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Due to advances in computer hardware and new algorithms, it is now possible to
perform highly accurate many-body simulations of realistic materials with all their intrinsic
complications. The success of these simulations leaves us with a conundrum: how
do we extract useful physical models and insight from these simulations? In this
article, we present a formal theory of downfolding–extracting an effective Hamiltonian
from first-principles calculations. The theory maps the downfolding problem into fitting
information derived from wave functions sampled from a low-energy subspace of the full
Hilbert space. Since this fitting process most commonly uses reduced density matrices,
we term it density matrix downfolding (DMD).

Keywords: downfolding, effective model, strongly correlated systems, quantum Monte Carlo, machine learning

1. INTRODUCTION TO DOWNFOLDING THE MANY ELECTRON
PROBLEM

In multiscale modeling of many-particle systems, the effective Hamiltonian (or Lagrangian) is one
of themost core concepts. The effectiveHamiltonian dictates the behavior of the system on a coarse-
grained level, where “sub-grid” effects are folded into the parameters and form of the effective
Hamiltonian. Many concepts in condensed matter physics can be viewed as statements about the
behavior of the effective Hamiltonian. In particular, identification of “strongly correlated” materials
as materials where band theory is not an accurate representation of the system is a statement about
effective Hamiltonians. Effective Hamiltonians at different length scales also form the basis of the
renormalization group [1]. A major goal in condensed matter physics is to determine what effective
Hamiltonians apply to different physical situations, in particular quantum effective Hamiltonians,
which lead to large-scale emergent quantum phenomena.

The dominant effective model for quantum particles in materials is band structure, and for
metals, Fermi liquid theory. However, a major challenge is how this paradigm should be altered
when it is no longer a good description of the physical system. Examples of these include the
high-Tc cuprates and other transition metal oxides, which do not appear to be well-described
by these simple effective Hamiltonians. For these systems, many models have been proposed,
such as the Hubbard [2], Kanamori [3], t-J [4], and Heisenberg models. While these models
have been extensively studied analytically and numerically, and have significantly enhanced our
understanding of the physics of correlated electrons, their effectiveness for describing a real
complex system of interest is often unclear. At the same time, more complex effective models can be
commensurately more difficult to solve, so one would like to also find an accurate effective model
that is computationally tractable.
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To address the need for a link between ab initio electron-
level models and larger scale models, downfolding has most
commonly been carried out using approaches based on density
functional theory (DFT). The effective one-particle hopping
terms are obtained by projecting the DFT bands onto localized
Wannier functions [5]. The interactions are then estimated based
on certain models of screening of the Coulomb interactions
[e.g., constrained DFT, Random Phase Approximations (RPA)].
Since effects of interactions between the orbitals of interest have
already been accounted for by DFT, a double counting correction
is required to obtain the final downfolded Hamiltonian. The
approach has been developed and widely applied [5–8]; but
remains an active area of research [9]. There are other
downfolding approaches that include the traditional Löwdin
method, coupled to a stochastic approach [10, 11] and the related
method of canonical transformations [12, 13]. While they have
many advantages, it is typically not possible to know if a given
model ansatz was a good guess or not, and it is very rare for a
technique to provide an estimate of the quality of the resultant
model.

The situation described above stands in contrast to the
derivation of effective classical models. For concreteness, let us
discuss classical force fields computed from ab initio electronic
structure calculations. Typically, a data set is generated using
an ab initio calculation in which the positions of the atoms and
molecules are varied, creating a set of positions and energies.
The parameters in the force field ansatz are varied to obtain a
best-fit classical model. Then, using standard statistical tools, it
is possible to assess how well the fit reproduces the ab initio data
within the calculation, without appealing to experiment. While
translating that error to error in properties is not a trivial task,
this approach has the important advantage that in the limit of
a high quality fit and high quality ab initio results, the resultant
model is predictive.

Naïvely, one might think to reconcile the fitting approach
used in classical force fields with quantum models by matching
eigenstates between a quantum model and ab initio systems,
varying the model parameters until the eigenstates match [14].
However, this strategy does not work well in practice because
it is often not possible to obtain exact eigenstates for either the
model or the ab initio system. To resolve this, we develop a
general theory for generating effective quantum models that is
exact when the wave functions are sampled from the manifold
of low-energy states. Because this method is based on fitting the
energy functional, we will show the practical application of this
theory using both exact solutions and ab initio quantum Monte
Carlo (QMC) to derive several different quantum models.

The endeavor we pursue here is to develop a multi-
scale approach in which the effective interactions between
quasiparticles (such as dressed electrons) are determined after
an ab initio simulation (but not necessarily exact solution) of
the continuum Schroedinger equation involving all the electrons.
Themethod uses reduced densitymatrices (RDMs) of low-energy
states, not necessarily eigenstates, to cast downfolding as a fitting
problem. We thus call it density matrix downfolding (DMD). In
this paper, our applications of DMD to physical problems employ
one-body (1-RDM) and two-body (2-RDM) density matrices.

The many-body states used in DMD will typically be generated
using QMC techniques [either variational Monte Carlo (VMC)
or diffusionMonte Carlo (DMC)] to come close to the low energy
manifold.

DMD was first applied to the benzene molecule and
monolayer graphene in our previous work [15]. We showed
that the downfolded Hamiltonian reproduced the experimental
energy spectrum for benzene. In this paper, we will present a
rigorous theory underlying the whole downfolding framework
and apply the downfolding method to more systems.

The remainder of the paper is organized as follows:

� In section 2, we clarify and make precise what it means to
downfold a many-electron problem to a few-electron problem.
We recast the problem into minimization of a cost function
that needs to be optimized to connect the many and few body
problems. We further these notions both in terms of physical
as well as data science descriptions, which allows us to connect
to compression algorithms in the machine learning literature.

� Section 3 discusses several representative examples where we
consider multiband lattice models and ab initio systems to
downfold to a simpler lattice model.

� In section 4, we discuss future prospects of applications of
the DMD method, ongoing challenges and clear avenues for
methodological improvements.

2. DOWNFOLDING AS A COMPRESSION
OF THE ENERGY FUNCTIONAL

In this section, we will develop a sufficient criterion for an
effective Hamiltonian Heff to reproduce the spectrum of a first-
principles Hamiltonian H within the low-energy space. The
criterion is that if a wave function |9〉 is drawn from the low-
energy space, then the expectation values of the effective and
first principles Hamiltonian must match for that wave function.
We then use the concept of descriptors to help parameterize the
effective Hamiltonian in terms of expectation values on wave
functions sampled from the low-energy space, such as hopping
and double occupancy.

2.1. Theory
2.1.1. Energy Functional
Suppose we start with a quantum systemwithHamiltonianH and
Hilbert spaceH.

Definition 1. Let the energy functional be E[9] = 〈9|H|9〉
〈9|9〉 for a

wave function |9〉 ∈ H.

Theorem 1. E[9] has a critical point only where |9〉 is an
eigenvector of H.

Proof:

δ

δ9∗ E[9] =
δ

δ9∗
〈9|H|9〉
〈9|9〉

=
H|9〉
〈9|9〉

− 〈9|H|9〉
|9〉

|〈9|9〉|2

=
(H − E[9])|9〉

〈9|9〉
. (1)
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Therefore, δ
δ9∗ E[9] = 0 if and only if (H − E[9])|9〉 = 0, i.e.,

|9〉 is an eigenvector of H corresponding to eigenvalue E[9].

2.1.2. Low Energy Space
Definition 2. LetLE(H,N) be a subset ofH spanned by N vectors
given by the lowest energy solutions to H |9n〉 = En|9n〉.

Definition 3. Heff is an operator on the Hilbert space LE(H,N).

Definition 4. The effective model Eeff [9] = 〈9|Heff |9〉
〈9|9〉 is a

functional from LE → R.

If |9〉 ∈ LE and |8〉 ∈ H \ LE , then |9〉 ⊕ |8〉 ∈ H. In
the following, we will use the direct sum operator⊕0 to translate
between the largerH and the smaller LE .

Lemma 1. Suppose that |9〉 ∈ LE and |8〉 ∈ H \ LE . Then
δE[9⊕8]

δ8

∣

∣

∣

8=0
= 0.

Proof: 〈9 ⊕ 0|H|0 ⊕ 8〉 = 0 because the two states have non-
overlapping expansions in the eigenstates of H. Using that fact,
we can evaluate

δE[9 ⊕8]

δ8

∣

∣

∣

∣

8=0
= (H − E[9 ⊕8]) |8〉

〈9|9〉 + 〈8|8〉

∣

∣

∣

∣

8=0
= 0. (2)

This is equivalent to noting that H is block diagonal in the
partitioning ofH into LE andH \ LE . Importantly, if |9〉 ∈ LE ,
then δE[9⊕0]

δ(9⊕0)∗ = |9 ′〉 ⊕ 0, where |9 ′〉 ∈ LE .

Theorem 2. Assume E[9 ⊕ 0] = Eeff [9]+ C for any |9〉 ∈ LE ,
where C is a constant. Then (Heff + C)|9〉 ⊕ 0 = H(|9〉 ⊕ 0).

Proof: Note that

δE[9 ⊕ 0]

δ(9 ⊕ 0)∗
=

(H − E[9 ⊕ 0]) |9 ⊕ 0〉
〈9|9〉

(3)

and

δEeff [9]

δ9∗ =
(Heff − Eeff [9]) |9〉

〈9|9〉
. (4)

Since the derivatives are equal, setting Equation 3 equal to
Equation 4,

H |9 ⊕ 0〉 = (Heff + E[9 ⊕ 0]− Eeff [9]) |9〉 ⊕ 0

= (Heff + C) |9〉 ⊕ 0. (5)

Theorem 2 combined with Lemma 1 means that the eigenstates
of Heff are the same as the eigenstates of H if the derivatives of
its energy functional match those of H. Such a Heff always exists.

LetHeff =
∑N

n=1 En|9n〉〈9n|where |9n〉’s are eigenstates belong
to LE(H,N). This satisfies E[9] = Eeff [9] and Heff |9〉 = H|9〉
for any |9〉 in LE(H,N).

We have thus reduced the problem of finding an effective
Hamiltonian Heff that reproduces the low-energy spectrum of
H to matching the corresponding energy functionals E[9] and
Eeff [9]. Practically, this can be implemented as follows:

(1) Generating an ansatz for the effective Hamiltonian in terms
of operators.

(2) Generating wave functions |9n〉′ s in the low-energy
subspace of the first principles Hilbert spaceH.

(3) Computing E[9n] using the expectation value of the
first principles Hamiltonian and Eeff [9n] by taking the
expectation value of the operators in the ansatz for Heff .

This involves sampling the low-energy space, choosing the form
ofHeff , and optimizing the parameters. An important implication
of this is that it is not necessary to diagonalize either of the
Hamiltonians; one must only be able to select wave functions
from the low-energy space LE . As we shall see, this can be
substantially easier than attaining eigenstates.

Some further notes about this derivation:

� Fitting 9 ’s must come from LE . It is not enough that the
energy functional E[9] is less than some cutoff energy.

� In the case of sampling an approximate LE , the error comes
from non-parallelity of E[9] with the correct low energy
manifold, up to a constant offset.

� WhileHeff is unique, it hasmany potential representations and
approximations.

� Our method can be applied to any manifold spanned by
eigenstates.

� Model fitting is finding a compact approximation to Eeff [9].
This is a high-dimensional space, so we use descriptors to do
this.

� For operators that are not the Hamiltonian, it is possible to fit
Oeff [9] ≃ O[9] in a similar way. However, the eigenstates
of O and Oeff will not coincide in general unless O commutes
with the Hamiltonian.

The theory presented above maps coarse-graining into a
functional approximation problem. This is still rather
intimidating, since even supposing one can generate wave
functions in the low-energy space, they are still complicated
objects in a very large space. An effective way to accomplish
this is through the use of descriptors, dj[9], which map from
H → R. Then we can approximate the energy functional as
follows

Eeff [9] ≃
∑

i

fj(dj[9]), (6)

where fj are some parameterized functions. This will allow us to
use techniques from statistical learning to efficiently describe Eeff .

2.2. Practical Protocol
A practical protocol is presented in Figure 1. In this section we
go through this procedure step by step.

2.2.1. Generating |9n〉 ∈ LE

Ideally one would be able to sample the entire low-energy space.
Typically, however, the space will be too large and it will need to
be sampled. The optimal wave functions to use depend on the
models one expects to fit, which we will discuss in detail in later
steps. Simple strategies that we will use in the examples below
include excitations with respect to a determinant and varying
spin states.
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FIGURE 1 | A practical protocol for fitting effective models to ab initio data.

2.2.2. Generate dj[9n] and E[9n]
The choice of descriptor is fundamental to the success of the
downfolding. In the case of a second-quantized Hamiltonian

Heff = E0 +
∑

ij

tij(c
†
i cj + h.c.)+

∑

ijkl

Vijklc
†
i c

†
j ckcl, (7)

a set of linear descriptors can be derived by simply taking the
expectation value of both sides of the equation:

Eeff [9n] = E0 +
∑

ij

tij 〈9n|c†
i cj + h.c.|9n〉

+
∑

ijkl

Vijkl 〈9n|c†
i c

†
j ckcl|9n〉 . (8)

Then for example, the occupation descriptor for orbital k is
docc(k)[9n] = 〈9n|c†

k
ck|9n〉; the double occupation descriptor for

orbital k is ddouble(k)[9n] = 〈9n|nk↑nk↓|9n〉. The orbital that ck
represents is part of the descriptor, and in the examples we will
discuss this choice. One is not limited to static orbital descriptors;
theymay have amore complex functional dependence on the trial
function to include orbital relaxation.

2.2.3. Assess Descriptors
At this point, one has collected the data En and dj[9n]. If
two descriptors have a large correlation coefficient, then they
are redundant in the data set. This could either mean that the
sampling of the low-energy Hilbert space LE was insufficient, or
that they are both proxies for the same differences in states. If
two data points have the same or very similar descriptor sets, but
different energies, then either the descriptor set is not enough to
describe the variations in the low-energy space, or the sampling
has generated states that are not in the low-energy space. To
resolve these possibilities, one should analyze the difference
between the two wave functions.

In either case, when the model is accurate, the fits will be
accurate. If descriptor values available in the reduced Hilbert
space are not represented in the sampled wave functions, then
intruder states can appear upon solution of the effective model.
In that case, the model fitting is an extrapolation instead of an
interpolation. For this reason it is desirable to have eigenstates or
near-eigenstates in the sample set if possible; they are guaranteed
to be on the corners of the descriptor space if the model is
accurate.

2.2.4. Ansatz: En ≃
∑

j pjdj[9n]
If the descriptors are chosen well, then the model can be written
in linear form:

E[9n] =
∑

j

pjdj[9n], (9)

which we shorten to

E = Dp, (10)

where Dnj : = dj[9n] and En : = E[9n]. If this can be done, the
fitting problem is reduced to a linear regression optimization.
More complex functions of the descriptors are also possible,
although at the cost of making the effective model more difficult
to solve and complicating the fitting procedure.

2.2.5. Fit Optimal Model
Finally, one wishes to find a set of parameters such that
Equation 10 is satisfied as closely as possible. For the example
given in Equation 7, this would involve optimizing the
parameters E0, tij, andVijkl. In terms of the generalized formalism
in Equation 10, this involves optimizing the parameters p. It is
also possible to optimize the descriptors themselves, or to choose
which descriptors to use among a set. In our tests, we have
successfully used LASSO [16] and matching pursuit techniques
[17] to select high quality and compact model parameters. A
detailed example of using the latter technique is presented in
section 3.4.

We would like to emphasize several advantages of our
method:

(1) Our method provides an internal consistency check on
the quality of the effective model in describing the
corresponding ab initio system. The quality of the linear fit
assesses the correctness of the model parameterization.

(2) The low energy space is sampled by low energy states
which do not have to be the eigenstates of the system. In
other words, we do not need to exactly solve the ab initio
Hamiltonian or the model Hamiltonian to know the map
connecting the two Hamiltonians. The low energy non-
eigenstates are computationally inexpensive to generate from
first principles (e.g., QMC method);

The formulation of our method is exact in principle. However,
in practical applications, there are mainly two approximations
on (1) the form of the low energy Hamiltonian [Equation 7];
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(2) the low energy states we used to sample the low energy
manifold. We assume that the low energy Hamiltonian could
be written in terms of low energy degrees of freedom [ci’s in
Equation 7] and we also only considered single-body and two-
body terms. Nevertheless, the quality of the effective Hamiltonian
is quantitatively measured by the quality of the linear regression
fit.

3. REPRESENTATIVE EXAMPLES

Given the theoretical framework for downfolding a many orbital
(or many-electron) problem to a few orbital (or few-electron)
problem, we now discuss examples which elucidate the DMD
method. The examples are as follows:

⊲ Section 3.1: Three-band Hubbard → one-band Hubbard at
half filling. Demonstrates finding a basis set for the second
quantized operators and uses a set of eigenstates directly
sampled from the low-energy space to find a one-band model.

⊲ Section 3.2: Hydrogen chain → one-band Hubbard model at
half filling. Demonstrates basis sets for ab initio systems and
the possibility to use this technique to determine the quality
of a model for a given physical situation.

⊲ Section 3.3: Graphene→ one-band Hubbard model with and
without σ electrons. Demonstrates using the downfolding
procedure to examine the effects of screening due to core
electrons.

⊲ Section 3.4: FeSe molecule→ 3d, 4p, 4s system. Demonstrates
the use of matching pursuit to assess the importance of terms
in an effective model and to select compact effective models.

In all examples we will highlight the important ingredients
associated with DMD. First and foremost is the choice of low
energy space or energy window i.e., how our database of wave
functions was generated. Associated with this is the choice of
the one body space in terms of which the effective Hamiltonian
is expressed. Finally, we discuss aspects of the functional forms
or parameterizations that are expected to describe our physical
problem. An important effective Hamiltonian that enters three
out of our four representative examples is the one-band or
single-band Hubbard model:

H = E0 − t
∑

〈i,j〉,η
d̃†
i,ηd̃j,η + U

∑

i

ñi↑ñ
i
↓ , (11)

where t and U are downfolded (renormalized) parameters, E0
is a constant, η is a spin index, d̃i,η is the effective one-particle
operator associated with spatial orbital (or site) i and ñi,η =
d̃†
i,ηd̃i,η is the corresponding number operator. 〈i, j〉 is used to

denote nearest neighbor pairs.

3.1. Three-Band Hubbard Model to
One-Band Hubbard Model at Half Filling
Our first example is motivated by the high Tc superconducting
cuprates [18] that have parent Mott insulators with rich phase
diagrams on electron or hole doping [19, 20]. Many works have
been devoted to their model Hamiltonians and corresponding
parameter values [4, 5, 21–25]. A minimal model involving both

the copper and oxygen degrees of freedom is the three-orbital or
three-band Hubbard model,

H = ǫp
∑

j∈p,η
nj,η + ǫd

∑

i∈d,η
ni,η + tpd

∑

〈i∈d,j∈p〉,η
sgn(pi, dj)

(

c†
i,ηcj,η + h.c.

)

+ Up

∑

j∈p
nj,↑nj,↓ + Ud

∑

i∈d
ni,↑ni,↓ + Vpd

∑

〈i∈p,j∈d〉
njni , (12)

where di, pj refer to the dx2−y2 orbitals of copper at site i and
px or py oxygen at site j, respectively. sgn(pi, dj) is the sign of
the hopping tpd between nearest neighbors, shown schematically
in Figure 2. ǫd and ǫp are orbital energies, Ud and Up are
strengths of onsite Hubbard interactions, and Vpd is the strength
of the density-density interactions between a neighboring p and
d orbital. To simplify, we consider only the case where ǫp, Ud,
and tpd are non zero; tpd is chosen throughout this section to be
the typical value of 1.3 eV to give the reader a sense of overall
energy scales. Since we work with fixed number of particles we set
our reference zero energy to be ǫd = 0, thus the charge transfer
energy 1 ≡ ǫp − ǫd equals ǫp in our notation. We work in the
hole notation; half filling corresponds to two spin-up and two
spin-down holes on the 2× 2 cell.

It is our objective to determine what one-band Hubbard
model [Equation 11] “best” describes the three-band data.
The effective d-like orbitals d̃i,η, that enter the low energy
description are mixtures of copper and oxygen orbitals; this
optimal transformation also remains an unknown. Thus the
model determination involves two aspects (1) what are the
composite objects that give a compact description of the low
energy physics? and (2) given this choice what are the effective
interactions between them? (A similar problem was posed and
solved by one of us in the context of spin systems [26]). In
addition, the best effective Hamiltonian description depends on
the energy scale of interest. All these issues will be addressed in
the remainder of the section.

We first determine the optimal operators d̃i,η , which are
constructed from a linear superposition of the d and p orbitals,

d̃i,η =
∑

j

Tijcj,η (13)

where cj,η is the hole (destruction) operator and refers to
either the bare d or p orbitals and T is the transformation
matrix. Further generalizations of this relationship (for example,
including higher body terms) are also possible, but have not been
considered here. For the 2×2 unit cell T is a 4×12 matrix, which
we parameterize by four distinct parameters. These correspond
to mixing of a copper orbital with nearest neighbor oxygens
(α1), nearest neighbor coppers (α2), next-nearest neighbor
oxygens (α3), and next-nearest neighbor coppers (α4) as shown
schematically in Figure 2. The explicit form of T after accounting
for the symmetries of the lattice has been written out in the
Appendix.

All RDMs in the three-band and one-band descriptions are
also related via T; the ones that we focus on are evaluated in
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FIGURE 2 | Schematic for downfolding the three-band Hubbard model on the 2× 2 cell to the one-band Hubbard model. The oxygen orbitals are eliminated to give
“dressed” d-like orbitals of the one-band model, with modified hopping and interaction parameters. The relationship between the d̃ and the copper and oxygen
orbitals is encoded by a linear transformation which is parameterized by α1, α2, α3, α4 and F (see Appendix for more details). Here the diameter of the circles has
been shown to be proportionate to the magnitude of F or αi .

eigenstate s and are given by,

〈d̃†
i,ηd̃j,η〉s =

∑

mn

T∗
im〈cm,η

†cn,η〉sTjn , (14a)

〈ñi,↑ñi,↓〉s =
∑

jkmn

T∗
ijT

∗
im〈cj,↑†cm,↓

†cn,↓ck,↑〉sTinTik . (14b)

We determine T by demanding two conditions be satisfied,
(1) the effective orbitals (d̃i,η) are orthogonal to each other

i.e.,
(

TT†
)

mn
= δmn and (2) the sum of all diagonal entries

(trace) of the 1-RDM of the effective orbitals for all low energy
eigenstates equals the number of electrons of a given spin i.e.,
∑

i

∑

η〈d̃
†
i,ηd̃i,η〉s = Nη. These conditions are enforced by

minimizing a cost function,

C =
∑

s

∑

η

(

∑

i

〈d̃†
i,ηd̃i,η〉s − Nη

)2
+

∑

mn

(
(

TT†
)

mn
− δmn)

2 .

(15)
For the 2 × 2 cell, N↑ = N↓ = 2 and i = 1, 2, 3, 4. The number
of states s was varied from three to six, depending on the energy
window of interest. For a selected low energy space, we optimize
Equation 15 first to determine the optimal one-body operators
and then determine the parameters by a linear regression fit
[Equation 9].

Figure 3 shows regimes of the three-band model where the
lowest six eigenstates are separated from the higher energy
manifold; the fourth and fifth eigenstates are degenerate. In the
large Ud limit, charge fluctuations are suppressed and these six
states correspond to the Hilbert space of

(4
2

)

states of the effective

spin model in its Sz = 0 sector. These states have primarily
d-like character, an aspect we will verify in this section. The
eigenstates outside this manifold involve p-like excitations which
the one-band model is not designed to capture.

We chose the lowest three eigenstates of the three-bandmodel
for minimizing the cost in Equation 15. The four dimensional
space of parameters of T was scanned for this purpose.
The corresponding trace and orthogonality conditions are
simultaneously satisfied with only small deviations, confirming
the validity of Equation 13. Importantly, the 1-RDM elements
in the transformed basis corresponding to nearest neighbors
〈d̃†

1 d̃2〉s already provide estimates for U/t of the effective model.
Since the exact knowledge of the corresponding eigenstates of
the one-band Hubbard model is available for arbitrary U/t
by exact diagonalization, we directly look up the U/t with
the same 1-RDM value. These estimates complement the one
obtained by DMD which was carried out with the same three
low-energy eigenstates, using their energies and the computed
values of 〈d̃†

1 d̃2〉s and 〈ñi,↑ñi,↓〉s from Equations 14a and 14b∗.
A representative example of our results for Ud/tpd = 8 and
1/tpd = 3 has been discussed in the Appendix.

Some trends in the one-band description are explored in
Figure 3 by monitoring the downfolded parameters as a function
of varying 1/tpd and Ud/tpd. For example, when Ud/tpd = 8 is
fixed and 1/tpd is increased, we find that the effective hopping t

∗We also mimicked the situation characteristic of ab initio examples where no
eigenstates are generally available. Several non eigenstates were generated as
random linear combinations of the lowest three eigenstates and input into the
DMD procedure, with similar outcomes.
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FIGURE 3 | Downfolding of a three-band Hubbard model to an effective one-band Hubbard model of d-like orbitals. (A,C) show the low energy spectra of the
three-band model (relative to the corresponding ground state) for the cases of (A) fixed Ud/tpd = 8 and varying 1/tpd and (C) fixed 1/tpd = 3 and varying Ud/tpd . In
all cases, tpd is set to be 1.3 eV. (B,D) show the downfolded parameters for the one-band model corresponding to the three-band parameter choices in (A,C),

respectively. The one-band U/t values were obtained either by comparing 〈d̃†1 d̃2〉s with the corresponding one-band model eigenstates or by the DMD procedure
using the lowest three eigenstates. The insets show t obtained from DMD.

decreases and U/t increases. This is physically reasonable since
an increasing difference in the single particle energies of the
copper and oxygen orbitals makes it energetically unfavorable
for holes to hop between the two orbitals. When 1/tpd = 3 is
fixed and Ud/tpd is increased, U/t increases. As one mechanism
of avoiding the large Ud, the copper orbitals are forced to
hybridize more with the oxygen ones; on the other hand, hole
delocalization is suppressed in a bid to maintain mostly one hole
per d̃ due to the larger U/t. The net result of these effects is that t
also increases.

An important check for the one-band model is its ability to
reproduce the low energy gaps of the three-band model; these
have been compared in Figure 4. For the case of 1/tpd = 3,
we observe that for all Ud/tpd the lowest three eigenstates were
reproduced well. This model also reproduces the states outside
of the DMD energy window, although with slightly larger errors.
Similar trends are seen for the case of 1/tpd = 5, with the
noticeable difference being that the energy error of the highest
state has reduced. This also reflects that the parameters obtained
from DMD are, in general, dependent on the energy window of
interest, a point which we will highlight shortly by investigating
it systematically.

A promise of downfolding is the reduction of the size of
the effective Hilbert space; allowing simulations of bigger unit

cells to be carried out. To show that this actually works well in
practice for the three-band case, we consider the 2

√
2 × 2

√
2

square unit cell, comprising of 8 copper and 16 oxygen orbitals.
For representative test cases, we performed exact diagonalization
calculations at half filling; the Hilbert space comprises of
112,911,876 basis states. Roughly 200 Lanczos iterations were
carried out, enabling convergence of the lowest four energies.
We compared the lowest gaps with the corresponding calculation
on the one-band model on the same square geometry, with a
Hilbert space size of only 4,900, using the downfolded parameters
obtained from the smaller 2× 2 cell.

Our results are summarized in Figure 5. Figure 5A shows six
representative parameter sets of the three-band model and the
corresponding downfolded one-band parameters. Figures 5B,C
show the lowest three energy gaps for representative values of
Ud/tpd = 4, 8, 12 for 1/tpd = 3 and 1/tpd = 5, respectively.
In all cases, the agreement between the three-band and one-band
models is remarkably good. The energy gap error of the lowest
gap is within 0.0004 eV (1% relative error). The largest error in
the third gap is of the order of 0.005 eV (3% relative error). These
results indicate the reliability of the downfolding procedure and
highlight its predictive power.

Until this point, all our results focused on downfolding using
only the lowest three eigenstates of the 2×2 cell. We now explore
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FIGURE 4 | Comparison of energy spectra of the original three-band model (black circles) and the effective one-band model (red triangles). The three-band model is
on the 2× 2 cell. (A,B) show the energy spectra for different parameter sets of the three-band model: (A) 1/tpd = 3 and various Ud/tpd ; (B) 1/tpd = 5 and various
Ud/tpd . In all cases, tpd = 1.3 eV.

FIGURE 5 | Multiscale prediction of the effective one-band model. (A) shows the parameters of the effective one-band model obtained from DMD on a small cell, the
4-copper (2× 2) cell. These parameters were then directly used to predict the energy spectra of a larger cell, the 8-copper (2

√
2× 2

√
2) cell. (B,C) show the predicted

spectra (red triangles) in comparison to the exact spectra (black circles) of the three-band model of different parameters (different 1/tpd and Ud/tpd where tpd = 1.3
eV).

the effect of increasing the energy window, by including higher
eigenstates, using our test example ofUd/tpd = 8 and1/tpd = 3.
To do so, we now use all six low energy eigenstates for optimizing
the cost function in Equation 15. We find similar (but not exactly
the same) values of αi compared to the case when only the three
lowest states were used. The fact that a solution with small cost
can be attained confirms our expectation that the entire low
energy space of six states is consistently described by a set of d̃i
operators.

However, as Figure 6A shows, the estimates of U/t and
t depend on how many eigenstates are used in the DMD
procedure. This is because the DMD aims to provide the
one-band description that best describes all states in a given
window. If the model is not perfect within a given energy
window, an energy dependent model is expected, consistent with
the renormalization group perspective. For our test example,
increasing the number of eigenstates from three to six changed
U/t from 13.8 to 9.44 and t from 0.3045 to 0.2750 eV†.

†When three states were used for optimizing the orbitals and for the DMD, we
found U/t ≈ 13.45 and t = 0.3025 eV. This is because d̃ are slightly different in
the two cases.

The features associated with the energy dependence are
further confirmed in Figure 6B. which shows a comparison of
energy gaps of the three-band and downfolded one-band model
on the 2 × 2 cell. When only three states are used, the one-band
(nearest neighbor) Hubbard model is insufficient for accurately
describing states outside the window.When all six states are used,
the DMD tries to minimize the error of the largest energy gap
at the cost of errors in the smaller energy gaps. One could of
course choose a different parameterization, say with additional
next nearest neighbor t′, for which is may be possible to reduce
this energy dependence significantly and thus have a model that
describes the smaller and larger energy scales equally well.

3.2. One Dimensional Hydrogen Chain
We now move on to one of the simplest extended ab initio
systems, a hydrogen chain in one dimension with periodic
boundary conditions. The one-dimensional hydrogen chain has
been used as a model for validating a variety of modern ab initio
many-body methods [27]. We consider the case of 10 atoms with
periodic boundary conditions and work in a regime where the
inter-atomic distance r is in the range 1.5 − 3.0 Å, such that the
system is well described in terms of primarily s-like orbitals.
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FIGURE 6 | Dependence of the downfolding parameters on the chosen low energy manifold. (A) shows the variation of downfolded parameters U/t and t (inset) with
low energy manifolds of different energy windows (corresponding to 3, 5, and 6 low energy eigenstates); (B) shows the energy spectra of the effective one-band
model (red triangles) in comparison to the spectra of the original three-band model (black circles). The three-band Hubbard model is on the 2× 2 cell with Ud/tpd = 8,
1/tpd = 3, and tpd = 1.3 eV.

For a given r, we first obtain single-particle Kohn-Sham
orbitals from a set of spin-unrestricted and spin-restricted
DFT calculations with the PBE functional [28]. The localized
orbital basis upon which the RDMs (descriptors) are evaluated
is obtained by generating intrinsic atomic orbitals (IAO) [29]
from the Kohn-Sham orbitals orthogonalized using the Löwdin
procedure (see Figure 7). These are the orbitals that enter the
one-band Hubbard Hamiltonian. Then, to generate a database
of wavefunctions needed for the DMD, we produce a set of
Slater-Jastrow wavefunctions consisting of singles and doubles
excitations to the Slater determinant:

|s〉 = eJ
[

a†
iηakη|KS〉

]

, (16a)

|d〉 = eJ
[

a†
iηa

†

jη′akη′alη|KS〉
]

, (16b)

where |KS〉 is the Slater determinant of occupied Kohn-Sham
orbitals, η 6= η′ are spin indices, and a†

i (ai) is a single-electron
creation (destruction) operator corresponding to a particular
Kohn-Sham orbital. The k, l indices label occupied orbitals in the
original Slater determinant, while i, j are virtual orbitals. eJ is a
Jastrow factor optimized by minimizing the variance of the local
energy.

We compute the energies (expectation values of the
Hamiltonian) and the RDMs for each wave function within
DMC. By computing the trace of the resulting 1-RDMs, we verify
that all the electrons present in the system are represented within
the localized basis of s-like orbitals. If the trace of the 1-RDM
deviates from the nominal number of electrons for a particular
state bymore than some chosen threshold—2% in this example—
it indicates that some orbitals are occupied (2s- or 2p-like orbitals
for hydrogen) that are not represented within the localized IAO
basis used for computing the descriptors. Hence, these states do
not exist within the LE space, and cannot be described by a
one-band s-orbital model. We exclude such states from the wave
function set. The acquired data is then used in DMD to downfold
to a one-band Hubbard Hamiltonian.

Figure 7 shows the fitting results of the energy functional
E[9] within the sampledLE for two representative distances (1.5
and 2.25Å). As seen in Figure 7, the model Eeff [9] reproduces
the ab initio E[9] up to certain error that decreases with atomic
separation. That is, the fitted Hubbard model provides a more
accurate description as separation distance increases, and the
system becomes more atomic-like.

Figure 8 shows the fitted values of the downfolded parameters
t and U/t at various distances. t decreases as the interatomic
distance increases, and the value of U/t increases. The single-
band Hubbard model qualitatively captures how the system
approaches the atomic limit, in which t becomes zero.

The R2 values obtained from fitting the descriptors to the
ab initio energy (see Figure 8C) also show that the single-
band Hubbard model is a good description of the system at
large distances, but not at small distances. This is primarily
because at small distances, the low energy spectrum involves the
dynamics of other degrees of freedom that are not included in
the effective model (e.g., 2s and 2p orbitals). Other interaction
terms beyond the on-site Hubbard U, such as nearest-neighbor
Coulomb interactions and Heisenberg coupling, can also become
significant. Without including higher orbitals or additional
many-body interaction terms, the model gives rise to an
incorrect insulator state at small distances. Conversely, at larger
separations (r > 1.8Å), where the system is in an insulator phase
[30], the model provides a better description.

3.3. Graphene and Hydrogen Honeycomb
Lattice
Our third example highlights the role of the high energy degrees
of freedom not present in the low energy description but which
are instrumental in renormalizing the effective interactions. We
demonstrate this by considering the case of graphene, and by
comparing it to artificially constructed counterparts without the
high energy electrons. Although many electronic properties of
graphene can be adequately described by a noninteracting tight-
binding model of π electrons [31], electron-electron interactions
are crucial for explaining a wide range of phenomena observed
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FIGURE 7 | Reconstructed model energy (Eeff [ψ ]) vs. DMC energy (E[ψ ]) for the H10 chain at (A) 1.5 Å and (B) 2.25 Å . The energy range of excitations narrows
significantly for larger interatomic separation. Insets show the intrinsic atomic orbitals which constitute the one-body space which was used for calculating the
reduced density matrices (descriptors).

FIGURE 8 | (A) The one-body hopping t parameter as a function of interatomic distance for the periodic H10 chain, obtained from a fitted U-t model. t declines to
zero as r increases. (B) The ratio U/t for the fitted parameter values as a function of interatomic separation. The ratio is small at lower bond-lengths, where t is more
relevant in describing the system, and larger at longer bond-lengths, where inter-site hopping is less significant. (C) The R2 fit parameters obtained from fitting the U-t
model to the H10 chain, as a function of interatomic separation.

in experiments [32]. In particular, electron screening from σ

bonding renormalizes the low energy plasmon frequency of the
π electrons [33]. In fact a system of π electrons with bare
Coulomb interactions has been shown to be an insulator instead
of a semimetal [33–36]. Using DMD, we demonstrate how the
screening effect of σ electrons is manifested in the low energy
effective model of graphene.

In order to disentangle the screening effect of σ electrons
from the bare interactions between π electrons, we apply DMD
to three different systems, graphene, π-only graphene, and a
honeycomb lattice of hydrogen atoms. In π-only graphene,
the σ electrons are replaced with a static constant negative
charge background. The role of σ electrons is then clarified
by comparing the effective model Hamiltonians of these two
systems. The hydrogen system we study has the same lattice
constant a = 2.46 Å as graphene, which has a similar Dirac cone
dispersion as graphene [33].

By constructing the one-body space by Wannier localizing
Kohn-Sham orbitals obtained from DFT calculations (see
Figure 9), we verify that the low energy degrees of freedom
correspond to the π orbitals in graphene and its π-only
system and s orbitals in hydrogen; these enter the effective
one-band Hubbard model description in Equation 11. Due

to the vanishing density of states at the Fermi level, the
Coulomb interaction remains long-ranged, in contrast to usual
metals where the formation of electron-hole pairs screens the
interactions strongly [33]. However, for certain aspects, the
long ranged part can be considered as renormalizing the onsite
Coulomb interaction U at low energy [15, 37].

To estimate the one-band Hubbard parameters, we used the
DMDmethod using a set of 50 Slater-Jastrow wave functions that
correspond to the electron-hole excitations within the π channel
for the graphene systems or s channel for the hydrogen system.
In particular, for graphene, the Slater-Jastrow wave functions
are constructed from occupied σ bands and occupied π bands,
whereas for π-only graphene, Slater-Jastrow wave functions are
constructed from occupied π Kohn-Sham orbitals of graphene.
The ab initio simulations were performed on a 3 × 3 cell
(32 carbons or hydrogens) and the energy and RDMs of these
wave functions were evaluated with VMC. The error bars on
our downfolded parameters are estimated using the jackknife
method [38]. The results from our calculations are summarized
in Figure 10.

We find that the one-band Hubbard model describes
graphene and hydrogen very well, as is seen from the fact that
R2 is close to 1 for the fits. Our fits are shown in Figure 10.
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FIGURE 9 | Wannier orbitals constructed from Kohn-Sham orbitals: (A) graphene π orbital; (B) hydrogen s orbital.

FIGURE 10 | Comparison of ab initio (E[ψ ]) and fitted energies (Eeff [ψ ]) of the 3 × 3 periodic unit cell of graphene and hydrogen lattice: (A) graphene; (B) π-only
graphene; (C) hydrogen lattice.

For both graphene and hydrogen, U/t is smaller than the critical
value of the semimetal-insulator transition (U/t)c ≈ 3.8 for the
honeycomb lattice [39], which is consistent with both systems
being semimetals. The Fermi velocity of graphene estimated
from the dowfolded parameters [t = 3.62(1) eV and U =
7.21(4) eV] using the Hartree-Fock approximation is 1.2 × 106

m/s, which is consistent with the experimental value 1.1 ×
106 m/s [40]. Graphene and hydrogen have similar hopping
constant t, consistent with the fact that they have similar band
dispersions near the Dirac point. However, the difference in their
high energy structure manifests itself as differently renormalized
electron-electron interactions, explaining the difference in U.
Most prominently, the π-only system has much larger U/t
(∼4.9) compared to graphene, which is large enough to
push it into the insulating (antiferromagnetic) phase. Thus,
downfolding shows the clear significance of σ electrons in
renormalizing the effective onsite interactions of the π orbitals,
making graphene a weakly interacting semimetal instead of an
insulator.

3.4. FeSe Diatomic Molecule
Transition metal systems are often difficult to model because
the low energy physics involves multiple orbitals and various
kinds of couplings. This is seen in the proliferation of models for
transition metals, which include terms like spin-spin coupling,
spin-orbital coupling, hopping, Hund’s coupling, and so on.
Models containing all possible descriptors are unwieldy, and it
is difficult to determine which degrees of freedom are needed for
a minimal model to reproduce an interesting effect. Transition
metal systems are challenging to describe using most electronic
structure methods because of the strong electron correlations

and multiple oxidation states possible in these systems. Fixed-
node DMC has been shown to be a highly accurate method
on transition metal materials for improving the description of
the ground state properties and energy gaps [41–44]. In this
section, we applied DMD using fixed-node DMC to quantify
the importance of different terms in the effective Hamiltonian
in a FeSe diatomic molecule with a bond length equal to
that of the iron based superconductor, FeSe [45], in order to
help identify the descriptors that may be relevant in the bulk
material.

We considered a low-energy space spanned by the Se 4p, Fe
3d, and Fe 4s orbitals.We sampled singles and doubles excitations
from a reference Slater determinant of Kohn-Sham orbitals taken
from DFT calculations with the PBE0 functional with total spin
0, 2, and 4, which were then multiplied by a Jastrow factor and
further optimized using fixed-node DMC. After this procedure,
241 states were within a low energy window of 8 eV. Of these,
eight states had a significant iron 4p component, which excludes
them from the low-energy subspace. This left us with 233 states
in the low-energy subspace.

We considered a set of 21 possible descriptors consisting of
local operators on the iron 4s, iron 3d states, and selenium 4p
states, which is a total of 9 single-particle orbitals. We used the
same IAO construction as section 3.2 to generate the basis for
these operators. At the one-body level, we considered orbital
energy descriptors:

ǫsns, ǫπ ,Se(npx + npy ), ǫznpz ,

ǫz2ndz2 , ǫπ ,Fe(ndxz + ndyz ). ǫδ(ndxy + ndx2−y2
), (17)

The labels π and δ signify that these are the π and δ-bonding
orbitals for each atom.We also considered the symmetry-allowed
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FIGURE 11 | (Left) Parameter values for each fit generated in the MP algorithm, labeled at the step where they are included in the model. A zero value indicates that
parameter is not yet added to the model. The sign of J is consistent with Hund’s rules, and the signs of tσ ,d and tσ ,s are consistent with Se being located in positive z
with respect to Fe. (Right) RMS error of each model generated by MP as the algorithm includes parameters. The RMS error of the largest model considered was
0.61 eV.

hopping terms:

tσ ,d
∑

η

(

c†

dz2 ,η
cpz ,η + h.c.

)

, tσ ,s
∑

η

(

c†
s,ηcpz ,η + h.c.

)

,

tπ
∑

η

(

c†

dxz ,η
cpx ,η + c†

dyz ,η
cpy ,η + h.c.

)

.

(18)

As before, η represents the spin index. At the two-body level, we
considered Hubbard interactions:

Up

∑

i∈p
ni,↑ni,↓, Ud,δ

∑

i∈{dxy ,dx2−y2 }
ni,↑ni,↓,

Ud

∑

i∈d
ni,↑ni,↓, Ud,π

∑

i∈{dxz ,dyz}
ni,↑ni,↓, Udz2

ndz2 ,↑ndz2 ,↓,

(19)

where p refers to the Se-4p orbitals and d refers to the Fe-3d
orbitals. Importantly, we also accounted for the Hund’s coupling
terms for the iron atom:

J
∑

i 6=j
i,j∈d

Si · Sj, JδSdxy · Sdx2−y2
, Jδ,dz2 (Sdxy + Sdx2−y2

) · Sdz2 ,

JπSdxz · Sdyz , Jπ ,dz2 (Sdxz + Sdyz ) · Sdz2 . Jπ ,δ(Sdxz + Sdyz ) · (Sdxy + Sdx2−y2
),

(20)

Finally, we also added a nearest neighbor Hubbard interaction:
V

∑

i∈p,j∈d ninj.
To generate a minimal description of the system, we employed

a matching pursuit (MP) method [17]. MP chooses to add
descriptors based on their correlation with the residual of the
linear fit. We started with a model that only consists of E0.
The Hund’s coupling descriptor [the first term in Equation 20]

has the largest correlation coefficient with the residual fit, so
it is added first. The fact that the Hund’s coupling is chosen
first in MP is consistent with several studies in the literature
which show that it is important for the magnetic properties
of bulk FeSe [46–49]. Next, MP includes the descriptor that
correlates most strongly with the residuals of this first minimal
model, in this case the hopping between d and p σ -symmetry
orbitals. We repeated this procedure until the RMS error did
not improve more than 0.05 eV upon adding a new parameter.
This criterion was chosen to strike a balance between the
complexity of the model and the accuracy in reproducing
the data set.

The following model was produced:

Heff = ǫδ,Fe(ndxy + ndx2−y2
)+ ǫsns + ǫznpz

+ tσ ,d
∑

η

(

c†

dz2 ,η
cpz ,η + h.c.

)

+ tσ ,s
∑

η

(

c†
s,ηcpz ,η + h.c.

)

+ Ud

∑

i∈d
ni,↑ni,↓ + J

∑

i6=j
i,j∈d

Si · Sj + E0. (21)

E0 is an overall energy shift, also included as a fit parameter.
The parameter values and corresponding error of each model
produced by MP are shown in Figure 11. Note that all
parameters may change at each step because the entire model
is refitted when an additional parameter is included in each
iteration. The parameters are smoothly varying with the inclusion
of new parameters, and they take the correct signs based
on symmetry (where applicable). The RMS error decreases
with each additional parameter, but less so as the algorithm
appends additional parameters. Eventually the diminishing
improvements do not merit the additional complexity of more
parameters.
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4. CONCLUSION AND FUTURE
PROSPECTS

The density matrix downfolding (DMD) technique uses data
derived from low-energy approximate solutions to a high
energy Hamiltonian to systematically determine an effective
Hamiltonian that describes the low-energy behavior of the
system. It is based on several rather simple proofs which occupy
a role similar to the variational principle; they allow us to know
which effective models are closer to the correct solution than
others. The method is very general and does not require a
quasiparticle picture to apply, and neither does it have double-
counting issues. It treats all interactions on an equal footing,
so hopping parameters are naturally modified by interaction
parameters and so on. While most of the applications have
used the first principles QMC method to obtain the low-energy
solutions, the method is completely general and can be used
with any solution method that can produce high quality energy
and RDMs. We have discussed several examples to present the
conceptual and algorithmic aspects of DMD.

The resultant lattice model can be efficiently and accurately
solved for large system sizes [50] using techniques designed
and suited for small local Hilbert spaces; these include exact or
selected diagonalization [51–53], density matrix renormalization
group (DMRG) [54], tensor networks [55–57], dynamical
mean field theory (DMFT) [58], density matrix embedding
(DMET) [59], and lattice QMC methods [60–68]. These
methods have also been used to obtain excited states, dynamical
correlation functions and thermal properties, that have been
difficult to obtain in ab initio approaches.

DMD, though conceptually simple, is still a method in its
development stages, with room for algorithmic improvements
and new applications. Advances in the field of inverse
problems [69] could be incorporated into DMD to mitigate the
problems associated with optimization and over-fitting. Here we
briefly outline some aspects that need further research:

1. The wave function database (|9〉 ∈ LE): The DMD method
relies crucially on the availability of a low energy space of
ab initio wave functions. While these wave functions do not
have to be eigenstates, automating their construction remains
challenging and realistically requires knowledge of the physics
to be described.

2. Optimal choice of basis functions. The second-quantized
operators in the effective Hamiltonian correspond to a basis in
the continuum. The quality of the model depends on the basis
describing the changes between low-energy wave functions
accurately.

3. Form of the low energy model Hamiltonian. While the exact
effective Hamiltonian is unique, there may be many ways
of approximating it with varying levels of compactness and
accuracy.

The advantage of the DMD framework is that all these can be
resolved internally. Given a good sampling of LE , (2) and (3) can
be resolved using regression. Given that (2) and (3) are correct
or near correct, then (1) can be resolved by finding binding
planes, as noted in section 2. The method thus has a degree
of self consistency; it will return low errors only when 1–3 are
correct.

We have shown applications to strongly correlated models
(3-band), ab initio bulk systems hydrogen chain and graphene,
and a transition metal molecule FeSe. The technique is on the
verge of being applied to transition metal bulk systems; there
are no major barriers to this other than a polynomially scaling
computational cost and the substantial amount of work involved
in parameterizing and fitting models to these systems. Looking
into the future, we anticipate that this technique can help with
the definition of a correlated materials genome–what effective
Hamiltonian best describes a given material is highly relevant to
its behavior.
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APPENDIX

In section 3.1 we discussed parameterizing the transformation T
as a 4 × 12 matrix for the 2 × 2 unit cell, in terms of α1, α2,
α3 and α4. Using the numbering of the orbitals corresponding to
Figure 2, the explicit form of T is,

T =









F α2 α2 α4 α1 α1 −α1 −α1 α3 −α3 α3 −α3
α2 F α4 α2 α3 −α1 α1 −α3 −α3 α3 α1 −α1
α2 α4 F α2 −α1 α3 −α3 α1 α1 −α1 −α3 α3
α4 α2 α2 F −α3 −α3 α3 α3 −α1 α1 −α1 α1









(22)

where we have defined F ≡
√

1− 4α12 − 2α22 − 4α32 − α42.
A concrete and representative example of our results, shown

in section 3.1 for the 2 × 2 cell, is explained for the case of
Ud/tpd = 8 and 1/tpd = 3. The first task was to obtain the
optimal transformation T for which the lowest three eigenstates
(s = 1, 2, 3) of the three-bandmodel were used for computing the
cost in Equation 15. The minimum of the cost was determined by

a brute force scan in the four dimensional space of α’s. Using a
linear grid spacing of 0.002, we found α1 = 0.216, α2 = 0.042,
α3 = 0.018, and α4 = 0.016. The two terms in the cost i.e., the
trace and orthogonality conditions are individually satisfied to a
relative error of<0.5%.

〈c†
i cj〉s and 〈cj,↑†cm,↓†cn,↓ck,↑〉s were computed from the

exact knowledge of the three-band model eigenstates and
hence 〈d̃†

i,ηd̃j,η〉s and 〈ñi,↑ñi,↓〉s are obtained once the optimal
T has been determined. As mentioned in the main text,
the value of 〈d̃†

1,ηd̃2,η〉s provides estimates for U/t of the
effective model by direct comparison of its value to that in
the corresponding eigenstate in the one-band model. For our
test example, the absolute values of 〈d̃†

1,↑d̃2,↑〉s in states s =
1, 2, 3 are approximately 0.159, 0.142, and 0.084, respectively
which correspond to (U/t)1 ≈ 14.1, (U/t)2 ≈ 13.2,
(U/t)3 ≈ 12.7. Performing DMD with the three eigenenergies
and their calculated RDMs gave t = 0.3025 eV and
U/t = 13.45; the latter in the correct range of the other
estimates.
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