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Rotors of spiral waves are thought to be one of the potential mechanisms that maintain

atrial fibrillation (AF). However, disappointing clinical outcomes of rotor mapping and

ablation to eliminate AF raise a serious doubt on rotors as a macro-scale mechanism

that causes the micro-scale behavior of individual cardiomyocytes to maintain spiral

waves. In this study, we aimed to elucidate the causal relationship between rotors

and spiral waves in a numerical model of cardiac excitation. To accomplish the

aim, we described the system in a series of spatiotemporal scales by generating a

renormalization group, and evaluated the causal architecture of the system by quantifying

causal emergence. Causal emergence is an information-theoretic metric that quantifies

emergence or reduction between micro- and macro-scale behaviors of a system by

evaluating effective information at each scale. We found that the cardiac system with

rotors has a spatiotemporal scale at which effective information peaks. A positive

correlation between the number of rotors and causal emergence was observed only up

to the scale of peak causation. We conclude that rotors are not the universal mechanism

to maintain spiral waves at all spatiotemporal scales. This finding may account for the

conflicting benefit of rotor ablation in clinical studies.

Keywords: complex systems, information theory, cardiac dynamics, rotors, atrial fibrillation

1. INTRODUCTION

The heart is a complex system consisting of five billion autonomous cardiomyocytes that interact
with each other. This interaction leads to system behaviors at multiple scales. The dynamics of
the rotating center (“rotor”) of spiral waves [1, 2] is a macro-scale, emergent behavior of the
cardiac system that is reducible to but cannot easily be explained by the dynamics of the individual
cardiomyocytes at the microscopic scale [3–6]. For example, the determinants of rotor dynamics
include ionic currents [7], action potential duration (APD) restitution properties, conduction
velocity (CV) restitution properties [8], wavefront curvature of spiral waves [9], heterogeneity and
anisotropy of the media, and coexisting rotors [10, 11].

Currently, rotors are thought to be one of the potential mechanisms that maintains atrial
fibrillation (AF) in human [12], and early clinical attempts to target rotors with interventional
catheter ablation therapy to eliminate AF showed promising results [13–15]. However, recent
clinical trials have been disappointing [16–20]. Apart from the technical limitations associated with
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rotor identification using clinically available systems [21], those
negative findings raise a serious doubt on rotors as a macro-scale
mechanism that causes the micro-scale behavior of individual
cardiomyocytes to maintain spiral waves.

The micro- and macro-scale behaviors of a multi-scale system
can be mathematically quantified by the information content
of behaviors at each scale. For example, information-theoretic
metrics such as the complexity profile [22] and the marginal
utility of information [23] can quantitatively characterize the
amount of information that is present in the system behavior at
different scales. The downward causation [24–28] from macro-
to micro-scale behaviors of the system is quantifiable as inter-
scale downward information flow. We recently showed that
the relationship between the number of rotors and downward
information flow is nonlinear in a cardiac system [29]. At
microscopic scales, higher numbers of rotors are associated with
higher downward information flow. As the system description
becomes more macroscopic, higher numbers of rotors are
associated with lower downward information flow. This subtle
but important finding suggests that rotors may not be a universal
mechanism to maintain spiral waves at all scales. As the system
is coarse-grained, rotors may lose their causal power to maintain
spiral waves.

The aim of the study was to elucidate the causal relationship
between rotors and spiral waves, and to identify the causal scale
of rotors as a mechanism tomaintain spiral waves. To accomplish
the aim, we described rotors in a numerical model of cardiac
excitation in a series of spatiotemporal scales by generating a
renormalization group, and evaluate the causal architecture of
the system by quantifying causal emergence. Causal emergence
is an information-theoretic metric that quantifies emergence or
reduction between micro- and macro-scale behaviors of a system
by evaluating effective information at each spatiotemporal scale
[30]. Effective information is a quantity that captures causal
interactions of a system between its unconstrained repertoire of
possible cause and a specific state of possible effect [31]. We
hypothesized that a positive correlation between the number of
rotors and causal emergence is not universally found in all the
spatiotemporal scales of the cardiac system.

2. MATERIALS AND METHODS

We perform the simulation and the data analysis using Matlab
R2016b (Mathworks, Inc.).

2.1. Model of Spiral Waves
We used a modified Fitzhugh–Nagumo model to represent
cardiac action potential [32, 33]. This model accurately
reproduces important properties of cardiac systems, including
slowed conduction velocity, unidirectional block due to
wavefront curvature, and spiral waves [34].

∂v

∂t
= 0.26v (v− 0.13)(1− v)− 0.1vr + Iex + ∇ · (D∇v) (1)

∂r

∂t
= 0.013 (v− r) (2)

where v is the transmembrane potential, r is the recovery variable,
and Iex is the external current [35]. D is the diffusion tensor,
which is a diagonal matrix whose diagonal and off-diagonal
elements are 1 and 0 mm2/ms, respectively, to represent a 2-
D isotropic system [34]. We used an isotropic, homogeneous
model to avoid confounding the causal archtecture by tissue
anisotropy and inhomogeneity. We solved the model equations
using a finite difference method for spatial derivatives and
explicit Euler integration for time derivatives assumingNeumann
boundary conditions. We generated 1,000 sets of a 2-D 120×120
isotropic lattice of components (= 11.9 × 11.9 cm) by inducing
spiral waves with 40 random sequential point stimulations in
40 random components of the lattice (Supplementary Movie 1,
section 3.2) [36]. In each component, we computed the time
series for 10 s excluding the stimulation period with a time step
of 0.063 ms, which was subsequently downsampled at a sampling
frequency of 400 Hz.

We then defined the instantaneous phase φ(t) and the
instantaneous amplitude A(t) of v(t) in each component via
construction of the analytic signal ξ (t), which is a complex
function of time [37].

ξ (t) = v(t)+ ivH(t) = A(t)eiφ(t) (3)

Here, vH(t) is the Hilbert transform of v(t)

vH(t) =
1

π
p.v.

∫ ∞

−∞

v(τ )

t − τ
dτ (4)

where p.v. indicates that the integral is taken in the sense of the
Cauchy principal value. We defined the rotor of the spiral wave
as a phase singularity [38], where the phase is undefined because
all phase values converge. The phase singularity can be localized
through calculation of the topological charge nt [39, 40].

nt =
1

2π

∮

c
∇φ · dEl (5)

where φ(Er) is the local phase, and the line integral is taken over

the pathEl on a closed curve c surrounding the singularity [41].

nt =











+1 counterclockwise rotor

−1 clockwise rotor

0 elsewhere

(6)

In this study, |nt| was used to quantify the average number of
rotors over the entire time series [42].

2.2. Renormalization Group
We generated a renormalization group of the system by a series
of spatial and temporal transformation including coarse-graining
and rescaling of the original microscopic description of the
system. For each component, the time series of cardiac excitation
was descretized to 1 when excited (during the APD at 90%
repolarization, or APD90) or 0 when resting (Figure 1A) [43].
Then we coarse-grained the system spatially and temporally
with decimation by a factor of 2 (Figure 1B). Spatial decimation
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FIGURE 1 | Renormalization of a cardiac system with spiral waves. (A) Original description of the system. For each component, the time series of cardiac excitation is

descretized to 1 (black) when excited (during the APD at 90% repolarization, or APD90) or 0 (white) when resting. (B) Spatial and temporal decimation. Spatial

decimation takes the value of cardiac excitation (0 or 1) at each time point in the component at the top left corner of a block of 2 × 2 immediately adjacent

components of the system, and assigns the value to the corresponding site in the system at the next scale. Temporal decimation downsamples the time series of

cardiac excitation by a factor of 2. (C) Spatial scales. Spatial scales include scale 1 (30 × 30 lattice), scale 2 (15 × 15 lattice), scale 3 (8 × 8 lattice), scale 4 (4 × 4

lattice), scale 5 (2 × 2 lattice), and scale 6 (1 × 1 lattice). (D) Temporal scales. Each circle represents a data sampling point. Temporal scales include scale 1 (400 Hz),

scale 2 (200 Hz), scale 3 (100 Hz), scale 4 (50 Hz), scale 5 (25 Hz), and scale 6 (12 Hz).

transforms a n×n lattice into a n
2 ×

n
2 lattice by extracting the top

left component of each 2 × 2 block (Supplementary Movie 2).
Temporal decimation downsampled the binary time series of
each component by a factor of 2. Using a combination of
iterative coarse-graining in spatial and temporal axes we created
a renormalization group of a total of 36 spatiotemporal scales of
the system. The renormalization group included spatial scales 1
(30 × 30 lattice), 2 (15 × 15 lattice), 3 (8 × 8 lattice), 4 (4 × 4
lattice), 5 (2 × 2 lattice), and 6 (1 × 1 lattice) (Figure 1C), and
temporal scales 1 (400 Hz), 2 (200 Hz), 3 (100 Hz), 4 (50 Hz), 5
(25 Hz), and 6 (12 Hz) (Figure 1D).

2.3. Effective Information
We treated each component on the lattice as a time-series process
X. Entropy H of each time-series process X is

H(X) = −
∑

x

p(x) log2 p(x) (7)

where p(x) denotes the probability density function of the
time series generated by X. Effective information quantifies the
information generated when the system enters a specific state of

possible effect Y out of its unconstrained probability distribution
of possible cause X [31].

EI(X → Y) = I(X;Y) (8)

= H(X)+H(Y)−H(X,Y) (9)

=
∑

x,y

p(x, y) log2
p(x, y)

p(x)p(y)
(10)

where X has a uniform probability distribution so that it
provides the maximum entropy H(X)max [44]. I(X;Y) is
mutual information, p(x, y) and H(X,Y) denote the joint
probability density function and the joint entropy of X and
Y , respectively. Mutual information is originally a measure of
statistical dependence to quantify how much information is
shared between a source and a destination [45]. In this context,
however, mutual information is applied between two time series
of a system that is first perturbed into all possible states with
equal probability and then observed as a sepcific state. Because
of the system perturbations, mutual information here is a causal
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measure, and thus effective information of the system is a state-
independent information-theoretic measure of a system’s causal
architecture [30].

One can describe a n × n lattice at time t as a binary string
of length n × n. Therefore, the unconstrained repertoire of all

possible causes X at time t0 consists of 2n
2
possible states with

equal probability 1/2n
2
at each time point. We defined the bin

number b (b < 2n
2
) to calculate the probability distribution

of X and Y , and we used b = 210 = 1, 024 in this study.
Analytically, because X has a uniform probability distribution,
the probability that X falls in one of the b bins at each time point
is 1/b. Therefore, entropy of X is equal to the maximum entropy
(Figure 2A).

H(X) = −
∑

x

p(x) log2 p(x) (11)

= b× (−
1

b
log2

1

b
) (12)

= log2 b (13)

Numerically, X can be defined as a vector of uniformly

distributed random numbers between 1 and 2n
2
−1 for a time

series of finite duration. Due to the discretization effect, the
probability is non-uniform. Entropy is close to but not identical
to the maximum entropy (Figure 2A). We generated 1,000 sets
of X at each scale to vaidate the robustness of our effective
information measure in the cardiac system with rotors (section
3.1). Similarly, Y can be defined as a vector of decimal numbers

between 1 and 2n
2
−1, each of which represents a specific state

of the system with rotors (Figure 2B). Causal emergence is a
difference in effective information between scales.

CE = EI(Xm → Ym)− EI(Xn → Yn) (14)

wherem and n are different scales of the system description from
the renormalization group. When scale m is more macroscopic
than scale n(m > n), a positive CE indicates that the macroscopic
behavior is emergence (downward causation), whereas a negative
CE indicates that the macroscopic behavior is reduction (upward
causation) [30]. In this study we quantified causal emergence
with respect to the most microscopic system description with
spatial scale= temporal scale= 1.

3. RESULTS

3.1. Evaluation of Variance of Effective
Information to Quantify Rotor Dynamics
First, we evaluated the variance of effective information to
describe rotor dynamics at each spatiotemporal scale. This
allowed us to vaidate the robustness of our effective information
measure in the cardiac system with rotors. We repeated 1,000
numerical computations of X and Y in a representative spiral
wave data set to calculate entropy H(X), H(Y), H(X,Y), then
calculated EI(X → Y). Numerically, H(X) is not uniquely
determined due to the discretization effect, but the variance was
small (Figure 3). Spatial coarse-graining had minimal impact on

FIGURE 2 | Probability distribution of cause X and effect Y . We define the bin number b = 210 in this study. (A) Unconstrained probability distribution of possible

cause X. Analytically, the probability of all bins is uniformly 1/b (shown in blue), and thus entropy is equal to the maximum entropy at log2 b=10 bits. In contrast,

numerically, the probability is non-uniform due to the discretization effect (shown in red). Entropy is 9.829 bits, which close to but not identical to the maximum

entropy. (B) Probability distribution of a specific state of possible effect Y . The probability is non-uniform. Entropy is 2.289 bits in this case. (C) Bivariate probability

distribution of cause X and effect Y . Joint entropy is 10.220 bits in this case. Effective information from case X to effect Y is equal to mutual information between X

and Y , thus is calculated as 1.898 bits.
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FIGURE 3 | Entropy of unconstrained probability distribution of possible cause X in a representative spiral wave data set. H(X ) is not uniquely determined due to the

discretization effect, but the variance is small. Each subplot represents he probability distribution of H(X ). The columns represent the spatial scales (1 through 6) and

the rows represent the temporal scales (1 through 6).

the probability ditribution of H(X) from scales 1 through 4,
but H(X) steeply fell in scales 5 and 6. In contrast, temporal
coarse-graining gradually shifted the distribution of H(X) to
the left. H(Y) was uniquely determined because it represents
a specific state of the system regardless of the spatiotemporal
scale (Figure 4). In this case, spatial coarse-graining clearly
increased the distribution of H(Y) to the right, which peaked
at scale 4 and decreased at scales 5 and 6. Similarly, temporal

coarse-graining increased the distribution of H(Y) to the right,
which peaked at scale 4 and decreased at scales 5 and 6. The
relationship between the spatiotemporal coarse-graining and the
probability distribution of joint entropy H(X,Y) was similar
to that of H(X) (Figure 5), and the variance remained small.
Effective infromation EI(X → Y) peaked at spatial scale of 4 and
temporal scale 5, and the variance of EI(X → Y) remained small
(Figure 6). This findings indicates that, despite the discretization
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FIGURE 4 | Entropy of specific state of possible effect Y in a representative spiral wave data set. H(Y ) is uniquely determined because it represents a specific state of

the system regardless of the spatiotemporal scale. Each subplot represents the probability distribution of H(Y ). The columns represent the spatial scales (1 through 6)

and the rows represent the temporal scales (1 through 6).

effect, numerical computation of EI(X → Y) is robust with high
reproducibility, and thus EI(X → Y) can be used to quantify the
information of rotor dynamics at each spatiotemporal scale.

3.2. Evaluation of Effective Information in
Aggregate Data Sets
Next, we quantified effective information to describe rotor
dynamics at each spatiotemporal scale in 1,000 different sets
of spiral waves with random initial conditions (Figure 7). This

allowed us to analyze the causal architecture of the cardiac
system with rotors in aggregate data sets, rather than focusing
on one data set with a specific manifestation of rotor dynamics.
Overall, effective information increased as the scale increased
from microscopic to macroscopic descriptions of the system.
However, effective information reached the global maximum
at spatial scale = temporal scale = 4, beyond which effective
information decreased (Figure 7). This finding indicates that the
cardiac system with rotors has the most causal power at at spatial
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FIGURE 5 | Joint entropy of cause X and effect Y in a representative spiral wave data set. H(X,Y ) is not uniquely determined due to the discretization effect, but the

variance is small. Each subplot represents the probability distribution of H(X,Y ). The columns represent the spatial scales (1 through 6) and the rows represent the

temporal scales (1 through 6).

scale = temporal scale = 4. The behavior at this scale causes
the behavior at more microscopic (downward causation) and
macroscopic scales (upward causation). It is important to note
that the scale of peak causation is not the most macroscopic scale
(i.e., spatial scale = temporal scale = 6). We also found that
the difference in effective information between scales was larger
in spatial coarse-graining (Figure 7B) than that of temporal
coarse-graining (Figure 7C), indicating that the impact of spatial

coarse-graining on effective information was higher than that of
temporal coarse-graining.

3.3. Relationship Between the Number of
Rotors and Causal Emergence
Lastly, we evaluated the relationship between the number of
rotors and causal emergence in the same 1,000 data sets used
in section 3.1. This allowed us to relate the causal architecture
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FIGURE 6 | Effective information from cause X to effect Y in a representative spiral wave data set. EI(X → Y )[= I(X;Y ) = H(X )+ H(Y )− H(X,Y )] is not uniquely

determined due to the discretization effect, but the variance is small. Each subplot represents the probability distribution of EI(X → Y ). The columns represent the

spatial scales (1 through 6) and the rows represent the temporal scales (1 through 6).

of the cardiac system to rotor dynamics. The number of rotors
ranged from 0 to 7, with a median of 3 (Figure 8). For system
descriptions at spatial scale ≤ 4 and temporal scale ≤ 4, causal
emergence was positive for all the data sets except a few where a
rotor prematurely disappeared on its own (number of rotors≤ 1,
red dots in Figure 9). There was a significant positive correlation
between the number of rotors and causal emergence. This finding
indicates that rotor dynamics at those scales is an emergent

behavior that causes the micro-scale behavior of the system.
For system descriptions at spatial scale ≥ 5, causal emergence
was negative for all the data sets, and there was a significant
negative correlation between the number of rotors and causal
emergence. This findings indicates that rotor dynamics at those
scales is reducible to the micro-scale behavior of the system. For
system descriptions at spatial scale = 1 and temporal scale ≥ 5,
causal emergence scatters in positive and negative values. This
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FIGURE 7 | Effective information of the system in aggregate data sets. (A)

Overview. Each point indicates the mean effective information EI(X → Y ) of

1,000 data sets at each spatiotemporal scale. EI(X → Y ) reaches the global

maximum at spatial scale = temporal scale = 4. (B) Effective information vs.

spatial scale. (C) Effective information vs. temporal. Each point indicates the

mean of EI of 1,000 data sets at each spatiotemporal scale.

finding indicates that the causal relationship at those scales is
inconsistent. There was a significant negative correlation between
the number of rotors and causal emergence at those scales, but
the correlation coefficients were small (r = −0.089). For system
descriptions at spatial scale = 2, 3, and 4 and temporal scale ≥
5, causal emergence was almost always positive and there was a
significant positive correlation between the number of rotors and
causal emergence. This finding indicates that temporal coarse-
graining has a smaller impact than spatial coarse-graining on the
relationship between the number of rotors and causal emergence.
This result is consistent with that of section 3.2.

4. DISCUSSION

4.1. Main Findings
First, the numerical computation of effective information in the
cardiac system with rotors is robust with high reproducibility
(Figure 6), despite the discretization effect associated with

FIGURE 8 | Probability distribution of the number of rotors. The number of

rotors ranges from 0 to 7 in 1,000 data sets.

random generation of the unconstrained probability distribution
of possible cause X. Therefore, our effective information measure
is a reasonable information-theoretic metric to quantify the
information generated for specific dynamics in the cardiac system
with rotors at each spatiotemporal scale.

Next, there is a spatiotemporal scale at which effective
information peaks in the cardiac system with rotors (Figure 7).
This finding indicates that the most causal power of the
system does not lie in the most microscopic (i.e., spatial
scale = temporal scale = 1) nor the most macroscopic scale
(i.e., spatial scale = temporal scale = 6). In other words, both
downward and upward causation coexist in the cardiac system
with rotors.

Lastly, a positive correlation between the number of rotors
and causal emergence is not universally found in all the
spatiotemporal scales of the cardiac system (Figure 9). For
example, the number of rotors and causal emergence were
positively correlated only up to the scale of peak causation,
beyond which the correlation is not universally positive.
This finding indicates that rotors are not the universal
causal mechanism to maintain spiral wave dynamics at all
spatiotemporal scales.

4.2. Quantifying Causal Architecture of
Cardiac Systems
Our study highlights several innovative aspects. First, we utilized
a multi-scale approach by generating a renormalization group
where we applied iterated coarse-graining and rescaling [46] to
the microscopic description of the cardiac system to construct
a series of robust and minimal macroscopic descriptions
(Figure 1). In our previous work, we have successfully applied the
renormalization group to a cardiac system to quantify inter-scale
information flow [29]. In this study, we coarse-grained the system
descriptions in both spatial and temporal scales to quantify
macro-scale behaviors while reducing the number of degrees of
freedom. This approach is different from a conventional and
common belief that a detailed, high-resolution modeling with
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FIGURE 9 | Number of rotors and causal emergence. We quantify causal emergence (CE) with respect to the most microscopic system description at spatial

scale = temporal scale = 1. Each subplot represents an association between the number of rotors and CE at each spatiotemporal scale. Black dots indicate CE >0

(emergence), whereas red dots indicate CE <0 (reduction). Blue lines indicate linear fit for the number of rotors ≥1. The columns represent the spatial scales (1

through 6) and the rows represent the temporal scales (1 through 6).

near-complete description of microscopic behaviors with infinite
degrees of freedom is required to understand the macroscopic
behavior of the cardiac system. Our results suggest that our
approach is valid for achieving our aim to understand the macro-
micro causal relationship between rotors and spiral waves in the
cardiac system.

Second, we validated the robustness of effective information
in a cardiac system (Figure 6). Effective information is equal

to mutual information I(X;Y) between the source X and the
destination Y [30]. Mutual information is a measure of statistical
dependence between X and Y [45], and is not a causal measure.
However, by choosing X as a uniform probability distribution
such that it provides the maximum entropy H(X)max [44], and Y
as a specific state of dynamics, I(X;Y) becomes a causal measure
to quantify the information generated from X to Y (Figure 2)
[47]. Our results suggest that our effective information measure
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is robust with high reproducibility. Our results demonstrate that,
because effective information sensitively captures the dynamics
of the system, it is applicable to any multi-scale systems to
quantify the causal architecture.

Lastly, we quantified causal emergence to evaluate the causal
relationship between rotors and spiral waves to address whether
rotors are the causal mechanism to maintain spiral waves,
which is clinically important. Our result was unexpected; yes,
rotors are the mechanism to maintain spiral waves, but not
at all spatiotemporal scales. This result is consistent with our
previous work evaluating inter-scale information flow [29]. Our
result makes us reconsider a binary definition of a causal
mechanism, where A either is or is not a cause of B. The binary
definition of the causal mechanism may be both insensitive
and simplistic, failing to capture important features of causal
architecture. The finding that rotors are not the universal
mechanism to maintain spiral waves at all scales may account
for the conflicting benefit of rotor ablation in clinical studies,
because the concept of scales has never been introduced as
an independent variable in interventional catheter ablation
therapy.

4.3. Clinical Implications
Successful treatment of arrhythmia requires targeted elimination
of the mechanism that maintains arrhythmia, not the mechanism
that triggers it. For example, in Wolff-Parkinson-White (WPW)
syndrome, the ablation target is not the premature atrial
complexes (PAC) that trigger atrioventricular reciprocating
tachycardia (AVRT), one of the simplest forms of anatomical
reentry. Instead, successful treatment of AVRT requires
elimination of an accessory pathway (AP) connecting the
atrium and the ventricle that maintains AVRT [48]. Because the
mechanism that maintains AF remains unclear [12], catheter
ablation of AF targets focal triggers mainly originating from the
pulmonary veins (pulmonary vein isolation, PVI) [49, 50]. This
approach remains far from curative, with recurrence rates up to
40% [51].

Our results suggest that the causal architecture analysis
may guide the additional strategies of therapeutic intervention
of AF, including the posterior wall isolation [52, 53], the
stepwise approach [54–56], and the extensive ablation [57].
Those strategies, which are performed in addition to PVI, focus
on segmenting the atria by linear lesions to reduce the mass of
contiguous atrial tissue below an effective size needed to sustain
fibrillation [58]. Up to now, those additional strategies have not
produced significantly superior outcomes compared with the
standard approach [51]. Because atrial segmentation disrupts the
electrical conduction and changes the communication network
topology within the atria [59], it is expected to alter the

causal architecture of the system as well. Quantitative analysis
of the causal architecture of the system using multi-electrode
catheters may provide patient-specific diagnostic parameters
that could potentially serve as a valid endpoint for therapeutic
interventions. Further studies are required to link the causal
architecture and clinical outcomes.

4.4. Limitations
We used a modified Fitzhugh-Nagumo model, which is a
relatively simple model of excitable media. Because our aim
was to study the causal relationship between rotors and spiral
waves, we used an isotropic, homogeneous model to avoid
confounding the causal architecture by tissue anisotropy and
inhomogeneity. Further studies are required to assess the
impact of tissue anisotropy and inhomogeneity on the causal
relationship between rotors and spiral waves in a more realistic
geometry of the heart.

4.5. Conclusions
Rotors are not the universal mechanism to maintain spiral waves
at all scales in a cardiac system. This finding may account for the
conflicting benefit of rotor ablation in clinical studies.
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