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Biological development involves numerous chemical and physical processes which must

act in concert to reliably produce a cell, a tissue, or a body. To be successful, the

developing organismmust be robust to variability at many levels, such as the environment

(e.g., temperature, moisture), upstream information (such as long-range positional

information gradients), or intrinsic noise due to the stochastic nature of low concentration

chemical kinetics. The latter is especially relevant to the regulation of gene expression

in cell differentiation. The temporal stochasticity of gene expression has been studied

in single celled organisms for nearly two decades, but only recently have techniques

become available to gather temporally-resolved data across spatially-distributed gene

expression patterns in developing multicellular organisms. These demonstrate temporal

noisy “bursting” in the number of gene transcripts per cell, raising the question of how the

transcript number defining a particular cell type is produced, such that one cell type can

reliably be distinguished from a neighboring cell of different type along a tissue boundary.

Stochastic spatio-temporal modeling of tissue-wide expression patterns can identify

signatures for specific types of gene regulation, which can be used to extract regulatory

mechanism information from experimental time series. This Perspective focuses on

using this type of approach to study gene expression noise during the anterior-posterior

segmentation of the fruit fly embryo. Advances in experimental and theoretical techniques

will lead to an increasing quantification of expression noise that can be used to

understand how regulatory mechanisms contribute to embryonic robustness across a

range of developmental processes.

Keywords: transcription, Drosophila, mRNA, stochastic model, embryo development, gene regulation, spatial

pattern formation, tissue differentiation

THE CHALLENGE OF DEVELOPMENT: COORDINATED TISSUE
DIFFERENTIATION FROM CELL-SPECIFIC GENE EXPRESSION

Development of a multicellular organism’s body depends on the reliable differentiation of cells
into tissues. Differentiation must be coordinated in space, defining the extent of the tissue, and
in time, for cells to acquire the proper identity at the correct time. Genetically, cell type is defined
by expression of a unique subset of the genome. Gene expression has multiple levels, including the
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binding of DNA by regulatory transcription factors, transcription
from DNA to mRNA, splicing variation, and translation
of mRNA to protein. Protein transport, degradation and
interactions with other proteins and cellular components then
form the molecular biology, structure and functionality of a
specific cell type.

Variability exists in all of these processes. Extrinsic variability
can be in temperature or moisture; the timing of a hormone
signal; or the spatial distribution of a transcription factor, for
example the anterior-posterior Bicoid (Bcd) gradient in the
fruit fly (Drosophila) which activates different tissues depending
on its concentration (Figure 1A, purple). Gene expression also
has intrinsic variability (noise), since it occurs at low enough
concentrations to exhibit stochastic kinetics (e.g., [1]).

In single cells, intrinsic variability can contribute to
population heterogeneity that may be exploited for evolutionary
adaptivity to environmental changes (e.g., [2–5]). In the
development of multicellular metazoans, however, such
heterogeneity must generally be much lower to produce
distinct tissue types with clear boundaries. Anterior-posterior
segmentation of the insect body must achieve 1–2 cell positional
accuracy to avoid developmental errors. This implies variability-
limiting mechanisms at most, if not all, steps of cellular
differentiation. This Perspective addresses how gene regulation
can affect the variability due to intrinsic transcription noise,
particularly in Drosophila.

REGULATORY MECHANISMS FOR
ROBUST GENE EXPRESSION

Several dozen genes are involved in early Drosophila anterior-
posterior segmentation (e.g., [6, 7]). Many of these code
for transcription factors which regulate other segmentation
genes, creating a highly interconnected gene regulatory
network. Hierarchically, long-range maternal gradients (e.g.,
Bcd) activate broad gap-gene patterns (e.g., hunchback, hb;
Krüppel, Kr; Giant, Gt; knirps, kni; Figure 1A), which then
regulate the finer-scale pair-rule genes (e.g., even-skipped, eve).
Stripes of pair-rule expression, each several cells wide, form
in the long 14th interphase after fertilization (Figure 1B);
these are the first manifestation of the fly’s future body
segments.

This coordinated spatially-patterned expression of genes has
been extensively studied withmathematical models. For example,
parameter searches with the gene interaction matrix approach
of Mjolsness et al. and Reinitz and Sharp [8, 9] found classes
of networks for wild-type [10] and mutant [11–13] gap-gene
patterns. Such potential mechanisms can be further screened
for robustness to extrinsic variability, such as to Bcd gradient
variability [11, 12].

Such deterministic models are not appropriate, however, for
the intrinsic noise generated during gene transcription and
translation: they can guide the development of stochastic models,
but only to the extent that terms can be converted to elementary
probabilistic events. New types of data are also required for
quantifying intrinsic noise and model validation.

PIONEERING WORK IN SINGLE CELLS;
GENE EXPRESSION IS INTRINSICALLY
NOISY

While the effects of noise in gene expression had been discussed
in the 1990’s (e.g., [14–19]), technological advances in the
early 2000’s allowed for the first experimental measurements
of noise in living cells, in bacteria (e.g., [1, 20]) and in
yeast (e.g., [21]). In E. coli, for instance, genes for cyan and
yellow fluorescent proteins were incorporated into the genome:
when a cell experienced fluctuations in extrinsic factors, the
transgenes expressed together, producing an equally-blended
color; deviations from this revealed the intrinsic noise at each
gene [1]. Advances in this period include finding how noise scales
[22], and that prokaryotic expression exhibits noisy bursts in
translation while eukaryotic expression, with slower initiation
kinetics, is dominated by transcriptional bursting (see review
[23]; also [24] regarding transcription factor concentrations and
burst dynamics).

TRANSCRIPTION NOISE IN
MULTICELLULAR SPATIALLY-PATTERNED
TISSUES

While fluorescent protein transgenes have been used extensively
in metazoans, the long maturation times (∼30min) of those
developed for Drosophila segmentation genes (e.g., bcd [25]
and eve [26]) tend to obscure the rapid (∼10min) pattern
changes during interphase 14. Gene expression noise studies in
Drosophila have therefore focused on transcription, measuring
RNA rather than protein.

Static Snapshots
High resolution FISH (fluorescent in situ hybridization) can
image sub-nuclear RNA transcription centers (or “dots,”
corresponding to individual gene copies on the DNA) and
even single RNA molecules (smFISH). Fixed embryos can be
assigned within several-minute developmental stages. Stochastic
transcriptional processes can be inferred from the distribution of
RNA in these staged snapshots.

Data
Different FISH probes can visualize different stages of RNA
production, from nascent (actively transcribing from the DNA)
to nuclear (dots) to cytoplasmic. Intronic probes for nascent
transcripts were used to demonstrate transcriptional bursting
in segmentation genes [27]. Similar to a unicellular population,
early Bcd-activated hb expression can be heterogeneous [28],
but becomes more synchronized as spatial pattern matures
[29]; this may be aided by a persistence of the transcriptional
state through cell divisions [30]. Correlation between Bcd and
hb intronic signal [31] was used to calculate the number
of Bcd binding sites (BSs) in the hb cis-regulatory element
(CRE; the DNA region to which transcription factors bind).
hb Bcd-dependence decays quickly in early interphase 14 [32],
after which gap-gap interactions become important. Noise
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FIGURE 1 | (A) Spatial expression of several Drosophila segmentation genes. (B) eve gene expression stripes on an interphase 14 embryo. Red arrow, eve stripe 2.

(C) Schematic of the MCP/MS2 system. “eve2” represents the CRE controlling transcriptional initiation (right-angle arrow); see Figure 2A for an expanded view and

model of this eve MSE. PolII transcribes multiple MS2 loops in addition to the target gene. MS2 loops in the nascent RNA bind MCP tagged with green fluorescent

protein (GFP). (D) Experimental time series from a nucleus in the center of eve stripe 2, from Bothma et al. [54]. (E) A stochastic simulation for OFF-LOW-HIGH eve2

transcription (model in Figures 2A,B). (F) A simulation of simple OFF-ON transcription. Experimental time series exhibit a 10min initial lag, simulation dynamics start

at time 0; time axes same as (G–I), vertical scale (number of transcript molecules) shared (D–F). (G–I) Corresponding change per minute for the data (G), and for the

OFF-LOW-HIGH (H), and OFF-ON (I) simulations. Pink, minutes with high initiation; blue, minutes with low to zero initiation. (J–L) Distributions of change-per-minute

for data (J, from G), OFF-LOW-HIGH (K, 10 pooled simulations) and OFF-ON (L, also 10 simulations; yellow arrows indicate dichotomy in low to zero rates not seen in

J,K). Vertical bin ranges identical for (J–L). LOW corresponds to kB000 in Figure 2, HIGH to kBH00. (A,B) adapted from Levine [79], (C) from Desponds et al. [53],

(D–L) from Holloway and Spirov [66].
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FIGURE 2 | (A) States (blue) and events (arrows) of the stochastic eve2 transcription model [66]; shown as elementary reactions in (B), solved as master equations

[80, 81]. E, the eve2 MSE, can bind four transcription factors (B, Bcd; H, Hb; K, Kr; G, Gt); transcriptional initiation occurs at a LOW (green circle 2) or HIGH (circle 3)

rate. Experimental signal corresponds to eve nascent RNA. K, G repression not shown in (B), see [66]. (C) Modeled spatial patterning of eve2: numbers of transcripts

against position. Red, stochastic solutions at 5min intervals (times numbered in black); black line, deterministic solution at 45min; blue (Kr) and green (Gt), early (outer)

and late (inner) repressor patterns. Adapted from Holloway and Spirov [66].

damping and synchronization can be aided by a “paused”
state, in which the transcriptional machinery (RNA polymerase
II complex, PolII) is assembled and ready, but not actively

transcribing [33, 34]. Having multiple CREs for a gene may
also reduce transcription noise [35, 36]. While hb, gt, Kr,
kni are noisy during transcription, cytoplasmic mRNA levels
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can be smoother, which may indicate spatiotemporal averaging
[37].

Modeling
With FISH data, the substantial theory from unicellular noise
research can start to be applied to multicellular gene expression.
For instance, Boettiger et al. [38] used a Markov chain approach
(see, for example, [39–41]) to compare initiation-regulated and
elongation-regulated transcriptional dynamics and show how the
latter could produce themore consistent patterns of paused genes
observed in Boettiger and Levine [33]. Xu et al. [42] recently
derived probability distributions for the number of nascent
transcripts and corroborated these against smFISH signal for hb
activated by high, medium and low levels of Bcd.

FISH also provides the resolution to check stochastic versions
of long-range spatial patterningmodels. For instance, a stochastic
model of Bcd and Hb (self) activation of the anterior hb
expression domain [43], developed from an earlier deterministic
version [44], predicted that reporter constructs with less than
wild-type numbers of Bcd BSs should show increased variability
of the mid-embryo boundary, and that loss of hb autoregulation
should decrease correlation of the FISH signal between the two hb
gene copies (dots). See also Sanchez et al. and Monteoliva et al.
[40, 45] on the effect of the number of BSs on transcriptional
noise. For later patterning, we modeled the gap-gap interactions
producing the mid-embryo Hb concentration peak necessary
for the future thorax [46]. Stochastic simulations indicated that
hb-Kr interactions reduce expression noise and contribute to
the reliability of mid-embryo development, predicting that FISH
dot-dot correlation should decrease in Kr − mutants.

Live Time Series
More recently, technology has been developed for the
visualization of transcription in live embryos, using the
MS2/MCP system originally developed in Bertrand et al. [47]
(see also [48] for a recent application in yeast). A viral coat
protein (MCP) and its corresponding RNA stem loop (MS2) is
introduced into a host reporter gene. MCP, tagged with green
fluorescent protein, binds an MS2 loop during transcription
of the reporter, producing signal for the nascent transcript
(Figure 1C). The first application in Drosophila was to visualize
mature nanos RNA [49]. While the technique has inherent
background issues compared to FISH (see extensive review in
Ferraro et al. [50]), it is increasingly being used to visualize live
transcription in embryos at timescales on the order of 1min. This
resolution allows for the corroboration of stochastic models and
data along time series, as well as spatially. The time dimension
provides new constraints for screening potential regulatory
mechanisms.

Data
Time series were first measured in Drosophila for hb [51, 52].
The MCP signal was sampled every 30–60 s and calibrated
to the number of active PolII molecules. Peak transcription
(up to 100 transcripts being made) can occur within 1–2min
after nuclear division [52]. hb output corresponds well to
transcriptional initiation rates up through interphase 13, but

the large increase in output entering interphase 14 indicates an
additional contribution from whether a nucleus is active or not
[51]. Though fluctuations are observed, particularly in longer
traces (e.g., Figure 1D of Garcia et al. [51]), the short cell cycles
prior to interphase 14 make quantification challenging. A new
autocorrelation technique for short sampling periods has been
used to detect hb transcriptional bursts in interphase 13 [53].

Live pair-rule gene transcription has been measured [54] with
MS2 driven by a 1.7 kb CRE of eve [55, 56] which expresses in
stripes 2 and 7 (Figure 1B). A 480 bp minimal stripe element
(MSE) within this sequence controls expression at eve stripe 2
(eve2). The MSE has BSs for Bcd, Hb, Gt and Kr [57–59]. The
activators, Bcd and Hb, are high throughout the anterior of the
embryo; eve2 forms in a trough between the repressor patterns,
with Gt to the anterior and Kr to the posterior (Figure 1A).
Bothma et al. [54] sampled individual nuclei in stripe 2 over
nearly 60min time series at ∼1min resolution (Figure 1D).
These show bursts in eve2 transcription, with “peaks” of some
50–60 nascent transcripts interspersed with “troughs” of about
10–20 nascent transcripts. The authors suggested this indicated
two distinct ON rates (i.e., transcriptional initiation could be
OFF, LOW, or HIGH). Lower expression at stripe-edge nuclei
indicated repression from Gt and Kr.

Using Spatio-Temporal Stochastic Modeling to Find

Gene Regulatory Mechanisms From Noisy Time

Series
Expression noise has primarily been modeled with simple OFF-
ON mechanisms, with transcriptional initiation ON at random
intervals, at a characteristic mean rate, and OFF otherwise. The
ON intervals can include many initiation events, producing
bursts of transcripts (see review in Munsky et al. [60]). An OFF-
ON model was recently used to study the effects of transcription
noise on eve2 stripe border variability [61]. A number of systems
have now been characterized, however, which display multiple
distinct ON rates [62–64]. The proposal in Bothma et al. [54] that
eve2 has multiple ON rates could have a mechanistic basis in the
dual activation of the MSE by Bcd and Hb: removal of the Hb
BS leaves reduced Bcd-only activated expression of eve2 [57, 65].
However, to determine whether this regulatory feature can be
extracted from time series, it must first be determined whether
output from simple OFF-ON and multiple-ON mechanisms can
be distinguished.

We, Holloway and Spirov [66], developed a stochastic model
of the eve2MSE, with BSs for Bcd, Hb, Gt, and Kr (Figures 2A,B),
and parameters calibrated to experimental data (see also [67, 68]
for deterministic MSEmodels). Sets of time series were generated
for a multiple-rate OFF-LOW-HIGH mechanism (Figure 1E, at
stripe center, where repression is minimal) and for a simple OFF-
ON mechanism (Figure 1F, also stripe center), both producing
the observed total number of transcripts in interphase 14. Both
mechanisms produced “bursty” peaks in number of transcripts
qualitatively like the data (Figure 1D). A more direct measure
of initiation rates, however, is the minute-to-minute change in
number of transcripts (Figures 1G–I): any increase in signal over
the previous minute indicates at least that number of transcripts
initiated. The distribution of these minute-to-minute changes is
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closer between the data (Figure 1J) and the OFF-LOW-HIGH
mechanism (Figure 1K) than between the data and the OFF-
ON mechanism (Figure 1L), particularly in the low addition
range (2-3 initiations per minute). The two models produce
distinct distributions (χ2, p < 0.05 [66]). Furthermore, OFF-ON
simulations show significant autocorrelation in the minute-to-
minute changes (particular initiation rates are maintained over
multiple minutes), which is not seen with the data or the OFF-
LOW-HIGH mechanism (initiation rates are not maintained
from minute-to-minute; e.g., see the net loss in the “burst peak”
at minute 40 in Figure 1D). This indicates that features of the
time series do support a multiple ON rate mechanism. This
corresponds to BS knockouts exhibiting lower eve2 expression
for Bcd-only activation than for Bcd+Hb co-activation [57, 65].
Without the LOW rate, the OFF-ON model switches between
OFF and HIGH intensity intervals; we suggest that biologically
the Bcd-only LOW rate steadies a basal production, while the
Bcd+Hb HIGH rate allows for more total transcript. Spatially,
the model produces the observed eve2 stripe sharpening in
time (Figure 2C), and indicates that time series from nuclei
under repression at the stripe edges should be distinguishable
from low expression due to reduced activation (e.g., Hb BS
knockout).

This approach indicates that a combination of live imaging,
data analysis and stochastic modeling can be used both to
find regulatory mechanisms and to understand how they
affect transcription noise. Transcription factor binding and
initiation kinetics must be slow enough to produce bursting
and not time-average output [66]. The time series also need
to be long enough, but this can be shortened: Desponds
et al. [53] simulated Bcd-activated hb expression, comparing
OFF-ON transcription to a mechanism with two OFF states
(corresponding to different inactive states of the DNA); they
reported that with their new autocorrelation technique time
series of 20min should be sufficient to distinguish these
alternatives.

FUTURE PROSPECTS

Live MS2 imaging has been extended to an increasing number
of genes in Drosophila, including kni and, in dorsal-ventral
patterning, the ventrally expressed snail [69, 70] and its targets
brinker and short gastrulation [71]. These provide new insights
into temporal aspects of regulation and patterning, but also allow
for new noise analysis, particularly how transcriptional noise
control may vary between genes or between tissues. For instance,
while single CREs can exhibit multiple initiation rates (e.g., eve2),
a broader level of control may arise with the multiple enhancers
(CREs) seen for many genes: [72] reported a correlation between
enhancer strength and transcriptional burst frequency in snail,
rhomboid, Abdominal-B and Kr. In addition to Drosophila, MS2
has been introduced into zebrafish [73] and mice [74] to visualize
patterning dynamics and transcriptional bursting in vertebrate
development.

Discerning regulatory mechanisms from time series will be
facilitated in several ways. First, while bursts can be defined
theoretically (e.g., [19, 61]), quantifying the duration and
amplitude of bursts in data series can be challenging. Comparison
of experiment and theory is likely to be more robust using
time series statistics such as autocorrelation [53, 66]. Next,
numerical simulations currently offer a way to find characteristics
of multi-state regulatory processes: e.g., Figures 1, 2; also see [75]
for a systematic method for fitting putative models to single-
cell expression. Analytical approaches have been developed
for stochastic transcription of a spatial pattern with OFF-ON
initiation [61]; and for steady-state distributions of nascent signal
for intronic FISH, addressing the effect of time lags due to
placement of the probe [42]. Extensions of such approaches to
multi-state initiation and time-series analysis from cells in a
developing spatial pattern may give a more complete treatment
of MS2 signal dynamics and better predictive power for inferring
regulatory mechanisms.

Characterizing the stochastic dynamics of transcription
provides insight into how biology may exploit different
regulatory mechanisms. For instance, the eve2 modeling
indicates that multiple ON-state mechanisms may support
smoother mRNA output compared to OFF-ON mechanisms.
Recent examples from single-cell work include modeling dosage
regulation after DNA replication as a reduced probability
of the ON state [76]; and an experimental and theoretical
demonstration that in HIV production a positive feedback slows
promoter toggling and uncouples mean from variance, allowing
for stochastic active/latent switching at high output which
increases viral fitness [77]. Recent single-cell transcriptomes
in mice indicate noise regulation is under selective pressure
in metazoans as well: low expression noise is associated with
gene expression regulators and highly-networked genes (such
as Drosophila segmentation genes); while higher noise is
associated with stress response, which could aid adaptivity
[78]. A more complete picture of the evolution of the gene
regulatory networks controlling spatial pattern formation
in metazoans will ultimately combine quantification of
expression variability with the experimental and theoretical
characterization of the stochastic dynamics of gene expression,
such that we can understand how regulators interact with
the target gene structure to provide both the stability and
adaptivity needed for robust development over successive
generations.
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