ω2
(13)

with the transient term T := 2Me−2ta−2(ω2 + 1) where M is a
constant determined by the initial condition. We may study two
different limiting behaviors in the asymptotic limit t → ∞. For
sufficiently fast driving (ω ≫ 1),

C12(t) ≈
a
√
2

√

1+ ω−1 sin 2ωt (14)

As ω−1 → 0, fluctuations in C12 become entirely negligible, so
that C12 → a/

√
2 and 〈C12〉 → a/

√
2 (note also3). For slow

driving (ω ≪ 1), the conductances are slaved to the driving and
we have

C12(t) =
a
√
2

√
1+ cos 2ωt +O (ω) . (15)

3.2. One Source and Two Sinks (3-Node
Model, H = 1)
We consider a motif with one source with h1 = 1 and two
fluctuating sinks h2 and h3, as depicted in Figure 1B. For T → 0
(rapid driving) the sources obey 〈h2〉t−〈h3〉t → 0, i.e., there is no
net pumping between nodes k = 2 and k = 3. The conductances

3To be precise, for moderately small T, the conductance C12 oscillates around

〈C12〉, with an amplitude that vanishes as T → 0.
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follow the dynamics given by

d

dt
C12 = C12[(p1 − p2)

2 − 1], (16)

d

dt
C13 = C13[(p1 − p3)

2 − 1], (17)

d

dt
C23 = C23[(p2 − p3)

2 − 1], (18)

with

1 = C12(p1 − p2)+ C13(p1 − p3), (19)

h2 = C12(p2 − p1)+ C23(p2 − p3), (20)

h3 = C13(p3 − p1)+ C23(p3 − p2). (21)

Eight (quasi-stationary) solutions are conceivable where either
Ckl > 0 or Ckl = 0 for every edge (k, l); however, only solutions
with C12 > 0 andC13 > 0 are physically meaningful, and so, only
the two solutions with C23 = 0 or C23 > 0 are feasible. Note that
unlike the case of the 2-node motif, the branch C23 = 0 is not
singular anymore.

The general solution for N ≥ 3 nodes is more intricate than
for N = 2 nodes. Therefore, we limit our analysis from now on
to the case of rapid driving, where T ≪ 1 is very small, and we
consider only the asymptotic solutions where t → ∞. In analogy
to the 2-node motif, we seek solutions, 〈Ckl〉, averaged over rapid
fluctuations with characteristic time scale T. Considering that Cij

changes on a slow time scale,Cij → 〈Cij〉 as T → 0, and therefore
we may from now on use 〈Ckl〉 and Ckl interchangeably and omit
〈·〉 around conductances. For symmetry reasons, rapid driving
implies that 〈C12〉 = 〈C13〉. In this limit, the dynamics of the
conductances is then constrained to a two dimensional symmetry
manifold and effectively reduced to the two equations given by

d

dt
C12 = C12[〈(p1 − p2)

2〉 − 1], (22)

d

dt
C23 = C23[〈(p2 − p3)

2〉 − 1], (23)

together with Equations (19–21), in which hk and pk fluctuate
rapidly but Ckl may be considered quasi-stationary. Pressures
may be eliminated by observing the following equalities.
Subtracting Equation (20) from (21), we have

p2 − p3 =
h2 − h3

C12 + 2C23
(24)

and substitution of this expression into Equation (20) yields

p2 − p1 =
1

C12

[

h2 − (h2 − h3)
C23

C12 + 2C23

]

. (25)

We first consider the “tree-like” solution branch with a non-
conducting cross edge C23 = 0. Stationarity for C12 > 0 implies
that 〈(p1 − p2)

2〉 = 1, and mass balance (Equation 25) requires
that p2− p1 = h2/C12. Therefore, the tree-like branch is given by

B∧ = (C12,C23) =
(

√

〈h22〉, 0
)

. (26)

Second, we consider the non-trivial branch with C23 > 0. Again,
we first look for a stationary solution 〈C12〉 > 0 implying that 1 =
〈(p1 − p2)

2〉. Using the symmetry 〈C12〉 = 〈C13〉 and Equation
(19) allows us to write 1 = C12(−p2 − p3 + 2p1). Equation (10)
implies −p2 − p3 = p1, and we have the constant pressure
p∗1 = 1/(3C12) in node k = 1. Next, Equation (10) implies also
p1 − p2 = 3/2p1 − 1/2(p2 − p3). Thus, 1 = 〈(p1 − p2)

2〉 =
9/4〈p21〉 − 3/4〈p1(p2 − p3)〉 − 1/4〈(p2 − p3)

2〉 = 9/4(p∗1)
2 + 1/4,

since by assumption (C12 + 2C23)〈p2 − p3〉 = 〈h2 − h3〉 = 0.
Hence, we have p∗1 = 1/

√
3 and therefore C12 = 1/

√
3. Finally,

to determine C23 we use Equation (24) and 〈(p2 − p3)
2〉 = 1. We

obtain

B△ = (C12,C23) =
(

1
√
3
,
1

2

[

√

〈(h2 − h3)2〉 −
1
√
3

])

. (27)

For periodic driving we let h2,3 = − 1
2 ± a cosωt and obtain the

solutions

B
per
∧ =

(

√

1

4
+

1

2
a2, 0

)

, (28)

B
per
△ =

(

1
√
3
,
1
√
2

(

a−
1
√
6

))

. (29)

From B
per
△ we read off the critical value for the drive amplitude,

ac = 1/
√
6 at which C23 > 0 becomes physically viable.

We now study stability for B∧ and B△ by considering
Equations (22) and (23) which restrict dynamics to the two
dimensional subspace defined by C12 = C23. Using Equations
(24) and (25) and eliminating pressures, we may compute the
Jacobian which we evaluate for the two branches to obtain the
corresponding eigenvalues for periodic driving,

λ∧1 = λ
△
1 = −2, (30)

λ∧2 =
6a2 − 1

2a2 + 1
, (31)

λ
△
2 =

3

2

(

1
√
6
− a

)

. (32)

More generally, we find λ∧2 = (〈h23〉−2〈h2h3〉)/〈h22〉, but λ
△
2 yields

an unwieldy expression. Thus, the two branches swap stability in
a transcritical bifurcation at ac = 1/

√
6, so that B∧ is stable for

a < ac and B△ is stable for a > ac, as shown in Figures 2A,B. In
Figures 2C,D, we show simulations for periodic and stochastic
driving with varying time scales, ω or T, respectively. For
sufficient time scale separation (i.e., T . 10−1), the simulation
results match the analytically obtained values on the stable
branch to large precision. These results demonstrate that the
simulated behavior converges to our analytical predictions as the
characteristic driving frequency T−1 → ∞.

3.3. One Source and Multiple Fluctuating
Sinks (Augmented Tree, H > 1)
Let us now turn to larger systems with more than two sinks
and nodes representing intermediate branching points between
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FIGURE 2 | Bifurcation diagrams for the 3-node model (Figure 1B). Analytical solutions for periodic driving are shown in (A,B), including stable (solid) and unstable

(dashed) branches. Simulated behavior for the shunting conductance C23 is shown for periodic driving (C) and rapid stochastic driving (D). Mean values (large open

symbols) and standard deviation (small filled symbols) are measured for C23(t) over the entire simulation. For both periodic and stochastic driving the predicted

bifurcation point ac → 1/
√
6 is asymptotically reached as the characteristic driving frequency T−1 → ∞.

source and sinks. The networks considered are complete binary
trees, augmented with cross edges directly at each branching,
shown as dashed edges in Figure 1C. We consider the stationary
conductance values under stochastic driving with a rapid
characteristic time scale T ≪ 1.

For a level l ∈ {0, 1, . . . ,H} in a system with height H,

we consider the dynamics for conductances of tree-edges, C
(l,H)
∧ ,

and of cross-edges, C
(l,H)
− , see Figure 1C. By a

(l,H)
c we denote the

critical driving amplitude above which cross-edges with non-
zero conductances emerge. Figure 3 shows the asymptotic values
of the conductances of cross-edges for fluctuations with varying
amplitude a. Non-zero conductances in cross-edges appear with
increasing amplitude in an order that follows the hierarchy of the

tree, i.e., a
(k,H)
c > a

(l,H)
c for all 0 ≤ k < l < H. To illustrate,

as we increase a, the cross-edges between sinks, l = H, are the
first that begin to conduct. Then as we increase a even further,
the next level, l = H − 1, obtains conducting cross-edges, and so
on. Accordingly, the last transition to non-zero conductance for

increasing amplitude a occurs in C
(1,H)
− between the root’s child

nodes.
One may speculate if all observed transitions from zero to

non-zero conductance are of the same kind at different levels,
only varying in the parameter value a

(l,H)
c at the transition and

the slope in the supercritical regime. Figure 4 shows that this
is indeed the case for the cross-edge at level l = 1. Plotting
the conductances of the edges of the source node as a function

a/a
(l,H)
c , we observe a perfect collapse of all data for varying H

(and l = 1 fixed ), by rescaling a 7→ a/a
(l,H)
c = : ã in systems of

different heightsH. So the top triangle including the source node

of an augmented tree of general heightH behaves in the same way
as theH = 1 system with driving parameter a rescaled. Thus, the
analytic results Equations (28) and (29) for H = 1 allow us to
express the scaled conductances explicitly,

C̃12

∣

∣

l=1
=

1

2

√

1+
1

3
ã2, (33)

C̃23

∣

∣

l=1
=

1
√
12

(ã− 1). (34)

The a-dependence of conductances on the other levels is more
intricate, as is shown in Figure 5 for the case of a systemwithH =
6 levels. The derivatives of cross-edge conductances reveal detail
not apparent in the coarser plot (Figure 3) of these conductances
themselves. The slope is maximal at the transition (as the one-
sided derivative with a approaching ac(l, 6) from above). As a
is increasing, the conductance curve becomes slightly flatter.
This non-linear effect hints at dependencies between the levels, l.
However, one may show that using the same rescaled amplitude

parameter, ã, and then C
(l,H)
∧ and C

(l,H)
− collapse to single curves

for fixed l while varying H (not shown).
The Supplementary Material of this article provides

four videos of simulations of the dynamics for systems
with height H = 4. Each of these shows a parameter
sweep as described in section 2.6. Supplementary Video 1
(297323_Martens_Video 1.MP4) shows the dynamics
for the network structure studied above, i.e., with one
cross edge at each branching as illustrated in Figure 1C.
Supplementary Video 2 (297323_Martens_Video
2.MP4), the tree is further augmented to allow for

Frontiers in Physics | www.frontiersin.org 6 November 2017 | Volume 5 | Article 62

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Martens and Klemm From Trees to Cycles

FIGURE 3 | Bifurcation diagrams for augmented tree systems (H > 1) according to Figure 1C with dynamics under fast stochastic driving at the sinks. The

conductances of cross-edges are shown for different levels l as defined in Figure 1, i.e., from the root (l = 0) to the sinks in the leaves (l = H). The values result from

parameter scans decreasing driving amplitude a from 1 to 0. (A–F) Distinguish systems with different heights H ∈ {1, 2, . . . , 6}. In each case, the number of nodes is

N = 2H+1 − 1, i.e., N = 127 nodes for H = 6.

cross edges bridging longer distances in the tree; such a
network structure is shown in Figure 1D. Two further
Supplementary Videos 3, 4 (297323_Martens_Video
3.MP4, 297323_Martens_Video 4.MP4) employ
damaged versions of the latter structure in which roughly half of
all cross edges have been randomly selected and removed. These
simulations confirm the observation that the cross edges begin
to conduct in order of the tree hierarchy, starting from sinks and
moving toward the source.

4. DISCUSSION AND OUTLOOK

We have studied how fluctuating loads affect the re-configuration
of vessels in an adaptive flow network. To do this, we have
introduced a minimal model, consisting of a resistive network
with conductances on the edges which adapt dynamically
toward minimizing fluctuations in the network. To be explicit,
the conductance is up-regulated with the pressure drop
squared (power dissipated), but down-regulated with a factor
proportional to the conductance. Although adaptation adheres
to local rules they also experience a global feedback through
the coupling via the flow network. An important question,
which also appears in the context of synaptic plasticity [35],
is then: what are the (stable) equilibrium configurations of
conductance in the network? Furthermore, we introduced load

fluctuations by including fluctuating sinks in certain network
nodes. For a characteristic time scale T of the fluctuations
much more rapid than the time scale of adapting conductances,
T ≪ 1, we can treat fluctuations in terms of their averages
over time, i.e., their amplitudes. Considering both periodic
and stochastic fluctuations, we analytically and numerically
investigated small and large networks to determine how
their equilibrium conductance configurations depends on the
amplitude of the load fluctuations, a. In particular, we used this
model to investigate how far into the network the fluctuations
would be able to induce re-configurations.

First, we investigated two very simple network motifs
regarding the space of equilibrium configurations and their
stability. The dynamics for the motif consisting of one fluctuating
sink and source can be solved exactly (Figure 1A). The
conductance connecting the two nodes is non-zero and stable
for all fluctuation amplitudes with a > 0. The triangular motif
with one constant source and two fluctuating sinks (Figure 1B)
can also be solved analytically, but exhibits a transcritical
bifurcation at a critical drive amplitude ac: for sub-critical
drive, a < ac, the tree-like solution branch without cross
edge is stable; for super-critical drive, a > ac, the cyclic
structure (triangle with non-zero tree-edge and cross-edge) is
stable, see Figure 2. Numerical simulations demonstrate that
the system behavior asymptotically approaches the solutions
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FIGURE 4 | Parameter dependence of stationary conductances in the top triangle of systems with height H. Open symbols denote in (A) the conductance of the

root’s tree edges, C
(1,H)
∧ , and in (B) the conductances of the root’s cross-edge, C

(1,H)
− . Filled symbols are the same values plotted as a function of a rescaled with the

critical value a
(1,H)
c . The inset in (A) shows the critical values a

(1,H)
c . For height H, the system has N = 2H+1 − 1 nodes, i.e., N = 127 nodes for H = 6.

obtained for the limit of rapid driving (T → 0) as
T → ∞.

Next, we ran numerical simulations of larger tree-like

networks with a constant source at its root and fluctuating loads
in the leaves. Using an initial configuration Cij|t=0 = 1 for

all edges (i, j) ∈ A, we then investigated into which quasi-
stationary configuration the network settles. To investigate the

system behavior analytically, we studied two scenarios. First, we
assumed a simplified network structure, i.e., a complete binary

tree with cross-edges only at each branching, see Figure 1C

and Supplementary Video 1. Conductances C
(l,H)
− of cross-edges

undergo a transition at a critical driving amplitude. We find

C
(l,H)
− > 0 for a > ac(l,H), and C

(l,H)
− = 0 for a ≤

ac(l,H). The critical driving amplitudes ac(l,H), depending

on the edge level l and height H of the tree-like structure,
are hierarchically ordered so that the transitions to non-zero

cross-edge conductances appear successively in descending order
of l as the amplitude grows. Thus, we observe that as the

amplitude is increased cycles first emerge near the fluctuating
sinks and then spread toward the root with the constant source.

Second, we compared these observations with the behavior in

a generalized network topology. In this second scenario, we
ran numerical simulations of networks lacking intrinsic tree

structure, i.e., where all cross-edges are allowed, see Figure 1D

and Supplementary Video 2. In this case, the threshold for an
edge (i, j) between sinks i and j has a dependency on the length of
the tree path between i and j. The longer the tree path (distance on
tree), the lower its threshold. This means that—as the amplitude
is increased—minimal distance short-cuts for longer paths form
before the cross-edges from the first scenario. In both scenarios,
however, the network is partitioned into two regions with tree-
like motifs near the source at the root and cycles closer to the
fluctuating sinks in the leaves of the tree. Transitions get more
complicated when randomly chosen cross-edges are topologically
deleted (Supplementary Videos 3, 4).

Other work has investigated the appearance of cyclic
structures (loops) by discussing flow networks via optimization
in terms of minimizing dissipative losses under continuous
reconfiguration of the flow conditions [19, 20, 28]. While this
point of view may be motivated by evolutionary principles
and yielded many interesting insights regarding the critical
emergence of cycles, we were interested in formulating a minimal
dynamical model [36]. Contrasting previous studies, we did not
assume spatially uniform fluctuations and investigate conditions
under which cyclic structures form in general; rather, we
investigated if partitions between tree-like and cyclic structures
would form and where their boundaries lie. Many studies in
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FIGURE 5 | Slopes of conductances of cross edges in the system with height H = 6 with n = 64 sinks and N = 127 nodes in total. The plotted curves are the

numerically determined derivatives of the data plotted in Figure 3F. For each curve, the maximum value is indicated by an extra vertical dashed line. Note that the

derivative is piecewise constant only for the cross edge closest to the root. The other conductances exhibit maximal slope only at the critical point.

vascular physiology focused on the dynamics of single vessels
and have complex biophysical models including a large degree
of complexity prohibitive to mathematical analysis, and only few
have computationally investigated dynamics in networks [30, 32];
here, we tried to systematically address stability of such vessel
models from a mathematical perspective.

The study on simple network motifs has been insightful
and complemented the numerical findings that we have made
for larger trees. Further research may address equilibrium

configurations and their transitions (a
(l,H)
c ) from tree-like to

cyclic structures in network structures shown in Figures 1C,D,
and attempt to find complete solutions via mathematical analysis
and scaling arguments. For the case of more general network
topologies (see e.g., Figure 1D and for the case of heterogeneities,
an open question remains whether multi-stable equilibria
are possible. Furthermore, research should be conducted on
reducing complex biophysical dynamics to simpler mathematical
models, which could be investigated toward identifying classes
of different dynamic behavior. Finally, generalizations to co-
evolving networks with edges being dynamically created/deleted
may be considered [37].
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