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This study computationally examines (1) how the behaviors of subjects are represented,

(2) whether the classification of subjects is related to the scale of the game, and (3)

what kind of behavioral models are successful in small-sized lowest unique integer

games (LUIGs). In a LUIG, N (≥ 3) players submit a positive integer up to M(> 1)

and the player choosing the smallest number not chosen by anyone else wins. For this

purpose, the author considers four LUIGs with N = {3, 4} and M = {3, 4} and uses

the behavioral data obtained in the laboratory experiment by Yamada and Hanaki [1].

For computational experiments, the author calibrates the parameters of typical learning

models for each subject and then pursues round robin competitions. The main findings

are in the following: First, the subjects who played not differently from the mixed-strategy

Nash equilibrium (MSE) prediction tended to made use of not only their choices but also

the game outcomes. Meanwhile those who deviated from the MSE prediction took care

of only their choices as the complexity of the game increased. Second, the heterogeneity

of player strategies depends on both the number of players (N) and the upper limit (M).

Third, when groups consist of different agents like in the earlier laboratory experiment,

sticking behavior is quite effective to win.

Keywords: lowest unique integer games, laboratory experiment, heterogeneity of strategies, learning, agent-

based simulation

1. INTRODUCTION

In social and economic systems, individuals, groups, firms and so on make their decision based on
the rules they should obey. For example, call market, continuous double auction and other trading
mechanisms are seen in financial markets and investors trade by taking into consideration which
mechanism is introduced [2]. Or, first- and second-prize styles are usually employed in auction
markets and the theoretical bid is different from the auction style [3]. On the other hand, new
types of social and economic systems have been also proposed and some of them are introduced in
practice. Among these, Swedish lottery (SL) game Limbo and Lowest/Highest Unique Bid Auctions
(LUBA/HUBA) like the Auction Air or Juubeo websites are one of the new systems where the
participants are required to be unique by taking risks of not being so.

Lowest Unique Integer Games (LUIGs) are highly simplified versions of SL and LUBA/HUBA.
In a LUIG, N (≥ 3) players simultaneously submit a positive integer up toM. The player choosing
the smallest number that is not chosen by anyone else is the winner. In cases where no player
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chooses a unique number, there is no winner. For instance,
suppose there is a LUIG with N = 3 andM = 3. There are three
players, A, B, and C, who each submit an integer between 1 and 3.
If the integers chosen by A, B, and C are 1, 2, and 3, respectively,
then A wins the game. If the integers chosen by A, B, and C are 1,
1, and 2, respectively, then C is the winner. And, as noted, if all of
them choose the same integer, there is no winner.

LUIGs are more tractable than the above-mentioned real
systems because the exact numbers of players or participants and
the options are known for their decision-making. In this sense,
these types of real systems have been attracting much attention
recently from scholars of various disciplines1. In addition, several
social or economic systems have characteristics of LUIGs. As
Östling et al. [4] have pointed out, “choices of traffic routes and
research topics, or buyers and sellers choosing among multiple
markets” (p. 3) are probable examples. Or, the Braess paradox
can be explained by LUIG [1]. While the previous studies have
investigated these related systems theoretically and empirically,
the behaviors of the bidders and participants, and the dynamics
of game outcomes are not so clear. Likewise, experimental studies
on LUIGs and related systems are still scarce except for Östling
et al. [4] and Rapoport et al. [5]. Östling et al. have conducted
a laboratory experiment of SL and found that there are mainly
four kinds of behaviors observed: random, stick, lucky and
strategic. Based on their findings, Mohlin et al. have proposed
two learning models, global cumulative imitation and similarity-
based imitation, where players make use of not only their choice
but also the game outcome for updating their attractions [6]. On
the other hand, Rapoport et al. have experimentally studied a
version of LUBA/HUBA with (N,M) ∈ {(5, 4), (5, 25), (10, 25)}
and found that only a small fraction of subjects behaved as
theoretically predicted [5].

Yamada and Hanaki experimentally studied LUIGs to
determine if and how subjects self-organized into different
behavioral classes to obtain insights into choice patterns that can
shed light on the alleviation of congestion problems [1]. They
considered four LUIGs with N = {3, 4} and M = {3, 4} and
implemented a laboratory experiment for totally 192 subjects.
Each subject played two separate LUIGs but the difference
between the two LUIGs was eitherN orM. Therefore, each LUIG
had 96 subjects and they were equally split into two parties,
those who played it in Game 1 and the others who did in Game
22. Accordingly, 48 subjects played one of the four LUIGs in
Game 1, which yielded 16 groups in three-person LUIGs and
12 groups in four-person LUIGs. Yamada and Hanaki found
that (a) choices made by more than 1/3 of subjects were not
significantly different from what a symmetric mixed-strategy
Nash equilibrium (MSE) predicts; however, (b) subjects who
behaved significantly differently fromwhat theMSE predicts won
the game more frequently.

These early experimental studies suggest that the strategy and
the decision-making of subjects are heterogeneous and that the
theoretical predictions may not be effective to win more. Yet,

1The list of related work is found in Yamada and Hanaki [1].
2The whole explanation for the experimental design and the mixed-strategy Nash
equilibrium in each LUIG are given in Yamada and Hanaki [1].

due to limited number of samples, it is necessary to intensively
examine the relations between the behavior and learning of
individuals, which can be an origin of heterogeneity, and their
performances. This study extends their past experimental work
to check whether such successful or unsuccessful behaviors
are also true for the game with different opponents. For this
purpose, the author pursues computational approach where the
calibrated agents play with all agents including themselves (round
robin contest) and make comparison between experimental
and computational experiments. Here, several typical learning
models are employed to express the behaviors of subjects in the
laboratory experiment. Then, the one with the best likelihood
for every subject in each game setup is used for computational
experiments.

Several studies have employed both experimental and
computational approaches to computationally test the
experimental results and vice versa. According to Duffy, its
advantages are summarized as “the agent-based approach
to understand results obtained from laboratory studies with
human subjects” and “to understand findings from agent-
based simulations with follow-up experiments involving human
subjects” (p. 951) [7]. The necessity of combining two approaches
have been argued and the methodology has been proposed for
the last decade (e.g., [8–11]). There are a few researches which
indeed employ the combined approach to computationally
test the validity of experimental findings in the laboratory,
implement an intensive computational experiment, and extend
the experimental design by using the laboratory data [12–14].

2. MATERIALS AND METHODS

In the laboratory experiment by Yamada and Hanaki [1], they
observed that keeping on choosing a number was an effective way
to win LUIGs. But, it was not at that moment sure whether such
sticking behavior was really successful. Here, a computational
experiment of round robin competition is employed to see its
effectiveness. Before the competition, several typical learning
models are employed and the parameters of the models for each
subject are then estimated.

2.1. Learning Models
The learning models are as follows:

• One variable adaptive learning (AL1)
An AL1 player i has a propensity aki (t) for number k (k =

1, · · · , M) at the beginning of round t. Before the start
of a game, she is assumed to have the same non-negative

propensities for all the possible integers, namely a
j
i(0) =

aki (0) ≥ 0 for j 6= k.
In every round, she chooses one integer according to the

following exponential selection rule

pki (t) =
exp(λa · a

k
i (t))

∑M
k′=1 exp(λa · a

k′
i (t))
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TABLE 1 | Classification of subjects by observed behavior in the laboratory and

the estimated learning model.

(A) LUIG 33

MSE

(choice + change)

MSE

(choice)

MSE

(change)

Non-MSE

AL1 9 12 0 5

AL3 1 0 0 1

NI 10 8 0 2

Stick 0 0 0 0

Cramer’s coef. = 0.194

(B) LUIG 34

MSE

(choice + change)

MSE

(choice)

MSE

(change)

Non-MSE

AL1 7 8 2 6

AL3 1 2 0 0

NI 15 5 0 1

Stick 0 0 0 1

Cramer’s coef. = 0.386

(C) LUIG 43

MSE

(choice + change)

MSE

(choice)

MSE

(change)

Non-MSE

AL1 6 10 3 5

AL3 4 1 0 1

NI 14 4 0 0

Stick 0 0 0 0

Cramer’s coef. = 0.388

(D) LUIG 44

MSE

(choice + change)

MSE

(choice)

MSE

(change)

Non-MSE

AL1 4 4 1 13

AL3 0 0 2 0

NI 12 8 0 3

Stick 0 0 0 1

Cramer’s coef. = 0.561

where pki (t) is i’s selection probability for integer k in round
t, and λa is a positive constant called sensitivity parameter
([15, 16]).

After a round, propensities are updated as

aki (t + 1) = (1− φa)a
k
i (t)+ 1{k,si(t)}ψaR

where φa and ψa are positive constants called learning
parameter ([15, 16]), 1{·} is the indicator function that takes
1 if k = si(t), and 0 otherwise. Here si(t) is the number that
player i has actually chosen in round t, and R is the payoff
received. Note that the model is called “cumulative” if ψa = 1
and “averaging” if ψa = φa.

• Three variables adaptive learning (AL3)
Players using this model take into consideration two

additional psychological assumptions, experimentation and
forgetting. Here, propensities are updated as

aki (t + 1) = (1− φb)a
k
i (t)+ 1{k,si(t)}ψbR

when they win and

a
j
i(t + 1) = (1− φb)a

j
i(t)+ ψbǫR/(M − 1) (j 6= si(t))

when they lose3. φb and ψb are also learning parameters and ǫ
is a experimentation parameter. Here ǫ is set to 1.0.

• Naive imitation (NI)
Players using this model follow a winning number

regardless of whether they are a winner or not. When
“no-winner” situation happens, they choose the preceding
number4.

While the selection rule is the same as that in AL1 and AL3
models, the updating rule is expressed in the following:

aki (t + 1) = (1− φn)a
k
i (t)+ 1{k,v(t)}ψnR

where v(t) is a winning number in round t, and φn and ψn are
also learning parameters.

• Stick
Players using this model always choose only one number5.

2.2. The Data to Calibrate
Since the subjects in the earlier laboratory experiment were
asked to choose and submit one of the M integers, the
experimental data for calibration include rounds, the choices
of subjects and the winning number for every group in every
LUIG. In other words, they were not asked to imagine what
numbers their opponents would choose or to determine the
probability distribution so that one number would be randomly
chosen.

To determine a learning model for every subject, the author
set one condition and assumed one point: First, only the
experimental data in Game 1 were used for calibration. This
is because learning across the games cannot be clearly treated.
For example, when subjects play a LUIG with M = 3 in Game
1 and that with M = 4 in Game 2, it is not clear how the
initial propensity for the integer 4 is given. Besides, even if the
calibration is done, it is not preferable that the initial state is
different from the subjects; Second, all initial propensities in
Game 1 are set to zero, namely the subjects did not have any prior

3Similar learning model in Swedish lottery is proposed byMohlin et al. [6]. In their
model, players using the model pay attention to the numbers around the winning
number when they lose. But, since the number of options in LUIGs here is much
smaller, it may be possible to take into account the numbers except their chosen
number in the same situation. If the players consider only the winning number,
the following “naive imitation” model is applied.
4Since there are no information about the winning number at the beginning of
the computational experiments, they choose one integer in accordance with the
exponential selection rule.
5Level-k thinking in LUIGs chooses a strategy randomly (k = 0), 1 (k: odd), and 2
(k: even).
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FIGURE 1 | Generated dendrogram (LUIG33).

FIGURE 2 | Generated dendrogram (LUIG34).

belief to others or view to the game. Then, the learning model
with the best log likelihood is employed for the simulation6. Note
that the subjects who did not change at all in Game 1 belong to
“stick.”

6“optim” function in R was used for calibration.

2.3. Computational Round Robin Contest
The experimental design is as follows:

1. Agents played the same LUIG as the corresponding subjects
played in the laboratory.

2. Every agent competes all the combinations of opponents
including him/herself. Therefore, the total number of
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FIGURE 3 | Generated dendrogram (LUIG43).

FIGURE 4 | Generated dendrogram (LUIG44).

combinations is 48HN and an agent faces 1,174 (three-
person LUIGs) and 29,329 (four-person LUIGs) patterns of
opponents.

3. Every combination of agents played the LUIG 100 times
each of which has 50 rounds.

4. The initial propensities of each agent in each game are
the ones estimated by the maximum likelihood method. In
other words, the agents learn and update their belief by using
the data of Yamada and Hanaki [1] before they start to play
the computational LUIG.
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TABLE 2 | Expected behaviors of representative agents in each cluster (ID: Subject ID in the session).

(A) LUIG 33

Cluster #subjects Session ID 1 2 3

SUMMARY AND SUBMISSION PROBABILITY IN ROUND 51

1 15 1 11 0.574 0.273 0.153

2 19 1 23 0.433 0.311 0.256

3 6 1 10 0.024 0.951 0.025

6 20 0.166 0.705 0.129

4 3 1 6 0.998 0.001 0.001

5 5 1 21 0.991 0.000 0.009

Cluster 10c 11c 12c 12w 13c 13w

UPDATES OF CHOSEN OR WINNING NUMBER

1 0.574 0.594 0.581 0.276 0.574 0.153

2 0.424 0.494 0.435 0.347 0.393 0.287

3 0.042 0.150 0.182 0.733 0.211 0.112

0.177 0.269 0.275 0.578 0.282 0.157

4 0.990 0.997 0.985 0.008 0.951 0.024

5 0.989 0.995 0.994 0.000 0.978 0.022

Cluster 20c 21c 21w 22c 23c 23w

1 0.273 0.260 0.594 0.276 0.273 0.153

2 0.321 0.282 0.459 0.356 0.325 0.310

3 0.627 0.581 0.255 0.747 0.690 0.131

0.546 0.532 0.292 0.631 0.611 0.152

4 0.057 0.102 0.798 0.685 0.612 0.092

5 0.000 0.000 0.990 0.000 0.001 0.045

Cluster 30c 31c 31w 32c 32w 33c

1 0.153 0.146 0.594 0.143 0.276 0.153

2 0.312 0.277 0.435 0.254 0.361 0.326

3 0.158 0.183 0.228 0.205 0.548 0.421

0.162 0.172 0.253 0.182 0.559 0.272

4 0.132 0.171 0.331 0.205 0.458 0.790

5 0.052 0.020 0.980 0.024 0.002 0.080

(B) LUIG 34

Cluster #subjects Session ID 1 2 3 4

SUMMARY AND SUBMISSION PROBABILITY IN ROUND 51

1 4 2 3 0.252 0.735 0.007 0.006

2 6 0.016 0.952 0.017 0.016

2 26 5 14 0.272 0.246 0.236 0.246

5 19 0.289 0.293 0.191 0.227

3 3 2 17 0.001 0.001 0.998 0.001

4 15 5 22 0.865 0.053 0.064 0.017

Cluster 10c 11c 12c 12w 13c 13w 14c 14w

UPDATES OF CHOSEN OR WINNING NUMBER

1 0.261 0.377 0.275 0.711 0.281 0.015 0.287 0.017

0.021 0.093 0.105 0.834 0.117 0.038 0.129 0.044

(Continued)
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TABLE 2 | Continued

Cluster 10c 11c 12c 12w 13c 13w 14c 14w

2 0.272 0.275 0.274 0.248 0.273 0.237 0.272 0.246

0.283 0.334 0.297 0.312 0.273 0.241 0.254 0.256

3 0.001 0.005 0.008 0.002 0.011 0.982 0.015 0.005

4 0.847 0.876 0.836 0.079 0.791 0.100 0.761 0.040

Cluster 20c 21c 21w 22c 23c 23w 24c 24w

1 0.667 0.549 0.412 0.661 0.641 0.032 0.621 0.035

0.755 0.728 0.152 0.899 0.877 0.029 0.854 0.035

2 0.246 0.245 0.275 0.248 0.247 0.237 0.246 0.246

0.261 0.240 0.306 0.295 0.270 0.262 0.250 0.267

3 0.007 0.010 0.025 0.041 0.050 0.894 0.060 0.022

4 0.099 0.080 0.789 0.123 0.125 0.146 0.130 0.072

Cluster 30c 31c 31w 32c 32w 33c 34c 34w

1 0.040 0.037 0.431 0.031 0.611 0.057 0.061 0.062

0.043 0.051 0.097 0.059 0.774 0.217 0.224 0.064

2 0.236 0.235 0.274 0.234 0.248 0.237 0.236 0.246

0.245 0.229 0.294 0.217 0.287 0.271 0.251 0.272

3 0.846 0.819 0.066 0.791 0.092 0.909 0.887 0.024

4 0.156 0.127 0.696 0.127 0.165 0.185 0.184 0.107

Cluster 40c 41c 41w 42c 42w 43c 43w 44c

1 0.067 0.060 0.436 0.051 0.563 0.054 0.087 0.093

0.071 0.079 0.126 0.087 0.538 0.095 0.245 0.302

2 0.246 0.245 0.274 0.245 0.248 0.244 0.237 0.246

0.268 0.247 0.290 0.231 0.284 0.219 0.275 0.274

3 0.030 0.037 0.058 0.045 0.078 0.053 0.781 0.169

4 0.113 0.096 0.609 0.096 0.200 0.095 0.215 0.140

(C) LUIG 43

Cluster #subjects Session ID 1 2 3

SUMMARY AND SUBMISSION PROBABILITY IN ROUND 51

1 13 4 14 0.390 0.398 0.213

2 9 7 8 0.608 0.200 0.192

3 8 7 14 0.899 0.058 0.042

7 13 0.691 0.298 0.010

4 15 4 6 0.272 0.570 0.158

5 3 4 22 0.001 0.997 0.002

Cluster 10c 11c 12c 12w 13c 13w

UPDATES OF CHOSEN OR WINNING NUMBER

1 0.293 0.484 0.358 0.368 0.271 0.322

2 0.558 0.830 0.763 0.120 0.697 0.150

3 0.760 0.924 0.807 0.108 0.615 0.172

0.685 0.758 0.675 0.315 0.666 0.016

4 0.272 0.290 0.276 0.576 0.273 0.160

5 0.001 0.002 0.001 0.997 0.001 0.002

(Continued)
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TABLE 2 | Continued

Cluster 20c 21c 21w 22c 23c 23w

1 0.304 0.234 0.363 0.424 0.315 0.353

2 0.184 0.211 0.581 0.582 0.539 0.154

3 0.120 0.068 0.689 0.290 0.164 0.250

0.322 0.248 0.737 0.334 0.335 0.024

4 0.566 0.552 0.291 0.573 0.564 0.162

5 0.996 0.994 0.002 0.997 0.996 0.003

Cluster 30c 31c 31w 32c 32w 33c

1 0.267 0.210 0.401 0.172 0.409 0.352

2 0.181 0.204 0.323 0.225 0.447 0.595

3 0.141 0.080 0.680 0.046 0.268 0.219

0.026 0.022 0.715 0.021 0.351 0.034

4 0.163 0.159 0.292 0.152 0.570 0.164

5 0.002 0.002 0.001 0.001 0.998 0.002

(D) LUIG 44

Cluster #subjects Session ID 1 2 3 4

SUMMARY AND SUBMISSION PROBABILITY IN ROUND 51

1 20 8 22 0.520 0.078 0.201 0.201

3 9 0.346 0.457 0.166 0.031

2 5 3 14 1.000 0.000 0.000 0.000

3 12 8 13 0.248 0.253 0.251 0.248

8 23 0.199 0.402 0.199 0.199

4 11 8 1 0.206 0.772 0.015 0.007

Cluster 10c 11c 12c 12w 13c 13w 14c 14w

UPDATES OF CHOSEN OR WINNING NUMBER

1 0.520 0.738 0.738 0.042 0.738 0.110 0.738 0.110

0.345 0.410 0.361 0.473 0.345 0.176 0.342 0.038

2 1.000 1.000 1.000 0.000 1.000 0.000 1.000 0.000

3 0.249 0.591 0.510 0.164 0.447 0.184 0.399 0.200

0.211 0.527 0.463 0.222 0.414 0.177 0.376 0.193

4 0.206 0.253 0.207 0.776 0.207 0.015 0.206 0.007

Cluster 20c 21c 21w 22c 23c 23w 24c 24w

1 0.042 0.042 0.738 0.103 0.103 0.103 0.103 0.103

0.441 0.395 0.405 0.462 0.438 0.186 0.431 0.046

2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

3 0.213 0.222 0.336 0.564 0.489 0.156 0.431 0.177

0.242 0.245 0.325 0.564 0.492 0.154 0.436 0.175

4 0.772 0.727 0.253 0.776 0.774 0.015 0.772 0.007

Cluster 30c 31c 31w 32c 32w 33c 34c 34w

1 0.103 0.103 0.691 0.103 0.103 0.229 0.229 0.089

0.187 0.171 0.401 0.154 0.450 0.196 0.194 0.054

2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

3 0.194 0.207 0.233 0.217 0.329 0.558 0.484 0.154

0.192 0.204 0.232 0.215 0.334 0.530 0.466 0.158

4 0.015 0.014 0.253 0.011 0.776 0.015 0.015 0.007

(Continued)
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TABLE 2 | Continued

Cluster 40c 41c 41w 42c 42w 43c 43w 44c

1 0.089 0.089 0.594 0.089 0.089 0.089 0.229 0.201

0.056 0.052 0.396 0.048 0.439 0.047 0.204 0.063

2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

3 0.176 0.192 0.199 0.206 0.231 0.216 0.328 0.557

0.178 0.193 0.201 0.206 0.235 0.215 0.325 0.531

4 0.007 0.006 0.253 0.005 0.776 0.005 0.015 0.007

5. The information available for the agents is their choice and
the winning number in the preceding round. However, at
the beginning of each game, there does not exist the winning
number.

6. Agents learn according to their calibrated learning model
with the corresponding parameters.

All numerical results in the next section have been computed in
double precision on a 2.4 GHz PC with 8 GB of RAM and a linux
OS (Kernel 4.4.52-2vl6). All the source codes have been written in
C++, and complied and optimized by GNU g++ version 4.9.37.

3. RESULTS

3.1. Classification of Subjects
Before discussing the results of computational round robin
competitions, the author needs to pay attention to how the
subjects were classified and whether there are relations between
their calibrated learning model and their behaviors observed in
the laboratory.

Table 1 shows the relation between the calibrated learning
model and the choice and the change criteria given in Yamada
and Hanaki [1]8. Two updating rules, cumulative and averaging,
are encapsulated into one. Cramer’s coefficient of association for
each LUIG is also given. Note that the abbreviation “LUIG34”
means that the number of players N is 3 and the upper limit M
is 4. Thus, the first number followed by “LUIG” is N and thenM
comes next.

Cramer’s coefficient of association seems to depend on both
N and M. When N and M are small, the value is relatively
low (0.193 for LUIG 33). On the other hand, if N and/or M
are large, the coefficient becomes larger. In particular, Cramer’s
coefficient of association for LUIG 44 is 0.561, namely many of
the subjects who played not differently from MSE prediction are
considered as NI players whereas those who deviated from the
MSE prediction took into account only their own choices. This
means, since larger N and M make it more difficult to imagine
what number one’s opponents chose from his/her choice and the
winning number, some of the subjects became to rely on the
available information.

7The source code is available upon request.
8Choice criterion means whether the relative frequency of chosen number was
different from that in MSE prediction meanwhile change criterion does whether
the frequency of changing numbers is different from that in theory.

Next, the author takes a look at how the subjects
in the laboratory would have played if the game had
continued. To answer this question, the author employed
cluster analysis. By doing so, the expected behaviors
of subjects would be quantitatively categorized and
characterized.

To conduct the analysis, the following procedure was
employed: First, the propensities in round 50 of laboratory
experiment were calculated by using the game log. Second, the
probability to choose each integer in round 51 was obtained.
Third, the updated choice probability was calculated for all the
possible cases. Here, “case” means that a subject’s choice is k and
the winning number isw. Accordingly, there are totallyM(M+1)
cases in a LUIG. Lastly, the author set the following values as
inputs:

• Submission probability for integer k (k = 1, · · · ,M) in
round 51

• The following inputs are calculated for all k:

• Updated probability to choose the same integer in round 52
when there are no winner in round 51

• Updated probability to choose the same integer in round 52
when s/he wins in round 51

• Updated probability to choose the same integer in round 52
when s/he loses in round 51

• Updated probability to choose the winning integer in round
52 when s/he loses in round 51

After having a dendrogram9 in each LUIG, the author split them
into four or five clusters and obtained the inputs of “median”
agents in each cluster10 (Figures 1–4).

Table 2 summarizes how the representative agents in
each cluster would play and update their propensities in
round 5111.

There are mainly three choice patterns observed: keeping on
choosing one number, completely or relatively randomized
behavior with fluctuation, and completely or relatively
randomized behavior with non-fluctuation. The first pattern
includes sticking behavior and a result of reinforcement. The

9The agglomeration method was “ward.D2” in R.
10The resulting dendrograms are given in the appendix.
11The meaning of string “10c” is “When number 1 is chosen and the winning
number is 0 (= no-winner), the probability to choose the same number (= 1).”
Likewise, the meaning of string “12w” is “When number 1 is chosen and the
winning number is 2, the updated probability to choose the winning number.”
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TABLE 3 | Summary statistics of round robin competition in computational

experiments.

(A) LUIG 33

Partition 3 2–1 1–1–1 Expr. MSE

WINNING NUMBER

0 11.00 6.33 4.83 7.19 6.92

1 19.77 21.87 22.80 19.44 19.99

2 10.57 11.6 12.44 14.69 11.54

3 8.65 10.21 9.93 8.69 11.54

PERFORMANCE

#wins 13.00 14.56 15.06 14.27

(sd) 3.36 1.15 0.86 5.13

#changes 23.09 21.67 20.62 21.15

Cor. 0.612 −0.327 −0.657 −0.379

(B) LUIG 34

Partition 3 2–1 1–1–1 Expr. MSE

WINNING NUMBER

0 11.17 5.75 4.05 5.31 5.90

1 18.48 20.46 22.42 22.13 20.19

2 10.15 10.80 10.09 11.06 11.10

3 6.37 8.42 9.14 9.88 6.41

4 3.85 4.58 4.30 1.63 6.41

PERFORMANCE

#wins 12.95 14.75 15.31 14.90

(sd) 3.63 1.61 1.12 5.30

#changes 22.88 20.62 19.38 26.08

Cor. 0.606 −0.071 −0.400 −0.426

(C) LUIG 43

Partition 4 3–1 2–2 2–1–1 1–1–1–1 Expr. MSE

WINNING NUMBER

0 18.07 14.16 16.27 14.92 14.45 14.58 16.46

1 15.11 16.48 15.33 16.29 16.77 14.42 15.05

2 13.03 14.64 14.12 14.71 14.94 16.67 14.30

3 3.79 4.73 4.28 4.08 3.85 4.33 4.20

PERFORMANCE

#wins 7.98 8.96 8.43 8.77 8.89 8.85

(sd) 2.03 0.98 1.27 0.79 0.50 3.72

#changes 24.81 23.80 23.48 23.29 23.11 24.17

Cor. 0.772 −0.423 0.670 0.416 0.295 −0.557

(D) LUIG 44

Partition 4 3–1 2–2 2–1–1 1–1–1–1 Expr. MSE

WINNING NUMBER

0 19.28 11.78 16.47 13.48 12.74 12.42 16.31

1 14.75 17.95 15.46 17.48 17.93 16.75 15.08

2 10.87 13.52 12.22 13.74 14.72 15.67 14.31

3 3.69 4.57 4.19 3.71 3.23 4.25 4.23

4 1.40 2.18 1.66 1.60 1.38 0.92 0.06

(Continued)

TABLE 3 | Continued

Partition 4 3–1 2–2 2–1–1 1–1–1–1 Expr.

PERFORMANCE

#wins 7.68 9.55 8.38 9.13 9.32 9.40

(sd) 3.45 1.69 2.34 1.61 1.17 4.54

#changes 23.21 21.75 21.00 21.08 21.04 21.45

Cor. 0.852 −0.200 0.709 0.436 0.463 −0.374

remaining two patterns stem from the fact that the corresponding
subjects failed to reinforce their propensities and that they were
sensitive to the winning number. In addition, the value of
sensitivity parameter was small so that every number was equally
chosen anytime. Hence, whether sticking to a number or not
played an important role in LUIGs, which may support the
results of the earlier laboratory experiment.

3.2. Experimental Results
Agents in the round robin competition faced all the agents
including his/herself. By doing so, the author compares
their performances between when they played with different
opponents and when their opponents included themselves.

Table 3 shows the summary statistics of each LUIG in terms
of the agent structure. The data include the frequency of game
outcomes, the number of wins, that of changes, and Pearson’
correlation between the numbers of wins and changes. This table
also provides with the results of laboratory experiment and the
theoretical prediction for comparison. The partitions of agents
are in the following:

• Three-person LUIGs

• 3
Three identical agents exist;

• 2–1
Two identical agents and one different agent exist; and

• 1–1–1
Three different agents exist.

• Four-person LUIGs

• 4
Four identical agents exist;

• 3–1
Three identical agents and one different agent exist;

• 2–2
Two different pairs of two identical agents exist;

• 2–1–1
Two identical agents and two other different agents exist

and;
• 1–1–1–1

Four different agents exist.

The cases where there are identical agents mean that they played
with one or more agents whose learning model and its values of
parameters were the same. But the updating process is different.
And the different agents mean at least their learning model or its
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TABLE 4 | Differences of performance with respect to the constitution of players (p-values are from Wilcoxon signed rank test).

(A) LUIG 33

Partition #games Identical Different

#wins #changes Cor. #wins #changes Cor.

3 48 13.00 23.09 0.612

2–1 2,256 12.49 23.06 0.243 18.69 18.88 −0.582

1–1–1 17,296 15.06 20.62 −0.657

(B) LUIG 34

Partition #games Identical Different

#wins #changes Cor. #wins #changes Cor.

3 48 12.95 22.88 0.606

2–1 2,256 11.24 22.63 0.385 21.77 16.61 −0.467

1–1–1 17,296 15.31 19.38 −0.400

(C) LUIG 43

Partition #games Identical Different

#wins #changes Cor. #wins #changes Cor.

4 48 7.98 24.81 0.772

3–1 2,256 7.39 24.85 0.665 13.67 20.65 −0.602

2–2 1,128 8.43 23.48 0.670

2–1–1 51,888 7.29 24.39 0.513 10.25 22.19 −0.522

1–1–1–1 194,580 8.89 23.11 0.295

(D) LUIG 44

Partition #games Identical Different

#wins #changes Cor. #wins #changes Cor.

4 48 7.68 23.21 0.852

3–1 2,256 6.83 23.32 0.744 17.72 17.05 −0.499

2–2 1,128 8.38 21.00 0.709

2–1–1 51,888 6.65 22.66 0.536 11.61 19.49 −0.325

1–1–1–1 194,580 9.32 21.04 0.463

p < 0.001 (#wins), p < 0.001 (#changes).

values of parameters is/are different from those of the others in
the group.

The above partitions of agents are related to behavioral
heterogeneity. When heterogeneity is high, “no-winner”
situations were less frequently observed and thereby the average
number of wins became larger. This is especially true for
three-person LUIGs. In four-person LUIGs, things are a little bit
different; When there are only two kinds of agents and one agent
is singular, the average number of wins per agent is about 8.96
(LUIG43) and 9.55 (LUIG44). Meanwhile, when all the agents are
different, the value is lower, 8.89 (LUIG43) and 9.32 (LUIG44).
In addition, when one makes a comparison between LUIGs with
the same N but different M, the average number of wins per
agent may depend on heterogeneity. More concretely, it is more

difficult to win when agents are homogeneous meanwhile there
are more chances to win when heterogeneity exists.

Similar results and discussions are found with respect to the
correlation between the numbers of wins and changes. When
heterogeneity is low and there are no singular agents, not to
change the numbers may lead to win more often in both three-
person and four-person LUIGs. As the heterogeneity increases,
the extent of negative correlation becomes larger, which suggests
that keeping on choosing the same number is effective in groups
like in the earlier laboratory experiment.

Next, Table 4 shows the differences of performances between
identical agents and different agents for each agent constitution,
by which one sees how each type of agents behaved and how
often they won. An apparent fact is that the different agents
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TABLE 5 | Differences between types of subjects with respect to the numbers of wins and changes in computational round robin contest.

(A) LUIG 33

Partition Type Item MSE (both) MSE (choice) MSE (change) Non-MSE p-value Note

3 Identical #wins 13.94 13.27 NA 9.99 0.800

#changes 24.56 21.87 NA 13.05 <0.001 a

2–1 Identical #wins 13.09 12.32 NA 11.41 0.500

#changes 22.43 19.19 NA 14.35 <0.001 b

2–1 Different #wins 17.25 18.64 NA 22.42 <0.001 a

#changes 27.35 25.60 NA 24.19 0.010 c

1–1–1 Different #wins 13.47 14.96 NA 19.25 <0.001 a

#changes 21.72 20.86 NA 20.92 0.200

#subjects 20 20 0 8

(B) LUIG 34

Partition Type Item MSE (both) MSE (choice) MSE (change) non-MSE p-value Note

3 Identical #wins 13.63 13.24 14.66 10.00 0.400

#changes 23.74 21.04 21.42 14.48 0.010 c

2–1 Identical #wins 12.37 11.45 10.98 7.66 0.070

#changes 20.61 17.49 15.98 10.64 0.200 c

2–1 Different #wins 21.16 22.38 22.22 22.28 0.300

#changes 30.06 29.09 28.05 24.83 0.020 c

1–1–1 Different #wins 14.25 15.95 16.21 16.97 0.050

#changes 20.92 21.12 21.16 19.21 0.030

#subjects 23 15 2 8

(C) LUIG 43

Partition Type Item MSE (both) MSE (choice) MSE (change) non-MSE p-value Note

4 Identical #wins 8.34 8.24 8.82 5.26 0.300

#changes 21.12 18.83 21.04 10.15 <0.001 c

3–1 Identical #wins 7.90 7.81 6.84 4.59 0.200

#changes 19.73 17.48 16.47 8.77 <0.001 c

3–1 Different #wins 13.05 13.79 12.25 16.58 0.002 d

#changes 24.32 22.78 23.15 18.78 0.001 c

2–2 Identical #wins 8.81 8.90 8.61 5.66 0.400

#changes 20.40 18.39 19.42 9.63 0.003 c

2–1–1 Identical #wins 7.69 7.68 7.11 4.77 0.300

#changes 18.87 16.92 17.06 8.64 0.001 c

2–1–1 Different #wins 9.56 10.20 8.63 13.96 0.001 e

#changes 20.40 19.20 19.38 16.33 0.001 c

1–1–1–1 Different #wins 8.07 8.81 7.61 12.98 0.001 e

#changes 18.64 17.69 17.97 15.19 0.001 c

#subjects 24 15 3 6

(D) LUIG 44

Partition Type Item MSE (both) MSE (choice) MSE (change) non-MSE p-value Note

4 Identical #wins 8.51 8.57 10.55 5.76 0.100

#changes 20.98 20.22 18.78 10.75 0.001 a

3–1 Identical #wins 7.67 8.00 8.71 9.33 0.100

#changes 18.61 18.52 16.66 9.33 <0.001 a

(Continued)
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TABLE 5 | Continued

Partition Type Item MSE (both) MSE (choice) MSE (change) non-MSE p-value Note

3–1 Different #wins 17.52 17.67 17.47 17.98 1.000

#changes 27.35 27.24 26.34 22.06 0.001 a

2–2 Identical #wins 9.00 9.62 11.62 6.36 0.100

#changes 19.45 19.65 20.84 10.93 0.010

2–1–1 Identical #wins 7.40 11.19 10.00 12.77 0.050

#changes 20.20 20.27 19.25 16.70 <0.001 a

2–1–1 Different #wins 8.38 8.63 7.69 10.97 0.020

#changes 20.20 20.27 19.25 16.70 <0.001 a

1–1–1–1 Different #wins 8.38 8.63 7.69 10.97 0.020

#changes 17.21 17.37 16.56 14.76 <0.001 a

#subjects 16 12 3 17

a, MSE (both) – non-MSE, MSE (choice) – non-MSE.

b, MSE (both) – MSE (choice), MSE (both) – non-MSE.

c, MSE (both) – non-MSE.

d, MSE (both) – non-MSE, MSE (change) – non-MSE.

e, MSE (both) – non-MSE, MSE (choice) – non-MSE, MSE (change) – non-MSE.

won more than identical agents. This is statistically confirmed
by Wilcoxon’s Rank Sum Test and all the p-values are less than
0.001. But the superiority of uniqueness disappears when there
are more different agents. This is because the identical agents
tended to behave similarly meaning that their choices were not
often unique and the different agent(s) learned to avoid it. Also,
there is a clear difference between the two types of agents with
respect to the number of changes and Pearson’s correlation;
Identical agents, on the one hand, changed more often and are
expected to do so to win more. This may be because they learn
to play differently and to change more often. Different agents,
on the other hand, changed less frequently than identical agents
when there are both identical and different agents. When there
are more different agents, they need not to change their strategy
to win.

There is one point to be addressed; When one reviews
Table 4, s/he may notice the difference of Pearson’s correlation
for the partition 1–1–1–1 of LUIG43 and LUIG44. That is,
negative correlations in experimental results whereas positive
correlations in computational results. This is because these
correlations are obtained from 17,296 (three-person LUIGs) or
194,590 (four-person LUIGs) groups, not from those which
were played in the laboratory (16 groups in three-person
LUIGs and 12 groups in four-person LUIGs). Hence, if s/he
calculates correlations by picking up only the corresponding
pairs, the value is −0.820 in LUIG43 and −0.767 in LUIG44
respectively. Likewise, the correlation is −0.755 in LUIG33
and −0.737 in LUIG34 respectively. This means that the
computational experiment supported the experimental findings
for the groups generated in the laboratory and, at the
same time, that the earlier laboratory experiment might have
needed more subjects. Instead, the possible reason why the
sign of Pearson’s correlation is opposite is that the relative
frequencies of game outcome in four-person LUIGs were not
reproduced, which might stem from the learning of calibrated
agents.

Finally, Table 5 shows the difference of the numbers of wins
and changes between the types of subjects in each partition of
LUIGs. The average values are in these tables and p-values are
from Kruskal-Wallis test. The last column of each table explains
the results of multiple comparisons if the corresponding pairs
have significant differences (5%) and the details are given in the
footnote of each panel.

When agents are identical in the group, MSE (both) agents
seemed to win more than non-MSE agents while they changed
more frequently. On the other hand, when the agents are
different, non-MSE agents won more than MSE (both) agents by
not changing their choices. Since the subjects were all different
in every group, one will experimentally and computationally find
that sticking behavior is quite effective so long as there are no
identical players in small-sized LUIGs.

To summarize, the extent of behavioral heterogeneity may
depend on the scale of LUIGs, the number of players in a group
and the upper limit. In addition, the observed game outcomes
and individual performances depend on the constitutions of
agents. In particular, behavioral heterogeneity may improve the
chances of win. When there is a mixture of identical agents and
different agents, different agents win more than identical agents.
However, a full of diversity lessens the winning opportunities for
each different agent. With respect to individual performance, the
computational experiment shows that keeping on choosing the
same number leads the agents to win more, which supports the
experimental findings.

4. DISCUSSION

This study computationally examines (1) how the behaviors of
subjects are represented, (2) whether the classification of subjects
is related to the scale of the game, and (3) what kind of behavioral
models are successful in small-sized LUIGs by using the earlier
experimental data by Yamada andHanaki [1]. For these purposes,
the behavior of subjects is calibrated and determined among
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the several typical learning models. Then computational round
robin competition including the games where every agent faces
not only different agents but also him/herself is pursued. The
main findings are as follows: First, the subjects who played not
differently from the MSE prediction tended to made use of not
only their choices but also the game outcomes meanwhile those
who deviated from the MSE prediction took care of only their
choices as the complexity of the game increased. Second, when
groups consist of different agents which is the case of the earlier
laboratory experiment, sticking behavior is quite effective to win
LUIGs. Third, when groups consist of different agents like in the
earlier laboratory experiment, sticking behavior is quite effective
to win.

Since this study deals with the estimated learning models,
unlike in Linde et al. [17], there may be better models for
some of the behavioral data in laboratory experiment. Hence,
as done by Linde et al., it is necessary to conduct another
laboratory experiment where subjects are asked to elicit their
decisions to play LUIGs. Another future work includes larger-
sized experiment to see whether similar behaviors and game

dynamics are also observed. This comes form the empirical
finding by Östling et al. [4] and Mohlin et al. [18].
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APPENDIX

This section gives the generated dendrograms to classify the
calibrated agents in computational round robin contests. The x-
axis stands for subject ID (session–subject) and y-axis does the
distance between the calibrated agents. The expected decision-
making of the “median” agents in each cluster is summarized in
Table 2.
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