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The Holographic F Theorem
Marika Taylor* and William Woodhead

Mathematical Sciences and STAG Research Centre, University of Southampton, Southampton, United Kingdom

The F theorem states that, for a unitary three dimensional quantum field theory, the

F quantity defined in terms of the partition function on a three sphere is positive,

stationary at fixed point and decreases monotonically along a renormalization group

flow. We construct holographic renormalization group flows corresponding to relevant

deformations of three-dimensional conformal field theories on spheres, working to

quadratic order in the source. For these renormalization group flows, the F quantity at

the IR fixed point is always less than F at the UV fixed point, but F increases along the

RG flow for deformations by operators of dimension 3/2 < 1 < 5/2. Therefore, the

strongest version of the F theorem is in general violated.
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1. INTRODUCTION

In even dimensional quantum field theories, natural candidates for quantifying the number of
degrees of freedom are provided by the coefficients of the conformal anomalies of the stress energy
tensor at fixed points. The strongest results concerning such a quantification of the degrees of
freedom, and the reduction in the number of degrees of freedom along a renormalization group
flow, were derived in the famous work of Zamolodchikov [1]. Zamolodchikov demonstrated
the existence of a c-quantity in two dimensional unitary quantum field theories; this c-quantity
decreases monotonically along a renormalization group flow and coincides with the coefficient of
the trace anomaly at fixed points.

Considerable progress has been made in recent years in generalizing Zamolodchikov’s work
to quantum field theories in four dimensions, most notably the proof by Schwimmer and
Komargodski [2] that the a-anomaly coefficient at an infra-red fixed point is always strictly
less than the value of the a-anomaly coefficient at the ultra-violet fixed point. The situation in
odd dimensions has long been mysterious, however, since the trace of the stress energy tensor
automatically vanishes in odd dimensional conformal field theories and thus one needs to propose
an alternate measure of the degrees of freedom.

In a three-dimensional quantum field theory, the F quantity is defined in terms of the
renormalized partition function of the theory on a three-sphere ZS3 as:

F = − lnZS3; (1)

F gives the free energy on the three-sphere. The conjectured F-theorem [3, 4] states that F is positive
in a unitary quantum field theory; F is stationary at a fixed point; FUV ≥ FIR for UV and IR fixed
points and F decreases monotonically along an RG flow. Evidence in favor of the F theorem has
been presented in a number of works. In Jafferis et al. [3] it was shown in a number of N = 2
theories that FIR < FUV ; examples included holographic theories described by AdS4×Y7 M theory
solutions in which the partition function is [5]:

F = N
3
2

√

2π6

27Vol(Y7)
(2)
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where Vol(Y7) is the volume of the Sasaki-Einstein manifold Y7

and N is the number of colors in the dual theory.
Many subsequent papers have provided additional evidence

that FIR < FUV in holographic and field theory models. For
example, Klebanov et al. [4] considered relevant double trace
deformations: given an operator 8 in a CFT of dimension 1−
such that 1/2 ≤ 1− ≤ 3/2, deforming the CFT by 82 causes
an RG flow to an IR fixed point where 8 has dimension 1+ =
3−1−.

The evidence for stationarity and monotonic decrease of the
F quantity along an RG flow is somewhat weaker. Arguments
for stationarity are based on the fact that F is extremized with
respect to the R charges of an IR CFT [6] and (holographically)
with respect to the parameters of the Sasaki-Einstein manifold
Y7 [3, 7, 8]. For monotonic decrease, it was shown in Klebanov
et al. [4] that the free energy decreases monotonically along
weakly relevant flows, while [9] argued that the volume of the
compact manifold should increase monotonically along an RG
flow in holographic examples, implying monotonic decrease of F.
In Freedman and Pufu [10] it was shown that F decreases along
certain supersymmetric RG flows of deformations of the ABJM
theory.

In a conformal field theory, the partition function on the three
sphere is related to the (finite terms) in the entanglement entropy
for a disk region in flat space by the Casini-Huerta-Myers map
[11]. If the finite contribution to the entanglement entropy of a
disk region in the ground state of the CFT is:

S = −2πF , (3)

then F corresponds precisely to the F quantity, i.e., F is
conjectured to be positive and to decrease monotonically along
an RG flow. The F theorem has hence also been explored using
entanglement entropy, see for example [12–14]. Ambiguities
in defining the finite contributions can be dealt with by
working with the UV finite mutual information [15] or by
using renormalized entanglement entropy [16, 17]. There is
however evidence that the renormalized entanglement entropy
thus defined is not stationary at a fixed point [18].

In this paper we show that the F quantity does not decrease
for holographic RG flows associated with deformations by single
trace operators of dimension 1 such that 3/2 < 1 < 5/2.
Therefore, the strong version of the F theorem, decrease of F
under all relevant deformations, is false. Note that in all our
examples a weaker version of the F theorem, FUV ≥ FIR > 0,
is still satisfied.

2. HOLOGRAPHIC RG FLOWS

We begin by discussing holographic realizations of RG flows on
curved manifolds. We work in Euclidean signature with a bulk
action:

IE = −
1

16πG4

∫

d4x
√
g

(

R−
1

2
(∂φ)2 + V(φ)

)

, (4)

where G4 is the Newton constant, which in a top-down
holographic model is related to the number of colors as 1/G4 ∼

N3/2, as in (2). We consider solutions of the equations of motion
such that:

ds2 = dw2 + e2A(w)ds2�3
(5)

where �3 is a homogeneous space with Ricci scalar R and the
scalar field φ depends only on the radial coordinate w. We will
be interested in the case of a unit radius three sphere for which
R = 6. The equations of motion are then given by:

φ̈ + 3Ȧφ̇ = −V ′(φ); (6)

−
R

6
e−2A −

1

4
(φ̇)2 = Ä.

These equations reduce to the case of flat domain walls when
R = 0.

We work perturbatively in the scalar field and assume that the
potential has the following analytic expansion in φ around an
AdS background:

V(φ) = 6−
1

2
M2φ2 + · · · (7)

In what follows we solve the field equations to quadratic order in
φ, taking into account the backreaction onto the metric to this
order. In anti-de Sitter the warp factor is:

A(w) ≡ A0(w) = log(sinh(w)). (8)

Working to quadratic order in the scalar field, the change in the
warp factor is quadratic in the scalar field, and therefore to the
order required the scalar field equation is that in AdS, i.e.

φ̈ + 3 cothwφ̇ = M2φ. (9)

This equation can be solved exactly (see below) and
asymptotically near the conformal boundary. The latter can
be expressed as:

φ = e(1+−3)wφ(0) + e(1+−5)wφ(2) + · · · (10)

+ e−1+wφ̃(0) + e(−1+−2)wφ̃(2) + · · ·

where

φ(2) =
3(3−1+)

(5− 21+)
φ(0) φ̃(2) =

31+
(21+ − 1)

φ̃(0). (11)

Here we implicitly assume that1+ is neither 3/2 nor 5/2, since in
these cases terms proportional tow arise in the expansion. (These
cases can be straightforwardly analyzed but we do not include
details in what follows.)

One can then use the other equation of motion to solve for the
warp factor up to quadratic order in the scalar field. Letting:

A = A0 + a (12)

then

ä−
2

sinh2 w
a = −

1

4
φ̇2. (13)
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The onshell action is divergent for asymptotically locally AdS
solutions, but the divergences may be removed by using the
asymptotic solutions of the field equations to regulate the bulk
action and adding appropriate covariant counterterms, i.e., the
renormalized action [19].

Iren = IE + Ict (14)

is finite. The AdS/CFT dictionary implies that the F quantity is
calculated from the renormalized action in the limit in which the
dual theory is well-described by supergravity.

Working to quadratic order in the scalar field φ the required
counterterms to render the action finite are [19]:

Ict =
1

8πG4

∫

d3x
√
h

(

−K + 2+
1

2
Rh (15)

+
1

4
(3−1+)φ

2 +
(1+ − 3)

16(21+ − 5)
Rhφ

2

)

where K is the extrinsic curvature (this is the standard Gibbons-
Hawking-York term) andRh is the Ricci scalar for the boundary
metric h. We define1+ in terms of the mass as:

1+ =
3

2
+

1

2

√

9+ 4M2 (16)

and we assume that 3
2 ≤ 1+ ≤ 3. For 1+ ≥ 5/2, 1+ is the

dimension of the operator dual to the scalar field of massM2. In
the mass range:

−
9

4
≤ M2 ≤ −

5

4
(17)

two quantizations are possible [20]; we will discuss this situation
below. In (15) we do not include counterterms which depend
on derivatives of the scalar field (see [19]), since the scalar fields
under consideration are homogeneous.

Note that the last counterterm in (15) is only required for
1+ > 5/2. The corresponding divergence becomes logarithmic
at 1+ = 5/2 and in this case the value of the renormalized
action can be adjusted by finite counterterms, so the F quantity is
inherently scheme dependent. Correspondingly F is also scheme
dependent for the 1− quantization of the same mass, i.e., 1− =
1/2. No finite counterterms arise for other values of 1+ in the
range of interest, although working to cubic order in the scalar
field finite counterterms would arise at integral values of 1+;
these can be fixed by requiring supersymmetry [10].

In the mass range−9/4 ≤ M2 ≤ −5/4, two quantizations are
possible:

1± =
3

2
±

1

2

√

9+ 4M2 (18)

with 1/2 ≤ 1− ≤ 3/2 and 3/2 ≤ 1+ ≤ 5/2. As discussed
in Papadimitriou [21], the evaluation of the renormalized action
by adding covariant counterterms is not affected by whether the
dual operator has dimension 1+ or 1−. The difference arises
in the identification of the functional that generates correlation
functions for the dual operator. For the 1+ quantization, the

coefficient φ(0) in (10) acts as the source for the dual operator.
The renormalized action (14) is a functional of this coefficient
and acts as the generating functional for the dual operator.

For the 1− quantization, the renormalized action (14) is still
a functional of the coefficient φ(0) in (10) but this coefficient
is not the operator source. As discussed in Papadimitriou [21],
following [20, 22], the correct generating functional is obtained
by a Legendre transformation. Let us define the Legendre
transformation as:

Ĩ[φ(0),ψ(0)] = Iren[φ(0)]+
∫

d3x
√
g(0)φ(0)ψ(0) (19)

where g(0) is the boundary metric. Then extremizing gives:

Ĩren[ψ(0)] = Ĩ[φ∗(0)(ψ(0)),ψ(0)] (20)

where

δIren[φ(0)]

δφ(0)

∣

∣

∣

∣

φ∗
(0)

+ ψ(0) = 0 (21)

defines φ∗
(0)
(ψ(0)). Here Ĩren[ψ(0)] is identified as the

renormalized generating functional of correlation functions
of the operator of dimension1−.

In the case at hand, we work perturbatively in the scalar field
and thus the onshell renormalized action necessarily has the
form:

Iren[φ(0)] = (I0 + I2φ
2
(0) + · · · ), (22)

where I0 and I2 are numerical coefficients. (Recall that φ(0) is
homogeneous and therefore does not depend on the sphere
coordinates.) The Legendre transformed action is then given by:

Ĩ[φ(0),9(0)] = (I0 + I2φ
2
(0) + · · · )+ φ(0)9(0), (23)

where we denote:

9(0) ≡
∫

d3x
√
g(0)ψ(0). (24)

Extremizing, we obtain:

2I2φ(0) +9(0) = 0 (25)

and hence

Ĩren[9(0)] = I0 − I2φ
2
(0) + · · · = I0 −

1

4I2
92

(0) + · · · (26)

In the 1+ quantization, φ(0) acts as the source for the dual
operator and therefore (22) gives the free energy to quadratic
order in the source. In the 1− quantization, 9(0) acts as the
source for the dual operator and (26) gives the free energy to
quadratic order in the source. The quadratic terms have different
signs in the two quantizations: if I2 > 0 the free energy on the S3

increases for deformations by the 1+ quantization operator and
decreases for deformations by the1− quantization operator, and
vice versa. ForM2 = −9/4, the two quantizations coincide; note
however that one needs to treat this case separately, as the above
formulae degenerate.
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3. EVALUATION OF FREE ENERGY

Having determined the renormalized free energy functional we
now consider exact regular solutions of the field equations, to
quadratic order in the scalar field. To the required order we can
solve the scalar field equation in the anti-de Sitter background.
The scalar field solution may be found analytically in terms of

regularized hypergeometric functions 2F̃1(a, b, c, z) as:

φ =
φ(0) sinh

1(w)

2
√
2 Ŵ(3−1)

Ŵ

(

5

2
−1

)

(27)

[

C(w)3/2(C(w)+ 2)1Ŵ(3−1)2F̃1

(

−
1

2
,
3

2
,
5

2
−1,−

1

2
C(w)

)

− C(w)1(C(w)+ 2)3/2Ŵ(1)2F̃1

(

−
1

2
,
3

2
,1−

1

2
;−

1

2
C(w)

)]

C(w) = cothw− 1,

This solution can conveniently be rewritten as:

φ =
φ(0)Ŵ

(

5
2 −1+

)

2
√
2Ŵ(3−1+)

(U − 1)(3−1+)/2(U + 1)1+/2 (28)

[

Ŵ(3−1+)2F̃1

(

−
1

2
,
3

2
,
5

2
−1+,

1

2
(1− U)

)

−
(

U − 1

U + 1

)1+− 3
2

Ŵ(1+)2F̃1

(

−
1

2
,
3

2
,1+ −

1

2
,
1

2
(1− U)

)

]

U =
1

u
= cothw

where we have imposed regularity throughout the bulk and
chosen the overall normalization of the solution to agree with the
definition of φ(0) given in (10). Thus, φ(0) is the source for the
operator deforming the dual conformal field theory.

We note further that the general solution can be written in
terms of associated Legendre functions P

µ
ν (z) and Q

µ
ν (z) as:

φ =
1

sinh
3
2 (w)

(

φ1P
1− 3

2
1
2

(coth(w))+ φ2Q
1− 3

2
1
2

(coth(w))

)

,

(29)
where φ1 and φ2 are computable constants, expressible in
terms of φ(0). However, both these functions are complex since
coth(w) ≥ 1 and therefore the solution needs to be re-expressed
in terms of two manifestly real functions. Standard identities can
be used to extend the associated Legendre functions to arguments
greater than unity, specifically:

P
µ
ν (z) =

(z + 1)µ/2

(z − 1)µ/2
2F̃1

(

−ν, ν + 1, 1− µ,
1

2
(1− z)

)

(30)

Q
µ
ν (z) =

π

2

1

sin(πµ)
eµπ i

[

(z + 1)µ/2

(z − 1)µ/2
2F̃1

(

−ν, ν + 1, 1− µ;
1

2
(1− z)

)

−
Ŵ(ν + µ+ 1)

Ŵ(ν − µ+ 1)

(z − 1)µ/2

(z + 1)µ/2
2F̃1

(

−ν, ν + 1, 1+ µ,
1

2
(1− z)

)

]

.

(31)

Note that the distinct ways of expressing the scalar field
solutions are useful for different purposes. The regularity and
asymptotic expansions are most easily extracted from (27) and
(29) while (28) is most convenient for the subsequent numerical
calculations.

As w → 0,

φ → φIR

(

1+
1

5
M2w2 + · · ·

)

(32)

where

φIR =
1

4
√
π
Ŵ(

5

2
−1+)Ŵ(1+) cos(π1+)φ(0) (33)

and consequently the change in the warp factor behaves as:

a → −
M4

250
φ2IRw

4 + · · · (34)

as w → 0, i.e., the geometry in the deep interior approaches
(Euclidean) AdS4 in spherical coordinates, and therefore the
RG flow ends on an IR fixed point. For such an IR fixed
point, the free energy as computed from the renormalized
action is:

FIR =
π

2G4

(

1−
1

12
M2φ2IR

)

(35)

which clearly satisfies FIR < FUV : the free energy for the UV fixed
point is given by φIR = 0.

To calculate the free energy for the RG flow, we need
to solve numerically for the warp factor and thus for the
renormalized onshell action. To carry out the numerics we work
with a compactified radial coordinate u = tanhw for all the
calculations. Plotted in Figures 1–3 are the changes in the free
energy normalized by the scalar source and the Newton constant:
we define δF as:

δF = F(φ(0))− F(0) ≡ F(φ(0))−
π

2G4
, (36)

where implicitly we use the appropriate source for 1 < 3/2.
Note that δF measures the difference between the free energy
computed to quadratic order in the source, F(φ(0)), and the free
energy of the background with no scalar field, F(0). The latter is
given by the free energy associated with AdS4, computed via the
renormalized action.

The first figure, Figure 1, shows the free energy computed
using the standard 1+ quantization of the scalar field, which is
applicable for 1+ ≥ 3/2. Note that the free energy is ill-defined
for 1 = 5/2, as we discussed above, since its value depends on
the choice of finite counterterms and hence the renormalization
scheme chosen.

In the second figure, Figure 2, we zoom in on the region
of 1/2 < 1 < 5/2. For 1/2 < 1 < 3/2, the
free energy is computed using the 1− quantization, i.e., by
the Legendre transform of the action discussed earlier. In
the third figure, Figure 3, we zoom in on the region of
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FIGURE 1 | The change in the renormalized free energy, normalized by

GN/φ
2
(0)
, for 3

2 < 1 < 3.

FIGURE 2 | The change in the renormalized free energy for 1
2 < 1 < 5

2 .

FIGURE 3 | The change in the renormalized free energy for 5
2 < 1 < 3.

5/2 < 1 < 3, to demonstrate that the change of free
energy is indeed zero for 1 = 3. i.e., exactly marginal
deformations.

To summarize the results of our numerical work: the change
in the free energy vanishes to quadratic order in the source
for 1 = 3/2 and for exactly marginal operators. The change
in the free energy is positive for 3/2 < 1 < 5/2, with the
corresponding change in the free energy for 1/2 < 1 < 3/2
therefore being negative. The general arguments given above,
relating 1+ and 1− quantizations, indicated that the change in
the free energy would be positive for one of the two quantizations
in the mass range where both quantizations are possible. Our
explicit numerical results indicate that it is for 3/2 < 1 < 5/2
that the postulated F theorem is violated.

We should note that a related sign change at 1 =
3/2 was found in Berenstein and Miller [23]. This paper
calculated one point functions of the deformation operator under
relevant deformations, both holographically and using conformal
perturbation theory. The sign of this one point function, which is
related to the sign of δF found above, indeed changes at1 = d/2.

4. CONCLUSIONS

Working to quadratic order in the operator source, deformations
by operators of dimensions 3/2 < 1 < 5/2 lead to increases in
the F quantity, although the corresponding IR fixed points still
satisfy FIR < FUV . Note that we have worked only to quadratic
order and changes in the F quantity to higher order in the source
would depend on the interactions in the theory.

The F theorem would be satisfied in a holographic theory
that contains no operators of dimensions 3/2 < 1 < 5/2, but
generically such operators do exist. In particular, it is well-known
that in four-dimensional N = 8 gauged supergravity there are
35 1− = 1 scalar operators and 35 1+ = 2 pseudoscalars
corresponding to the 70 scalars with M2 = −2, i.e., both
quantizations arise [24]. (The pseudoscalar nature of the 1+
quantization does not affect the arguments given here.) However,
for the supersymmetric RG flows in consistent truncations of
N = 8 analyzed in Freedman and Pufu [10] the F quantity does
decrease: in this setup supersymmetry does not allow a single real
scalar (in the Euclidean) corresponding to a 1+ = 2 operator
to be switched on. A complete proof of the F theorem would
effectively restrict the allowed holographic theories, i.e., it would
throw theories such as those considered here into the swampland.

Now let us return to the relationship between the F quantity
and the entanglement entropy of a disk entangling region.
One can use holographic renormalization techniques to define
renormalized entanglement entropy [25]. The renormalized
entanglement entropy of disk regions in theories deformed by
relevant operators agrees with the behavior of the F quantity
found above: F increases for RG flows by operators of dimension
3/2 < 1 < 5/2 (see also [26]).

Our results do not contradict [3, 7, 8]: these works showed that
F is extremal within the parameter spaces of putative conformal
field theories. In the holographic setups, an AdS4 factor is
assumed and the volume of the compactifying Sasaki-Einstein
is extremized. This analysis does not imply that F is decreased
under relevant deformations which change the geometry away
from AdS4. The scalar field φ and the change in the warp
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factor a do not decrease monotonically along the flow but
this does not in itself contradict the arguments of [9]. From a
top-down perspective scalar fields in four-dimensional gauged
supergravity theories arise not just from breathing modes of the
compact manifold, but also from the four-form flux in eleven
dimensions.

In two dimensions one defines the Zamolodchikov c-function
c(gi,µ) in terms of the coupling constants gi and the energy scale
µ. Here implicitly we have defined F as a renormalized quantity,
dependent on UV data for coupling constants of the relevant
operators. It would be interesting to explore whether one could
sharply define an F function with explicit dependence on the
energy (i.e., radial) scale holographically. One natural way to do
this would be to rewrite the source φ(0) in terms of the bulk scalar
field φ(w), and interpret w as the energy scale.

Finally, there has been considerable recent interest in
how much supersymmetry is required to determine uniquely

partition functions on even-dimensional spheres [27]. In three
dimensions, an analogous question arises at quadratic order in
the source for conformal field theories deformed by operators of
dimensions 1/2 and 5/2.
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