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We study the effect of geometry of a fast propagation region (FPR) in an excitable medium

on the rotor initiation using a generic two-dimensional reaction-diffusion model. We find

that, while the flat boundary of a rectangularly shaped FPR may block the propagation of

the excitation wave, a large local curvature at the rounded corners of the FPR would

prevent the blockage and thus initiate a rotor. Our simulations demonstrate that the

prerequisites for the rotor initiation are the degree of the heterogeneity, its shape and

size. These results may explain the incidence of arrhythmias by local heterogeneities

induced, for example, by a cardiac tissue remodeling.

Keywords: excitable media, rotor initiation, arrhythmia, source-sink mismatch, fast propagation region

1. INTRODUCTION

Rotors, also known as spiral waves, are observed in many systems, including the Belousov-
Zhabotinsky chemical reactions [1–4], autocatalytic reactions of carbon monoxide on a platinum
surface [5], aggregations of Dictyostelium discoideum amoebae [6], Xenopus oocytes [7],
disinhibited mammalian neocortex [8], chicken retina [9], and especially cardiac tissue [10, 11].
Rotors, resulting in reentries in heart tissue, are known to cause cardiac arrhythmias and even
sudden death [12–14]. To understand the mechanism of the rotor initiation and to eliminate
the consequential malignant arrhythmias, the effects of the electrophysiological heterogeneity are
thought to be one of the major causes and have attracted much attention [15–20].

Destabilization of wave fronts and the subsequent initiation of reentrant excitation can result
from both intrinsic and dynamical heterogeneity. For example, a possible result of a multiple
pacing of cardiac tissue is a dynamically induced heterogeneities of repolarization leading to
a destabilization of a propagating wave and initiation of a self-sustained activity [21–25]. The
heterogeneities of the electrical coupling and automaticity also might lead to the appearance of
fragmented ectopic waves [26]. Furthermore, the boundary layer between the well-coupled and
uncoupled cardiac tissues would create a rich set of phenomena associated with self-organized
spiral waves and ectopic waves [27]. Transient rotors could be also initiated in complicated and rare
situations [28, 29]. An abrupt transition of the coupling gradient would block the wave propagation,
but nearby parts with a smooth transition would not and therefore cause a reentry. The wave
blockage was also found in a model of human ventricular tissue due to an abrupt transition of
the anisotropic coupling [30].

As exemplary mentioned above, there are many situations, which can lead to the initiation of
a self-sustained excitation wave. One novel scenario, which was found recently in a generic model
for the excitable system, is that a region with the fast propagation of an excitation wave might cause

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2018.00008
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2018.00008&domain=pdf&date_stamp=2018-02-13
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vladimir.zykov@ds.mpg.de
https://doi.org/10.3389/fphy.2018.00008
https://www.frontiersin.org/articles/10.3389/fphy.2018.00008/full
http://loop.frontiersin.org/people/504510/overview
http://loop.frontiersin.org/people/440778/overview


Gao et al. Initiation of Rotors by FPR

a unidirectional block of the wave propagation [31]. This
unidirectional block is realized based on a phenomenon termed
source-sink mismatch in the cardiology literature [32]. The
further study demonstrated that rotors could be nucleated in
the presence of a localized fast propagation region (FPR) after
application of one stimulus only [33]. It was shown also that
various geometrical factors play an important role in rotor
initiation [34].

Here we show that in the two-dimensional medium the
flat boundary of a rectangularly shaped FPR may block the
propagation of the outside excitation wave. However, a large
local curvature at the rounded corner of the FPR would prevent
the blockage and thus let the outside excitation penetrate
into the FPR causing a rotor initiation. We demonstrate
that the rotor initiation critically depends on the size of
the FPR and the degree of the heterogeneity. If the FPR
size is below a certain threshold, the initiated rotor would
vanish eventually when it approaches the medium’s boundary.
The critical size of the FPR depends on the degree of the
heterogeneity.

2. MODEL AND METHOD

Although some aspects of the complex electrical activity in the
cardiac tissue need to be studied using the reaction-diffusion
equations with the detailed ionic channel model, many general
spatiotemporal features of cardiac dynamics can be reproduced
by a relatively simple but universal two-component system as
follows

∂u

∂t
= ∇ · (D∇u)− AF(u, v), (1)

∂v

∂t
= ǫG(u, v), (2)

where u and v are the activator and inhibitor, respectively.
The local kinetics of u and v are specified by the nonlinear
functions F(u, v) and G(u, v). Let us consider a widely-used
computationally-efficientmodel proposed by Barkley [35]. In this
generic model, the two nonlinear functions read as

F(u, v) = u(u− 1)

(

u− v+ b

a

)

, (3)

G(u, v) =
{

(u− v) u ≥ v,

kǫ(u− v) u < v.
(4)

To simulate a relatively quick recovery of the excitability after a
pulse generation, the original Barkley model is slightly modified
by introducing an additional parameter kǫ > 1.

The propagation wave velocity in the Barkley model is
proportional to

√
DA. Spatial heterogeneity of the parameters D

andA can result in creation of FPR capable to initiate spiral waves
[33, 34].

Below a FPR is considered to be a rounded rectangular region
of the length L with two rounded corners of the radius R, as
illustrated in Figure 1A. Inside this region, the values ofD and/or
A are larger than outside. It is inserted into a square shaped

medium of size 450×450 in space unit, and the no-flux boundary
conditions at the boundaries are implied. The parameters a = 1,
b = 0.44, ǫ = 0.00011 and kǫ = 10 are fixed in our simulations.
We use the explicit finite difference method in the Cartesian
coordinates. The staircase approximation is used at the rounded
corner. The spatial step dx = 0.3, and the time step dt = 0.01,
when R ≥ 15. The finer spatial and time steps are used for
smaller R. For instance, dx = 0.2 and dt = 4.44 × 10−3,
when R = 10, and dx = 0.1 and dt = 1.11 × 10−3, when
R = 5.

The variables u and v in Equations (1)-(4) are vary within the
range 0 < u < 1 and 0 < v < a − 2b. The spatiotemporal
dynamics of u and v is represented in Figures 1–4, 6, 7

by color-coded distribution of the excitation phase φ, where
−π < φ < π . The phase is defined as φ = α + 3π/4,
in which an angle α is determined by the direction of the
vector with components (u − 1/2) and (v − a/2 + b)/(a −
2b) on the (u, v) phase plane. According to this definition,
φ = 0 corresponds to the resting state of the medium (green
areas in Figures 1–4, 6, 7), narrow yellow (dark blue) regions
represent the wave front (wave back), and red areas correspond
to a wave plateau, whereas blue ones represent the refractory
regions.

3. RESULTS

3.1. Rotor Initiated from a Rectangularly
Shaped FPR
To illustrate the phenomenon of the rotor initiation from a
rounded rectangular heterogeneous region, we set L = 300,
R = 15, as shown in Figure 1. Inside this region D = 1
and A = 2, while outside D = 1 and A = 1. Due
to an increased value of A, this rounded rectangular region
could be considered as a FPR since the propagation velocity
inside it is larger than outside. For such parameter choice,
the flat boundary of the FPR would unidirectionally block
a plane wave propagating through the medium outside FPR.
However, the local curvature at the rounded corner of the FPR
1/R ≈ 0.067 is large enough to prevent the blockage and let
the excitation penetrate into the FPR. Then, a phase change
point (PCP) emerges, and a self-sustained rotor is initiated.
The process is similar to the scenario described in Zykov et al.
[33, 34].

However, if the local curvature at the rounded corner of
the FPR is below some critical value, as illustrated in Figure 2,
there would be no penetration into the FPR at the corner. Thus,
the FPR would act for propagating waves as an obstacle. The
transient rotor starts to circulate around the FPR and vanishes
eventually when it approaches themedium boundary. The critical
value of the corner curvature depends on D and A within
the FPR.

Another scenario appears when the values of D and/or A
within the FPR are below some critical values. As illustrated
in Figure 3, in this case, the flat boundary of the FPR would
not block the propagating wave. The plane wave would become
curved, propagates through the FPR, and vanishes eventually
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FIGURE 1 | Rotor initiated due to a rectangularly shaped fast propagation

region (FPR). (A) The FPR marked by a black dashed line has length L = 300

and two rounded corners with the radius of R = 15. Within the FPR D = 1,

A = 2 and outside the FPR D = 1 and A = 1. A plane wave propagates from

the left toward the FPR. (B) The wave is blocked at the flat boundary of the

FPR but penetrates into it at the rounded corner. (C–E) A rotor is initiated and

stably rotates. The white dot and line are the rotors phase change point (PCP)

and its trajectory, respectively.

when it reaches the medium’s boundary. No self-sustained rotors
are initiated.

3.2. Critical Length of a Rectangularly
Shaped FPR
For a given D and A within the FPR, its length L is also a critical
parameter to initiate a self-sustained rotor. If L is shorter than a
certain critical length, as illustrated in Figure 4, the PCP would

FIGURE 2 | No wave penetration occurs at the rounded corner of a FPR if R is

above some critical value. (A) No penetration is observed at the corner of

radius R = 30, as an example. (B–D) The PCP (white dot) would travel along

the FPR boundary and vanishes eventually, as shown by its trajectory (white

line). Other parameters are the same as in Figure 1.

FIGURE 3 | No blockage occurs at the flat boundary of a FPR if D and/or A

inside it are below some critical values. (A) No PCP would emerge for D = 0.9

and A = 1.8, as an example. (B) A slightly deformed plane wave propagates

through the FPR and disappears at the right boundary of the medium. Other

parameters are the same as in Figure 1.

approach the medium boundary and vanishes eventually. After
the PCP has disappeared, a curved wave propagates through
the medium and vanishes at its boundary. Thus, no rotors are
initiated.

We investigate in detail the critical length of the FPR needed
to initiate a self-sustained rotor and determine the boundaries of
the non-penetration and non-blockage regions for various A and
D, as shown in Figure 5. Here the radius of the rounded corner
is fixed as R = 15. As shown in Figure 5A, the non-penetration
occurs when D and/or A are above some critical values, and the
non-blockage occurs when D and/or A are below other critical
values. Between these two boundaries, the initiation of a self-
sustained rotor is possible with the color-coded critical length Lc
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FIGURE 4 | No stably rotating rotor appears if L is shorter than a critical

length. (A) Although a PCP would be initiated like in the case shown in

Figures 1A–C, the PCP (white dot) would be too close to the medium

boundary and vanishes eventually, as shown by its trajectory (white line). (B)

After the PCP vanishing the curved wave would propagate to the right

boundary of the medium, and no stably rotating rotor would exist. The FPR

length L = 200 and other parameters are the same as in Figure 1.

of the rounded rectangular FPR. The larger D and/or A are, the
shorter Lc would be.

This dependence of Lc on D and A is further confirmed in
Figures 5B,C, where we show how Lc shrinks as D or A increases
for different corner radius R. Figures 5B,C also demonstrate how
Lc changes as R increases.

We also investigate the impact of the width of the rectangular
FPR. The simulation results show that the FPR width has no
significant effect on the rotor initiation if it is larger than 2R.

4. ANALYSIS

To analyze the conditions for the rotor initiation by a rounded
rectangular FPR, we simplify the two-component reaction-
diffusion equations by taking ǫ = 0 and setting v = 0. In this
limiting case, the initial Equations (1)–(4) can be reduced to

∂u

∂t
= ∇ · (D∇u)− Au(u− 1)

(

u− b

a

)

. (5)

This equation describes a bistable extended system, where the
resting state u = 0, the excited state u = 1, and the unstable
steady state u = b/a exist. The value β = b/a is the excitation
threshold. The bistable equation has been widely used to analyze
the propagation of the wave front when ǫ ≪ 1 [36]. It is also
useful to establish fundamental mechanism behind the blockage
and penetration at the FPR boundary.

4.1. Analysis of the Non-blockage and
Non-penetration Boundary
To analyze the conditions for the blockage of the initial plane
wave at the flat boundary of the FPR, we could further simplify
Equation (5) to consider a stationary wave profile for a one-
dimensional bistable system as follows

d

dx

(

D(x)
du

dx

)

− A(x)u(u− 1)(u− β) = 0, (6)

FIGURE 5 | (A) The phase diagram shows the regions of non-penetration,

non-blockage, and rotor initiation due to the FPR with critical length Lc for

different values of D and A but fixed R = 15. (B) The detailed dependence of

Lc on A for fixed D = 1 and different R. (C) The detailed dependence of Lc on

D for fixed A = 2 and different R.

where A(x) = 1, D(x) = 1 for x ≤ 0 and A(x) = A, D(x) = D for
x > 0. The boundary conditions and the continuity conditions at
x = 0 read as

u|x=−∞ = 1, u|x=∞ = 0,

du

dx

∣

∣

∣

∣

x=−∞
= du

dx

∣

∣

∣

∣

x=∞
= 0, (7)

du

dx

∣

∣

∣

∣

x=−0

= D
du

dx

∣

∣

∣

∣

x=+0

. (8)

Multiplying Equation (6) by du/dx, integrating over x from −∞
to 0 and from 0 to∞, using Equations (7) and (8), we obtain the
following equation

∫ u(0)

1
u(u− 1)(u− β)du = DA

∫ u(0)

0
u(u− 1)(u− β)du, (9)

which determines the value of u(0) at the point of the parameter
jump as a function of the product DA. Note that the front could
be stopped only if u(0) < β . Thus, the Equation (9) for u(0) =
β gives the critical value of the product DA, above which the
propagation blockage could be observed. Therefore, the non-
blockage boundary in the phase diagram has an analytical form
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FIGURE 6 | Analogy between the non-penetration at the corner of a

rectangularly shaped FPR and the non-penetration of a circular wave into a

circular shaped FPR. (A) The non-penetration at the rounded corner of the

FPR (zoomed from Figure 2A). (B) A circular wave blocked by the circular

shaped FPR of the radius r = 60. (C) The non-penetration boundaries for the

rectangularly shaped FPR for R = 15 (black dots) and for the circular wave and

the circular shaped FPR with the radii rmin = 27.6 (red line) and rmax = 29.7

(blue line). (D) The dependence of 1/r = 1/(2R) is proofed to be valid for a

large range of R.

as follows

DA <
(1− β2)(1− β)2

β3(2− β)
. (10)

This expression represents a modification of another one
mentioned already in Zykov et al. [33, 34]. It looks more simple
because of the normalized values of the parameters A = 1
and D = 1 in the part of the medium outside an FPR. This
normalization performed by rescaling of time and space variables
in Equation (5) is made without loss of generality. It is worth to
note also that this expression generalizes a similar analysis for the
case of a steep rise of the parameter D under constant value of A
performed earlier in Pauwelussen [37] and Mornev [38].

It is important to stress that the obtained analytical expression
(10) gives a very precise estimate of the non-blockage boundary
obtained by numerical computations illustrated by Figure 5A.
The deviations do not exceed one percent.

To analyze the conditions to prevent wave penetration at the
rounded corner of the FPR, we look in detail into the process
of the (non-)penetration, as illustrated in Figure 6A. The initial
plane wave would become curved at the rounded corner of the
FPR. It is analogous to a circular wave penetrating into a circular
FPR with a radius r, as shown in Figure 6B.

To verify the analogy, we compare the non-penetration
boundaries for the rounded rectangular FPR with the circular

FIGURE 7 | The composition of the critical length Lc of a rectangularly shaped

FPR to initiate a rotor. The white dot and line are the initial location and the

following trajectory of the PCP, respectively. Three components of Lc are: Lmin
which describes the minimum distance of a persistent PCP from the top

medium boundary, Lr which describes the vertical range of the PCP trajectory

in the medium outside the FPR, and Lexc which describes the propagation of

the penetrated excitation within the FPR. The FPR length L = Lc = 229 and

other parameters are the same as in Figure 1.

FPR in a A − D diagram. As shown in Figure 6C, the non-
penetration boundary for the rectangularly shaped FPR with the
corner radius of R is located between two curves corresponding
to non-penetration boundaries for the circular FPR with the
radius rmin and rmax, as shown in Figure 6C. Note, that in a
vicinity of the rounded corner the boundary curvature jumps
from zero to 1/R. Hence, it is natural to assume that the non-
penetration boundaries for the circular FPR with the curvature
about an averaged curvature of the rounded corner, 1/r ≈
1/(2R), will approximate the non-penetration boundary for the
rounded rectangular FPR. This approximation is working well for
10≤R≤50, as demonstrated in Figure 6D.

Therefore, we can use the results of the simulations for the
circular FPR and the radius relation r ≈ 2R to approximate
the non-penetration boundary for the rounded rectangular FPR.
Since the circular FPR in the polar coordinates (ρ, θ) has
a rotational symmetry, this allows us to transform the two-
dimensional Equations (1) and (2) to the one-dimensional ones
as follows

∂u

∂t
= 1

ρ

∂

∂ρ

(

D(ρ)ρ
∂u

∂ρ

)

− A(ρ)F(u, v), (11)

∂v

∂t
= ǫG(u, v). (12)
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This one-dimensional equations considerably simplifies the
analysis. The corresponding computations have been performed
by use of the explicit finite difference method with the spatial step
dρ = 0.3 and the time step dt = 0.005. In order to simulate a
circular wave approaching a circular shaped FPR, a part of the
medium with ρ > ρext is assumed to be in the excited state at
t = 0, as illustrated in Figure 6B.

4.2. Analysis of the Critical Length Lc of a
Rounded Rectangular FPR
To understand the mechanism behind the dependence of Lc on
the characteristics of the FPR, i.e.,D, A and R, we separate Lc into
three parts, as shown in Figure 7. The first part is the distance
from the rounded corner of the FPR, where the penetration of
the excitation starts, to the position where the PCP emerges for
the first time. This part, named Lexc, should be determined by
the characteristics of the FPR since it describes the propagation
of the excitation inside the FPR. The second part is the distance
from the initial position of the PCP to the highest position in
its trajectory. This part, named Lr , describes the range of the
PCP trajectory along the FPR but located outside the FPR. This
trajectory part should be practically independent of the FPR
characteristics. The third part is the distance from the highest
PCP position in its trajectory to the top medium boundary. This
part, named Lmin, should be above some minimum distance
toward the top medium’s boundary. Otherwise, the PCP would
be too close to the boundary and vanishes eventually. The value
of Lmin should only depend on the given characteristics of the
medium outside the FPR, and thus is fixed in our simulations.
Therefore, the value of Lc is the sum of Lmin and Lr , which are
fixed, and Lexc, which is determined by D and A inside the FPR,
and R at the FPR corner.

Hence, Lexc is the only part which is varied and depends on D,
A, and R. Its value may read as

Lexc =
∫ tr

tp

cvdt, (13)

where tp is the time when the penetration of the excitation at
the rounded corner of the FPR starts, tr is the time when the
PCP initially emerges, and cv is the propagation velocity of the
excitation along the flat border of the FPR. As shown in Figure 8,
tr remains constant for different sets of D, A, and R, while tp
varies. The velocity cv changes with time and also depends on D,
A, and R.

Based on these results, three conclusions can be made. First,
larger D, A, or R would delay tp. Second, tr is nearly the same
in all cases since it is determined by the time when the wave
back of the plane wave reaches the left flat boundary of the
FPR. Therefore, it is determined by the fixed characteristics
of the medium outside the FPR. Third, for the most part of
the trajectory, cv is larger than the plane wave velocity cp in a
homogeneous medium where the parameters D and A are the
same as inside the FPR, as shown in the subfigure of Figure 8.
Obviously, cv is accelerated since the value of the activator
u > 0 in the vicinity of the left flat boundary of the FPR
due to a diffusive influence of the blocked plane wave. Such

FIGURE 8 | The propagation speed cv of the penetrated excitation along the

vertical flat boundary of a FPR over time. tp is the time when the penetration at

the FPR corner starts. tr is the time when the PCP initially emerges. Larger D,

A, or R lead to a delayed tp, but nearly the same tr . The subfigure shows the

change of the ratio between cv and cp over time, where cp is the plane wave

velocity for the medium’s parameters established inside the FPR.

increase of the propagation velocity is a general effect in bistable
models of one-dimensional excitable media if ahead of the wave
front the activator value exceeds the resting state [39]. In the
context of a flame propagation, which also can be described by
Equation (6), this phenomenon is named as preheating effect
[40].

4.2.1. Mechanism of Delay of tp
The delay of tp occurs at the rounded corner of a FPR. As
shown above, the penetration of the plane wave into the rounded
corner with the radius of R is analogous to the penetration of a
circular wave into a circular FPR with the radius r ≈ 2R. Thus,
considering the analogy and just focusing on the propagation of
the excitation wave front, we could use the bistable version of
Equations (11) and (12) to investigate the variation of u at the
rounded FPR corner with time. The bistable equation for the
circular FPR expressed in the polar coordinates (ρ, θ) reads as

∂u

∂t
= 1

ρ

∂

∂ρ

(

D(ρ)ρ
∂u

∂ρ

)

− A(ρ)u(u− 1)(u− β). (14)

Using the finite difference method with space step 1ρ, at the
circular FPR boundary r = 2R, Equation (14) could be expanded
as

∂u|r
∂t

= 1

r1ρ2

[

D|r+1ρ/2 (r + 1ρ/2)
(

u|r+1ρ − u|r
)

− D|r−1ρ/2 (r − 1ρ/2)
(

u|r − u|r−1ρ

)]

− A|r u|r (u|r − 1) (u|r − β) , (15)
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where

D|r+1ρ/2 =
1

2

(

D|r+1ρ + D|r
)

= 1

2
(1+ D),

D|r−1ρ/2 =
1

2

(

D|r + D|r−1ρ

)

= 1

2
(D+ D) = D,

A|r = A.

When the circular wave reaches the circular FPR boundary at r,
we have u|r−1ρ < u|r < u|r+1ρ , and u|r is still smaller than
the excitation threshold β . Thus, u|r (u|r − 1)(u|r − β) > 0.
Then we can divide the right hand side of Equation (15) into two
terms. The term which would cause an increase of u|r with time
is named as the source term. It reads as

1

1ρ2

1+ D

2

(

1+ 1ρ

2r

)

(

u|r+1ρ − u|r
)

. (16)

The other term which would cause a decrease of u|r with time is
named the sink term. It reads as

− 1

1ρ2
D

(

1− 1ρ

2r

)

(

u|r − u|r−1ρ

)

− A u|r (u|r − 1) (u|r − β) . (17)

From the above expressions of two terms, we find that larger D
would enhance the source term (Equation 16) but enhances the
sink term (Equation 17) even more. Larger A would not affect
the source term but enhance the sink term. Larger r, i.e., 2R in
the analogy, would reduce the source term, but enhance the sink
term.

Therefore, the conclusion is that the larger D, A and R
are, the stronger the sink term would be, and the later u|r
reaches the excitation threshold. This is the cause of the delay
of the start time of the excitation penetration near the corner
of the rounded rectangular FPR, i.e., tp in Equation (13).

As shown in Figure 9, the numerical simulation results prove
our explanation of the delay effect by plotting the value
of u at the corner of the rounded rectangular FPR with
time.

4.2.2. Influence of “Preheating” on cv
Inside the rounded rectangular FPR, the accelerating effect
on the propagation velocity cv occurs near its vertical flat
boundary. When the initial plane wave is blocked at the
flat boundary, although it does not penetrate inside the
FPR, it yet increases the value of u in a vicinity of the
FPR boundary. This is quite similar to a preheating effect
in the flame propagation when the fuel temperature ahead
of the flame front is increased [39, 40]. This “preheated”
medium would accelerate the propagation velocity cv of the
excitation wave front along the vertical flat boundary of the
FPR.

FIGURE 9 | Temporal dynamics of the value of u at the junction point between

the flat boundary and the corner of a rectangularly shaped FPR. An increase of

D, A, or R inside the FPR delays the time tp when the excitation threshold is

reached.

The mechanism of the accelerated wave front could be
analytically understood from Equation (5) for the bistable
distributed system. If a preheated part of the FPR near its flat
boundary is assumed as a nearly one-dimensional medium, we
can establish a comoving frame as z = x + ct, where c is the
propagation velocity of the wave front. Thus, Equation (5) would
be simplified as

Duzz − cuz − Au(u− 1)(u− β) = 0. (18)

The preheating effect increases the value of u to some preheated
state up, andmakes the excitation start from up > 0 instead of the
resting state u = 0. Based on the theory described in Keener and
Sneyd [36], the propagation velocity of the excitation wave front
could be expressed as

c(up) =
∫ 1
up
Au(1− u)(u− β)du

∫ ∞
−∞ u2zdz

=
∫ β

up
Au(1− u)(u− β)du+

∫ 1
β
Au(1− u)(u− β)du

∫ ∞
−∞ u2zdz

. (19)

The analytical expressions of Equation (19) would be obtained for
two limiting cases. The first one is the unpreheated case at which
up is equal to the resting state. That gives

c(0) =
√

DA/2(1− 2β). (20)

The second is the fully preheated case at which up is equal to the
excitation threshold β . This gives

c(β) =
√

DA/2(1+ β). (21)

The above two analytical expressions apparently demonstrate
that c(β) > c(0), since β > 0.

We also investigate the preheated propagation velocity in
the numerical simulations of Equation (5). As shown in
Figure 10, the numerical results elucidate the acceleration of the
propagation velocity c(up) as a function of the preheated state
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FIGURE 10 | The propagation speed cp corresponding to the preheated state

u = up. The values of D = 1 and A = 2 are taken as an example. The solid line

represents the numerical simulation results in a one-dimensional medium

described by Equation (5). The value of u ahead of the wave front is set to be

up. The open circle and square are the analytic results from Equations (20) and

(21) at the limiting cases of up = 0 and up = β, i.e., the resting state and the

excitation threshold, respectively.

up. The analytical results from Equations (20) and (21) perfectly
describe both limiting cases following from these numerical data.

5. CONCLUSIONS AND APPLICATIONS

Our results demonstrate that a self-sustained rotor could be
initiated from the spatial heterogeneity, i.e., a rectangularly
shaped FPR. We use a generic model to parameterize the
heterogeneity with three parameters D, A, and R. In the
D − A diagram at a given R, the region of the rotor
initiation is located between the non-blockage and non-
penetration regions. The two boundaries of the rotor initiation
region could be estimated by the analytical equation for the
bistable distributed system and the simulations in a one-
dimensional medium for a circular FPR, respectively. We also
show that to initiate the self-sustained rotor the length of the
rounded rectangular FPR should be larger than the critical
Lc. The critical value Lc depends on the parameters D and
A, within the FPR, as well as on the radius R of a rounded
corner.

Our findings in the generic model might be applicable to
describe the electrophysiological dynamics of cardiac tissue.
Indeed, the distribution of transmembrane potential V in a two-
dimensional tissue could be described by the reaction-diffusion
equation as follows [41]

∂V

∂t
= 1

χCm
∇ (σ · ∇V) − Iion(V , Eh)

Cm
, (22)

∂Eh
∂t

= g(V , Eh), (23)

where χ is the surface-to-volume ratio of the cardiac cells,
Cm is the membrane capacitance, σ is the tensor of electric
conductivity, and Iion is the sum of ion channel currents. Intensity
of each separate current is determined by corresponding

component of the vector Eh. Equations (22) and (23) can be
generalized into a two-component reaction-diffusion system as
follows

∂V

∂t
= ∇ (D · ∇V) − Iion(V , h)

Cm
, (24)

∂h

∂t
= g(V , h), (25)

where the effective diffusion coefficient tensor D = σ/χCm

and the description of the ion currents is reduced to a scalar
value h. In an isotropic tissue, we can simplify the tensors σ and
thus D to be scalars. Thus, the reduced system which describes
electrophysiological properties of the cardiac tissue looks similar
to the reaction-diffusion model we use.

Nowadays many detailed models of human atria incorporate
both structural and electrophysiological heterogeneities leading
to differences in conduction velocity between the neighboring
regions [42–44]. It is also well known that atrial fibrosis in
the aging heart can result in spatial variations in the electrical
conductivity of a part of the cardiac muscle [45]. If some
regions within this part remain unchanged, they can resemble
fast propagation regions introduced in our model. Note, that
a similar nonhomogeneity in the electrical conductivity can
appear, for instance, when fresh stem cells aggregates implanted
in strongly remodeled cardiac tissue form gap junctions with
adult cardiac myocytes [46]. Moreover, some cardiac diseases
cause ion channel remodeling [47]. This remodeling can be
represented as a variation of the term Iion in Equation (22). This
is to some extent equivalent to a variation of the parameter A in
our model. If this remodeling occurs non-uniformly in space, one
can expect the creation of some spots with a negligible variation
of this parameter in comparison to its strong decrease in the
surrounding regions. Thus, nonhomogeneous remodeling can
results in a creation of fast propagation regions considered in this
study.

Of course, the model used above is aimed to reproduce
only most generic features of electrical activity in myocardial
tissue. Investigation of specific dynamical features can be done
by application of more detailed models widely used in the
literature [48–50]. It is important to note that our recent
results based on the Fenton-Karma model [48] indicate that all
scenarios of rotor initiation obtained with the Barkley model are
perfectly reproducible [33]. An obvious reason for this is that the
restitution of action potential duration in detail reproduced in the
Fenton-Karma model plays only a restricted role in the described
scenarios, where spiral waves are generated after application of a
single excitation stimulus. Of course, the following dynamics of
the initiated rotors is strongly influenced by many other factors
and specific features of cardiac tissue, which are not reproduced
in the framework of the generic model used in the study.

Therefore, computer simulations of a real tissue in the
framework of much more detailed models and most importantly
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experimental investigations definitely can help to verify the role
of the observed scenario for generation of cardiac arrhythmias.
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