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We discuss piecewise-deterministic approximations of gene networks dynamics. These

approximations capture in a simple way the stochasticity of gene expression and the

propagation of expression noise in networks and circuits. By using partial omega

expansions, piecewise deterministic approximations can be formally derived from the

more commonly used Markov pure jump processes (chemical master equation). We

are interested in time dependent multivariate distributions that describe the stochastic

dynamics of the gene networks. This problem is difficult even in the simplified framework

of piecewise-deterministic processes. We consider three methods to compute these

distributions: the direct Monte-Carlo; the numerical integration of the Liouville-master

equation; and the push-forward method. This approach is applied to multivariate

fluctuations of gene expression, generated by gene circuits. We find that stochastic

fluctuations of the proteome and, much less, those of the transcriptome can discriminate

between various circuit topologies.

Keywords: gene networks, stochastic gene expression, piecewise-deterministic processes, Liouville-master

equation, push-forward method

1. INTRODUCTION

One of the greatest problems of molecular biology is how single, undifferentiated cells give rise to
many different cell types, all being genetically identical yet performing different functions. Since
the pioneering work of Jacob and Monod [1] it is known that this multiplicity of behaviors is
possible since the protein production depends not only on the existence of a gene but also on the
quantities of regulatory molecules that can change with the cell type and environmental conditions.
The protein production takes place in two steps [2]. First, during a process called transcription,
the genetic information from DNA is copied to the messenger RNA (mRNA). Then, during a
process called translation, the mRNA is used as template for protein production by the ribosomes.
The amount of transcribed mRNA and translated protein, namely the gene expression, can vary
from one cell to another for various reasons. One of these reasons is that the gene expression is
not a property of a single gene but is a property of a set of interacting genes; a gene network
[3]. As per usual in complex systems, the whole is different from the sum of its parts. In this
case, a gene network can have many different stable expression levels that correspond to different
network attractors [4]. Another reason for expression variability, is the fact that transcription and
translation are stochastic [5–7]. A single cell transcription is often intermittent, periods of strong
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mRNA production being followed by periods of silence when
transcription is stopped [7–10]. The periods of inactivity may
correspond to paused RNA polymerase, incompletely formed
activation complexes, transient presence of regulatory proteins
and complexes on the DNA, or to transitions between open
and condensed chromatin [11]. The durations of the periods
of activity and inactivity are random. Furthermore, snapshots
of the cell population at various times show a heterogeneous
picture in which a significant proportion of the cell population
express much lower or much higher than the average protein
levels [6, 12]. The observed distributions of the gene expression
can deviate significantly from a Gaussian by having skewness
[12], heavy tails, or multimodality [11].

The gene expression stochasticity can have important
biological consequences. In infections and tumors, a part of the
pathogen population (bacteria, viruses, cancer) can escape drug
treatment when they adopt behaviors very different from the
average; for instance theymay stop growth [13, 14], remodel their
metabolism [15], or stop absorbing, or expel drugs [16]. Latency
phenomena [17] can be responsible for resistance to treatment
and relapse of the disease once the treatment is stopped.

Gene expression stochasticity is also important in synthetic
biology. Synthetic biology devices are supposed to have a well-
defined biological function for given combinations of the input
conditions. Therefore, in the absence of error-correction, the
precision of biological devices depends critically on the degree
of stochasticity [18, 19].

For all these reasons, one needs mathematical tools for
predicting quantitatively the amplitude and distribution of gene
expression fluctuations in gene networks.

Models of stochastic gene networks represent molecular
interactions as discrete events (biochemical reactions) separated
by random waiting times. This modeling approach, introduced
by Delbruck [20] and further developed by Renyi [21] and
Bartholomay [22] covers practically all the aspects of gene-
gene interactions but is mathematically and computationally
challenging. Indeed, the underlying models are continuous time
Markov processes with an infinite or extremely large number of
states. The corresponding master equation can be solved exactly
only in a limited number of cases, corresponding to single genes
without or with much simplified feed-back control [23–26]. The
Monte-Carlo simulation algorithms (Gillespie algorithm [27])
can be very inefficient for simulating the full process, as the
number of individual reactions that have to be simulated for a
significant change of the system’s state can be tremendously large.

Several types of approximation were used in order to
simplify stochastic biochemical networks in order to reduce
their simulation time and to facilitate their analysis. These
simplifications were possible because the stochastic gene
networks have heterogeneous variables and multiple time scales
[28]. This heterogeneity comes from the fact that some variables
XD such as DNA/regulatory proteins and complexes/polymerase
states are discrete and other variables XC such as protein and
mRNA copy numbers are continuous. The species dichotomy
leads to a partition of the biochemical reactions. Although
literature provides a number of different ways for reaction
partitioning, the four set partition RD, RC, RDC, RCD (Figure 1)

seems to us quite natural. A very similar partitioning was used
for rigourously justified approximations in Crudu et al. [29, 30].

Two main timescales have to be taken into account in order
to find the appropriate approximation. As shown in the Figure 1,
the discrete variables switch between a number of discrete states.
The characteristic time of this process was called switching time,
τS [28]. The trajectories of continuous variables are smooth
only in the average, but for these variables, the average is a
good approximation. The characteristic time of fluctuations of
continuous species around their average was named discreteness
time, τD [28]. The discreteness time scales like 1/N where N is
the copy number of the continuous species.

There are two main classes of approximated models
(Figure 2):

• Deterministic (ordinary differential equations, ODEs) or
diffusion (Fokker-Planck) approximations can be applied
when the transitions between discrete states are fast and the
continuous species have large copy numbers, thus when τS,
τD are both small. Then one obtains the deterministic or
diffusion limit by applying the law of large numbers or the
central limit theorem to Markov processes [31, 32]. This
result can be obtained heuristically by the � expansion, well
known in physics [33]. If the discreteness time is larger
than the switching time, similar approximated models can be
obtained by using averaging [29, 30]. In both cases the discrete
states are homogenized and the approximated model has only
continuous variables.

• Piecewise-deterministic processes (PDP) or hybrid diffusion
approximations can be obtained when the discreteness time
is small, but τS >> τD. In these approximations there are two
types of variables. The dynamics of the continuous variables
is described by ODE or stochastic differential equations
(SDE), whereas the discrete variables dynamics is described
by Markov chains. These approximations were first obtained
heuristically by using partial � expansions of the master
equation [29, 34, 35] and then justified rigorously by using
generators and measure theory in Crudu et al. [30]. Finally,
diffusion approximation was applied to PDP in the limit when
the switching time is small, to obtain again deterministic and
Fokker-Planck approximations [28].

In this paper we consider the situation when the swiching
time is relatively large. In biology, this corresponds to the so-
called “random telegraph” [36], “bursting” [8, 12], or “multi-
scale bursting” [10] fluctuations. Simply speaking there are some
variables (DNA, regulatory complexes, and/or RNA polymerase
states) that have ON/OFF or multiple state Markov chain
dynamics. The discrete variables control the ODE dynamics
of the continuous variables (mRNA, proteins). The underlying
approximation is piecewise-deterministic, because the ODEs
change each time that the discrete variables perform a transition
(see Figure 1).

In our PDP models of gene networks each gene promoter
is described as a finite state Markov chain. The transition rates
between states of the promoter depend on the expression levels
of the regulating genes. The promoter triggers synthesis of gene
products with intensities depending on its state.We represent the
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FIGURE 1 | Types of variables and important timescales of stochastic biochemical reactions networks. (A) The partition of variables and of the reactions. Dotted line

arrows mean that reaction rates depend on the source variables. Continuous line arrow mean that the source reaction acts on the end variable. RD are reactions

acting on discrete variables and whose rates depend on discrete variables, RC are reactions acting on continuous variables and whose rates depend on continuous

variables. RCD, RDC are reactions acting on discrete and on continuous variables, respectively, and have rates depending on both discrete and continuous variables.

(B) Typical trajectories and time scales of continuous and discrete variables.

FIGURE 2 | Different approximations of stochastic biochemical reactions

networks. The “exact” model is a completely discrete Markov process

described by the chemical master equation. Various approximations can be

obtained as asymptotic limits when some parameter is very small or very large

from the “exact” model or from approximations.

state of a gene network as a random vector whose components
indicate the promoter state and the copy numbers of all the
mRNAs and proteins in the network. The dynamics of the gene
network will be represented as the time-dependent multivariate
distribution of this random vector. These distributions contain
information about the randomness of each gene but also about
correlation among genes and promoter states. We present three
methods to compute time dependent multivariate distributions
for such models: the direct simulation of the PDP process
(the Monte-Carlo method); the numerical solutions of the
Liouville-master equation, and the push-forward method. The

first method is stochastic, whereas the last two are entirely
deterministic (do not use random number generators). The PDP
Monte-Carlo method combines the numerical simulation of the
Markov chain of promoter states with symbolic solutions of the
deterministic ODEs and is much faster than the direct Gillespie
method [27].

This paper is structured as follows: In section 2 we recall
the justification of piecewise-deterministic approximation using
the partial � expansion. In section 3 we introduce a class
of piecewise-deterministic models covering gene networks. In
section 4.1 we discuss the Monte-Carlo methods for piecewise-
deterministic models. In section 4.2 we discuss the Liouville-
master equation approach. In section 4.3 we discuss the push-
forward method. In section 5 we briefly discuss possible
applications of these methods to extracting information from
mRNAs’ and proteins’ spectra of fluctuations.

2. PARTIAL OMEGA-EXPANSION AND THE
LIOUVILLE-MASTER EQUATION

The dynamics of stochastic biochemical networks can be
described by a pure jump Markov process [20–22] (For a
general presentation of Markov jump processes see Gikhman
and Skorokhod [37]). The state of the network is a vector X ∈
N
n whose components represent copy numbers of molecules

of various species. Each biochemical reaction is defined by a
stoichiometric (jump vector) γi ∈ Z

n, i ∈ R where R is the
set of biochemical reactions in the model. The occurrence of the
reaction i is represented as a jump in the system’s state X → X +
γi. Finite, discrete states of gene promoters can be represented by
extending the meaning of species to include “places” with finite
values of the copy numbers. For instance, on/off gene promoters
can be represented by using two places Pon and Poff with two
possible occupancies 0 or 1. The transitions fromOFF toON and
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back can be represented by a reversible reaction that consumes a
particle on the place Poff and produces a particle on the place Pon.

In the Markov pure jump representation the dynamics of
the system is a series of jumps separated by exponentially
distributed waiting times [35, 37]. The number of reactions of
the type i occurring in the average per unit time is given by
the propensity (or rate) function X → Vi(X;µ), where µ

are kinetic parameters. The time between successive reactions
is exponentially distributed with an average (

∑

i∈R Vi)
−1 and

the next reaction is i with probability Vi/(
∑

i∈R Vi). We are
interested in the multivariate distribution p(X, t) representing
the probability to be in state X at time t. This satisfies the time
dependent master equation:

∂p

∂t
(X, t) =

∑

i∈R

[Vi(X − γi;µ)p(X − γi, t)− Vi(X;µ)p(X, t)].

(2.1)
The van Kampen � (system size) expansion [33] or, equivalently,
the central limit theorem [31, 38] lead, in the first order, to
deterministic (ODE) approximations and to diffusion (Fokker
Planck) approximations, in the second order. The partial omega
expansion consists in applying the � expansion only to species
that are produced in sufficiently large copy numbers [29, 30]. The
large copy numbers species denoted XC are called continuous,
because the biochemical reactions change their values gradually,
by the accumulation of a large number of small steps. Other
species are present only in a few copies per cell (these include
the “places” describing promoter states). We denote these species
XD and call them discrete. This leads to a decomposition of the
state vector as X = (XD,XC) and of all stoichiometric vectors as
γi = (γD

i , γ C
i ), corresponding to discrete and continuous species

coordinates. The interactions among discrete and continuous
species are suitably described by a partition of the reactions in
four sets R = RD ∪ RDC ∪ RCD ∪ RC [28–30].

The reactions RD act on XD (the corresponding γi have
non-zero coordinates on discrete species, γD

i 6= 0) and have
propensities depending on XD only. The reactions RC act on XC

(the corresponding γi have non-zero coordinates on continuous
species, γ C

i 6= 0) and have propensities depending on XC only.
The reactionsRDC,RCD act onXC andXD, respectively, and their
propensities depend on both XD and XC.

In this paper we consider gene network models. For each
gene, we model the transitions between promoter states, as well
as other processes such as transcription, translation, protein
folding, and protein and mRNA degradation. We will consider
that the mRNA molecules and proteins are in sufficiently large
copy numbers to justify continuous approximations. The only
discrete variables are in this case the promoter states. The
set RD contains transitions between discrete promoter states
whose rates do not depend on regulatory proteins. The set RCD

contains transitions between promoter states whose rates depend
on concentrations of regulatory proteins. The set RC contains
translation, maturation (folding), degradation reactions. The set
RDC contains transcription initiation reactions that depend on
the promoter state.

We further consider that the copy numbers of continuous
species XC and the propensities of reactions in the sets RC and

RDC are “extensive,” in other words, scale with the system size
�, XC = �xc, Vi = �vi(xc,XD), for i ∈ RDC ∪ RC, whereas
the propensities of reactions in RD and RCD are considered
“intensive” and do not scale with �. The � dependence is
not only a useful mathematical tool, but has also a biological
meaning. In proliferating cells, the protein concentrations are
important for biochemical reactions and should be maintained
by synthesis reactions. This is only possible if the propensities
of synthesis reactions (including mRNA synthesis) scale with the
size. Rates of monomolecular reactions consuming continuous
reactants (for instance, degradation reactions) are proportional
to the reactant copy number that scale with the size. Rates
of switching reactions between discrete promoter states do not
scale with size, unless they are proportional to copy numbers of
activator or repressor proteins. For a more complete discussion
of these scaling relations we refer to Crudu et al. [29].

In rescaled variables, the master equation reads

∂p

∂t
(XD, xc,X, t) =

∑

i∈RD∪RCD

[

Vi(XD − γD
i , xc;µ)p (XD

− γD
i , xc, t

)

− Vi(X;µ)p(XD, xc, t)
]

+

+
∑

i∈RC∪RDC

�
[

vi
(

XD, xc − γ c
i /�;µ

)

p (XD, xc.

− γ C
i /�, t

)

− vi(X, xc;µ)p(XD, xc, t)
]

. (2.2)

Using the first order Taylor series expansion vi(XD, xc −
γ c
i /�;µ)p(XD, xc − γ C

i /�, t) − vi(X, xc;µ)p(XD, xc, t) ≈

−
γ c
i

�

∂vi(X,xc;µ)p(XD ,xc ,t)
∂xc

we obtain the Liouville-master equation

∂p

∂t
(XD, xc, t) = −

∂[8(XD, xc;µ)p(XD, xc, t)]

∂xc

+
∑

i∈RD∪RCD

[Vi(XD − γD
i , xc;µ)p(XD − γD

i , xc, t)−

− Vi(XD, xc;µ)p(XD, xc, t)], where

8(XD, xc;µ) =
∑

i∈RC∪RDC

γ C
i vi(XD, xc;µ). (2.3)

The Liouville-master equation has been used in various fields;
in statistical physics of quantum systems [39–41] or with
a different name in statistics and operations research [42].
It describes the time-dependent distribution of a piecewise-
deterministic model. Indeed, conditionally on XD (considering
that the discrete variables are fixed) the continuous variables xc
satisfy deterministic, ODEs:

dxc

dt
= 8(XD, xc;µ). (2.4)

The discrete variables follow a pure jump Markov dynamics
defined by the stoichiometric vectors γD

i and the propensities
Vi(XD, xc;µ), i ∈ RD ∪ RCD. The noise in the system
is produced by the stochastic transitions of the discrete
variables. The probability distribution of the continuous
variables is advected (transported by the flow defined by the
ODEs, see Figure 3) by the deterministic flow 8(XD, xc;µ)
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in the continuous variables space; this explains the advection
term − ∂

∂xc
[8(XD, xc;µ)p(XD, xc, t)] in the Liouville-master

equation.

3. PDP MODELS OF GENE CIRCUITS

In this section we introduce a family of PDP models that
can be used to represent gene networks. They are a special,
simplified case of the class of models defined by (2.3). The main
simplification is that the propensities of reactions in RDC depend
on XD and do not depend on xC.

As an example, we consider a gene circuit with dichotomous
noise. This model is made of ng genes, each one controlled
by a promoter with 2 states; ON and OFF. The continuous
variables are xi and yi; the protein and mRNA level for each
gene i, respectively. The discrete variables are two values variables
si ∈ {0, 1} representing the promoter states (0 stands for OFF
and 1 stands for ON). In this model, the set RDC consists
of transcription initiation reactions. Their rates depend on the
promoters states (ON or OFF) but do not depend on the protein
or mRNA levels. The set RCD ∪ RD consists of reversible
transitions between the states ON and OFF. The corresponding
transition rates are constant when the gene i is constitutive;
namely, these rates are fi from ON to OFF and hi from OFF to
ON. When the gene i is activated by the gene j the transition rate
from OFF to ON is fixj, whereas when the gene i is repressed
by the gene j the transition rate from ON to OFF is hixj. The
discrete variables’ dynamics are thus a Markov chain with the
state set M = {0, 1}ng . It is convenient to relabel the states
from 1 to 2ng using the lexicographic order on M. For instance,
two gene circuits have, in order, the states 1 :(0, 0), 2 :(0, 1),
3 :(1, 0), 4 :(1, 1). Also, instead of using reaction propensities, we
equivalently provide a transition rate matrix S whose elements
are the transition probabilities per time unit between states. For
instance, for a two gene circuit where the first gene is constitutive
and the second gene is activated by the first, we have:

S =









0 f1 f2x1 0
h1 0 0 f2x1
h2 0 0 f1
0 h2 h1 0









. (3.1)

The mRNA and protein variables follow ODE dynamics

dxi

dt
= biyi − aixi,

dyi

dt
= ki(s)− ρiyi, (3.2)

where ρi, bi, ai, i ∈ [1, ng] represent mRNA degradation,
translation, and protein degradation rates for the gene i,
respectively, and s = (s1, s2, . . . , sng ) is the state of the Markov
chain, such that

ki(s) =

{

k0 if si = 0
k1 if si = 1

.

For the sake of illustration let us consider the simple model of
a single constitutive gene controlled by a two state (ON/OFF)
promoter. We denote the states of the promoter by 1 and 0,
respectively. The transition rate from 0 to 1 is f and from 1
to 0 is h. The protein and mRNA concentrations are x and y,
respectively. The transcription initiation rate in the state 1 is k1
and in the state 0 is k0 << k1. The translation rate is b. The
mRNA and protein degradation rates are ρ and a, respectively.
The master-Liouville equation reads

∂p

∂t
(1, x, y, t) = −

∂[(by− ax)p(1, x, y, t)]

∂x
−

∂[(k1 − ρy)p(1, x, y, t)]

∂y

+ fp(0, x, y, t)− hp(1, x, y, t),

∂p

∂t
(0, x, y, t) = −

∂[(by− ax)p(0, x, y, t)]

∂x
−

∂[(k0 − ρy)p(0, x, y, t)]

∂y

+ hp(1, x, y, t)− fp(0, x, y, t). (3.3)

The protein and mRNA concentrations follow the ODEs

dx

dt
= by− ax,

dy

dt
=

{

k0 − ρy if s = 0
k1 − ρy if s = 1

. (3.4)

The probability distribution of the promoter state s results from
the dynamics of the two state Markov chain

dp0

dt
= −fp0(t)+ h(1− p0(t)),

p1(t) = 1− p0(t), (3.5)

where p0 = P[s = 0] =
∫

p(0, x, y) dxdy, p1 = P[s = 1] =
∫

p(1, x, y) dxdy.
We also define the asymptotic occupancy probabilities p0 =

h
h+f

and p1 =
f

h+f
, representing the probabilities, at steady state,

that the promoter state is OFF and ON, respectively.
The single constitutive gene model and the advection fluxes

of the Liouville-master equation are illustrated in Figure 3.
More complex, two gene circuits models are represented in
Figure 4 and their Liouville-master equations are given in the
Appendix 1.

4. THE NUMERIC METHODS FOR SOLVING
THE LIOUVILLE-MASTER EQUATION

In this section we compare several numerical methods for solving
the Liouville-master equation in the context of gene networks
models. In order to quantify the relative difference between
methods we use the L1 distance between distributions. More
precisely, if p(x) and p̃(x) are probability density functions to be
compared, the distance between distributions is

d =

∫

|p(x)− p̃(x)| dx. (4.1)
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FIGURE 3 | Model of a single gene controlled by a two state (ON/OFF) promoter. In the graphical representation of the model, the arrow from mRNA to mRNA

indicates that mRNA is recovered after the transcription reaction. Between two successive jumps of the discrete variables, a probability distribution of the continuous

variables x (protein) and y (mRNA) represented as black dots is continuously advected by one of the two possible deterministic flows to a distribution represented by

red dots. The s = 1 flow pushes the system toward the high expression attractor x = (bk1)/(aρ) , y = k1ρ and the s = 0 flow pushes the system toward the low

expression attractor x = (bk0)/(aρ) , y = k0ρ, where k0 << k1. The system chooses alternately and stochastically between these two flows.

FIGURE 4 | Two gene circuits models. Only the discrete (Markov chain) part of the dynamics is represented. These models have 4 discrete states as each one of the

two promoters can be ON or OFF. The transition rates between states are either constant or functions of the levels of proteins x1 and x2. We consider that

transcription, translation, and degradation parameters k0, k1, ρ, a, b are the same for the two genes.

4.1. The PDP Monte-Carlo Method
The PDP Monte-Carlo method is based on the direct simulation

of the PDP process. A simple algorithm has been proposed in

Crudu et al. [29]. For the sake of completeness we recall here the
main steps of this algorithm.

(1) Set the initial state condition s = s0, x = x0, y = y0, t = 0.
(2) Generate a random variable u uniformly distributed in [0, 1].
(3) Integrate the system of differential equations obtained by

adding to (3.2) the equation for the survival function F of

the waiting time to the next Markov chain transition



















dxi
dt

= biyi − aixi,
dyi
dt

= ki(s)− ρiyi,
dF
dt

= −λ(s, x)F,

x(0) = x, y(0) = y, F(0) = 1,

(4.2)

between 0 and τ with the stopping condition

F(τ ) = u. (4.3)
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Here λ(s, x) is the sum of transition probabilities in the row
corresponding to the state s of the transition rates matrix S.

(4) Generate a second uniform variable v and use it to find
the next Markov chain state snext . The decision for the next
discrete state is made in the same way as in the Gillespie
algorithm [27].

(5) Change the system state s = snext , x = x(τ ), y = y(τ ), and
the time t = t + τ .

(6) Reiterate the system from (2) with the new state until a time
tmax previously defined is reached.

(7) Store samples of x and y at various predefined times.
(8) Reiterate the system from (1) a large number of times.

Perform distribution estimates using the resulting statistical
ensemble.

A major improvement with respect to Crudu et al. [29] can be
obtained by using symbolic solutions of (4.2) (see the Appendix 2
for the symbolic solutions) and solving numerically the nonlinear
stopping condition (4.3).

4.2. The Finite Difference (FD)
Liouville-Master Method
The Liouville-master equation is a system of linear, partial
differential equations (PDEs) for the probability distributions of
the mRNAs and proteins for various states of the gene promoters.
The number of PDEs is equal to the number of distinct discrete
states of the gene promoters, i.e., it is 2ng , where ng is the number
of genes in the network.

These equations have to be integrated with boundary
conditions in order to control possible mass accumulation on
the integration domain boundaries. The boundary conditions are
obtained by setting to zero the advection fluxes pointing toward
the boundary. For the one-gene model (3.3), the integration

domain isD = [ k0b
ρa ,

k1b
ρa ]× [ k0

ρ
, k1

ρ
] and the boundary conditions

read

lim
y→k1/ρ

(k1 − ρy)p(1, x, y, t) = 0

lim
y→k0/ρ

(k0 − ρy)p(0, x, y, t) = 0. (4.4)

One can note the limit version of the boundary conditions allow
divergence of p0, p1 on the boundaries y = k0/ρ or y = k1/ρ,
respectively. For boundaries different than y = k0/ρ or y =
k1/ρ, advection fluxes point toward the interior of the integration
domain and one can simply impose zero boundary conditions
p0 = p1 = 0.

As noticed by Marc Kac in a very instructive paper about
a piecewise-deterministic random walk [43], in contrast to the
Fokker-Planck equations that describe “normal” random-walk
diffusion and are parabolic, the Liouville-master equation has
hyperbolic nature. General properties of hyperbolic equations,
such as finite propagation velocity of perturbations and existence
of sharp fronts apply to our equations as well. For our problem,
the front discontinuities occur at the domain boundaries and
they are handled by the boundary conditions (4.4). Hyperbolicity
properties are mainly visible at slow switching and should

disappear at fast switching when the Liouville-master equation
can be well approximated by a Fokker-Planck equation [28].

In this paper we have used a finite-difference predictor-
corrector scheme [44] to compute the solution of the Liouville-
master equation. In Figure 5 we compare the distributions
for mRNA and proteins resulting from the constitutive gene
model (3.3) with the Monte-Carlo simulation of the model. The
comparison is quantitative and uses the distance defined by (4.1).
In all our computations, the asymptotic occupancy probability is
one half. For slow switching, the mRNA distribution is bimodal,
with discontinuities at the modal values k0/ρ and k1/ρ values,
where the probability density diverges on one side and is zero
on the other side. The bimodality resulting from slow switching
is well understood and signalled in many other places in the
literature (see for instance [45, 46]). We can emphasize that the
discontinuity of the solution is a consequence of the hyperbolicity
of advection fluxes. A parabolic diffusion flux would not be able
to build up such discontinuities and this can be seen in the
fast switching distributions that are continuous and unimodal.
Interestingly, the protein distributions are unimodal in both
cases: slow and fast. A unique discontinuity can be observed at
short times in the protein distribution, for a slowly switching
promoter.

The bivariate mRNA vs. protein distributions are shown at
steady state in Figure 6. The mRNA is positively correlated to
the protein as it should be. Interestingly, for slow switching, cells
close to half protein maximum expression have strongly bimodal
mRNA expression, either vanishing or maximum. This rather
counterintuitive behavior results from the difference in lifetime
between the mRNA and protein molecules. The mRNAmolecule
has a short life and can, for slow switching, oscillate between very
low and maximum values. The protein is much more stable and
integrates these oscillations over a large lifetime. This explains
why a cell with half protein maximum copy number can have
extremely variable mRNA copy numbers.

4.3. The Push-Forward Method
To introduce the method let us consider the example of a two
gene circuit in which the first gene is constitutive and activates
the second gene. In other words, the first gene is a transcription
factor of the second one.

The push-forward method for gene networks was first
introduced in Innocentini et al. [47]. This method combines
Master Equations (MEs) and Random Differential Equations
(RDEs). The ME provides the time evolution of the probability
distribution of discrete variables. With respect to Innocentini
et al. [47] where the discrete variables were the promoter
ON/OFF states and the mRNA copy numbers, we consider that
the discrete variables are solely the promoter’s ON/OFF states.
The RDEs are differential equations for the mRNAs and proteins
in which the promoter states are considered random parameters.
The coupling of ME and RDE is another equivalent way to
define the piecewise-deterministic process. When the ME is not
dependent on the RDE our models are of the same type as those
discussed by Mark Kac in relation to the telegrapher’s equation
[43].
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FIGURE 5 | Histograms of mRNA (A,B) and protein (C,D) copy numbers for a single gene, produced by the Monte-Carlo method (green lines) and by the finite

difference Liouville-master equation method (black lines). The initial data has half-normal bivariate distribution whose mode is x1 = x2 = y1 = y2 = 0. The gene

parameters are ρ = 1, k0 = 4, k1 = 40, a = 1/5, b = 4, p0 = 0.5, and ǫ = 0.5, ǫ = 5.5, for a slow (A,C), and a fast (B,D) switching gene, respectively. The

comparison is quantified by the distance d defined by (4.1).

Let us introduce ourmodel beginning with theMEs describing
the dynamics of the first switch,

d

dt
EP(t) = H1EP(t), (4.5)

where, EP(t) = (P0(t), P1(t))
T is the probability occupancy vector

whose entries are the probabilities to find the first switch in the
OFF state (P0(t)) or in the ON state (P1(t)). The infinitesimal
stochastic matrix H1 is given by:

H1 =

(

−f1 h1
f1 −h1

)

. (4.6)

This is a basic telegraph process where the rates f1 and h1 are time
independent and control the reaction OFF (state 0) to ON (state
1) and ON (state 1) to OFF (state 0), respectively. The equation

describing mRNA dynamics is a Random Differential Equation
(RDE) given by

d

dt
y1 = −ρy1 + k(s1(t)), (4.7)

where y1 is a random variable representing the copy number
of mRNA in the cell coming from the first gene. The random
variable s1(t) follows the switch statistics, meaning that with
probability P1(t), s1(t) = 1 at time t and s1(t) = 0 with
probability P0(t), again at time t. The production rate of mRNA
is a function of the random variable s1(t) following

k(s1(t)) =

{

K1 if s1(t) = 1,
K0 if s1(t) = 0,

where K1 is the highest level of mRNA production and K0 is the
basal one. The third equation describing the activity of the first
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FIGURE 6 | Steady state distributions of protein and mRNA copy numbers for a single gene, produced by the Monte-Carlo method and by the finite difference (FD)

Liouville-master equation method. The parameters are those used in Figure 5. The probability to color map relation is linear.

gene is for the random variable representing the protein density
associated to it;

d

dt
x1 = −αx1 + βy1, (4.8)

where α is protein degradation rate and β is the translation rate.
The last equation for the coupled genemodel is the one governing
the probability occupancy of the second gene,

d

dt
EQ(t) = H2(t)EQ(t), (4.9)

where EQ(t) = (Q0(t),Q1(t))
T encodes, in its entries, the

information about the probability to find the second gene ON
(Q1(t)) or OFF (Q0(t)). The matrix H2(t) is given by

H2(t) =

(

−f2x1(t) h2
f2x1(t) −h2

)

. (4.10)

In the model at hand, the main source of stochasticity is the
switching ON and OFF of the gene. This noise is transmitted
to mRNA synthesis process through the rate k(s1(t)) which is a
function of a random variable (s1(t)) and, so, a random variable
itself. The first step of the push-forward method is to compute

the time dependent distribution probability of mRNA molecules
y1(t) (which is perturbed by the random variable s1(t)) once the
probability distribution of the perturbation is known. To do so,
we begin by presenting the solutions of Equation (4.5),

EP(t) = exp[(UDU−1)(t − t0)]EP(t0) = Ue(D(t−t0))U−1EP(t0),
(4.11)

where EP(t0) encodes the initial configuration (given at t = t0) of
the switch, and the matrices are

U =

(

−1 h
f+h

1
f

f+h

)

, U−1 =

(

−
f

f+h
h

f+h

1 1

)

, and

D =

(

−f − h 0
0 0

)

. (4.12)

Explicitly, the solutions are given as

P0(t) = p0 + (P0(t0)− p0)e
−(h+f )(t−t0), (4.13)

P1(t) = p1 + (P1(t0)− p1)e
−(h+f )(t−t0),

where p0 = h/(f + h) and p1 = f /(f + h) are the
asymptotic occupancy probabilities to find the geneOFF andON,
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respectively. Going on, we present the formal solution of the RDE
governing mRNA dynamics,

y1(τ ) = y1(τ0)e
−(τ−τ0)

+

∫ τ

τ0

dτ ′e−(τ−τ ′)[k0(1− s1(τ
′))+ k1s1(τ

′)], (4.14)

where we have rescaled time t by the mRNA degradation rate
and introduced the new time parameter, τ = tρ, and also the
dimensionless parameters k0 = K0/ρ and k1 = K1/ρ. Note
that the integral (4.14) is a basic Riemann integral such that, if
we consider a sufficiently fine partition [τ0, τ1, ..., τN−1, τN] of the
integral interval [τ0, τ ], where τN = τ , we can assume that s1(τ

′)
is constant inside each specific partition [τj, τj+1] and the integral
in (4.14) is approximated by

∫ τ

τ0

dτ ′e−(τ−τ ′)[k0(1− s1(τ
′))+ k1s1(τ

′)] ≈

N−1
∑

j= 0

[

k0(1− s1(τj))

+ k1s1(τj)
]

∫ τj+1

τj

dτ ′e−(τ−τ ′) = e−τ

N−1
∑

j= 0

[(

k0(1− s1(τj))

+ k1s1(τj)
)

(eτj+1 − eτj )
]

. (4.15)

It is worthwhile to remember that s1(τ ) is a jumping process
assuming, at each instant of time, just one of the values, 0 or 1,
with probability P0(τ ) or P1(τ ), respectively. Now the solution
of y1(τ ) is given as a function of sequences of s1(τj), with j =
0, ...,N − 1. These sequences are strings of zeros and ones and
we must consider all of them. For instance, if the number of
partitions is N, we will have 2(N−1) possible sequences and each
one will lead to a different value of y1(τ ). The remaining task
is to assign the correct weight for each one of these values of
y1(τ ). This is achieved by using the occurrence probability of each
possible string of zeros and ones defining the values of y1(τ ).
The occurrence probability is given by the joint distribution
probability of having s1(τj) = 0 or 1 at time τj for j = 0, ...,N−1
which is

Pr(s1(τ0), τ0; ...; s1(τN−1), τN−1)

= Prc(s1(τN−1), τN−1|s1(τN−2), τN−2)

... Prc(s1(τ1), τ1|s1(τ0), τ0)Ps1(τ0)(τ0), (4.16)

where Ps1(τ0)(τ0) is the occupancy probability to find the gene
in state s1(τ0) at time τ0, as per (4.13), and Prc(. . . | . . .) stands
for the conditional probability for the telegraph process. For
instance,

Prc(s1(τN−1), τN−1|s1(τN−2), τN−2),

encodes the transition probability from state s1(τN−2) to state
s1(τN−1) during the time interval τN−1 − τN−2 knowing that
at τN−2 the system was with probability one in state s1(τN−2).
The conditional probabilities for the telegraph process, which is a

Markovian process, are easily obtained by chosen the appropriate
initial configuration:

Prc(0, τ |0, τ0) = p0 + (1− p0)e
−ǫ(τ−τ0), (4.17)

Prc(0, τ |1, τ0) = p0 − p0e
−ǫ(τ−τ0),

Prc(1, τ |0, τ0) = p1 − p1e
−ǫ(τ−τ0),

Prc(1, τ |1, τ0) = p1 + (1− p1)e
−ǫ(τ−τ0),

where the new parameter ǫ = (f+h)/ρ measures the flexibility of
the switch. With the conditional probabilities and (4.15) at hand,
we can calculate the time dependent probability distribution for
the mRNA density. We have considered two examples: one is the
fast switch regime (ǫ > 1) and, the other, slow switching (ǫ < 1).

Protein distribution in time can be obtained in the same
fashion as the one for mRNA. The general solution for protein
density is

x1(τ ) = x1(τ0)e
−a(τ−τ0) +

b y1(τ0)e
−τ0

a− 1

[

e−(τ−τ0) − e−a(τ−τ0)
]

+ b

∫ τ

τ0

dτ ′e−a(τ−τ ′)

∫ τ ′

τ0

dτ ′′e−(τ ′−τ ′′)
[

k0(1− s1(τ
′′))

+ k1s1(τ
′′)
]

, (4.18)

where the rescaled parameters are given by a = α/ρ and
b = β/ρ. The push-forward method can be applied to obtain
the time dependent distribution probability for protein density,
in an analogous way as for mRNA. The integral that must be
partitioned is that over τ ′, in the interval [τ0, τ ],

be−aτ

∫ τ

τ0

dτ ′e(a−1)τ ′
∫ τ ′

τ0

dτ ′′eτ
′′
k(s1(τ

′′))

≈ be−aτ
N−1
∑

j= 0

k(s1(τj))

∫ τj+1

τj

dτ ′e(a−1)τ ′
∫ τ ′

τ0

dτ ′′eτ
′′

= be−aτ
N−1
∑

j= 0

k(s1(τj))

[

eaτj+1 − eaτj

a
−

e(a−1)τj+1 − e(a−1)τj

a− 1

]

,

(4.19)

where, we have used the definition k(s1(τ )) = k0(1 − s1(τ )) +
k1s1(τ ) to simplify the notation. As before, we have illustrated
our method by calculating the protein density for the same two
regimes of switch flexibility.

To analyze the influence of the first gene on the second one
we have assumed that the action of the first gene is to activate
the second [see (4.10)]. To do so, instead of solving the RDE
describing the activity of the second gene [it is an RDE because
the perturbation x1(τ ) is a random variable] we have analyzed
the mean value of the occupancy probability of the second gene
whose dynamics is given by

d

dτ
〈Q0(τ )〉 = −(h2 + f2〈x1(τ )〉)〈Q0(τ )〉 + h2, (4.20)
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FIGURE 7 | Histograms of mRNA (A,B) and protein (C,D) copy numbers for the second gene in the circuit M1, produced by the Monte-Carlo method (green lines) and

by the push-forward method (black lines). The initial data is x1 = x2 = y1 = y2 = 0 and the circuit parameters are ρ = 1, k0 = 4, k1 = 40, a = 1/5, b = 4, p0 = 0.5,

for both genes, and ǫ = 0.5, ǫ = 5.5, for slow (A,C), and fast (B,D) switching genes, respectively. The comparison is quantified by the distance d defined by (4.1).

and 〈Q1(τ )〉 = 1 − 〈Q0(τ )〉. The general solution for 〈Q0(τ )〉 is
given by

〈Q0(τ )〉 = 〈Q0(0)〉e
−
∫ τ
0 dτ ′(h2+f2〈x1(τ

′)〉)

+

∫ τ

0
dτ ′h2e

∫ τ ′

0 dτ ′′(h2+f2〈x1(τ
′′)〉). (4.21)

In Appendix 3 we show, in detail, how to obtain the exact
functional shape of 〈x1(τ )〉. Nevertheless, its structure is
〈x1(τ )〉 = r0 + r1e

−τ + r2e
−aτ + r3e

−ǫτ , and, because of this, the
integral in (4.21) cannot be evaluated analytically and a numerical
evaluation must be performed. This will also be the case for the

conditional probabilities that will be expressed as

Prc(s2(τj), τj|s2(τj−1), τj−1) = s2(τj−1)e
−
∫ τj
τj−1 dτ

′(h2+f2〈x1(τ
′)〉)

+

∫ τj

τj−1

dτ ′h2e
∫ τ ′

0 dτ ′′(h2+f2〈x1(τ
′′)〉), (4.22)

where we have set 〈Qi(τj−1)〉 = s2(τj−1) (with i = 0 or 1)
expressing the fact that at the instant of time τj−1 the gene 2 is in
state i with probability s2(τj−1) (which is 0 or 1), as we have done
for the gene 1. The difference is that for gene 1 we have closed
solutions for the occupancy probabilities and the conditional
probabilities were derived analytically from these solutions in
(4.17). However, here, as said before, we must perform the
integrals in (4.22) numerically.
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FIGURE 8 | Steady state bivariate histograms of mRNA copy numbers from two interacting genes in circuits of different types and for four switching regimes of the

promoters (SS, FF, SF, FS, where SF means that the first gene is slowly switching whereas the second is switching fastly), obtained with the Monte-Carlo method. The

individual gene parameters are those used in Figure 5; f and h constants in fxi or hxi terms are chosen such that mean mRNA and protein are the same in regulated

and constitutive genes. The probability to color map relation is logarithmic.

With (4.21) and (4.22) at hand we are in position to obtain the
distributions for mRNA and proteins associated with gene 2 in
the same fashion as we did for the gene 1. The only difference is
that the mRNA and protein copy numbers will be obtained using
(4.15) and (4.19) just by changing the index 1 for 2 (s1(τ ) →
s2(τ ), y1(τ ) → y2(τ ), and x1(τ ) → x2(τ )). A last comment
regards the parameter space: As we did for the gene 1, we have
redefined the parameter space of gene 2 and introduce the more
biological parameters; the asymptotic occupancy probabilities
(q0, q1) and the flexibility parameter (σ ). The new parameters are
expressed in terms of the old ones as

q0 =
h2

f2r0 + h2
, q1 =

f2r0

f2r0 + h2
, σ =

f2r0 + h2

ρ
. (4.23)

In Figure 7we compare the distributions for mRNA and proteins
associated with gene 2 with the direct simulation of the model.
We have done that in four distinct situations when the first

and the second genes are fast and slow. For all the cases the
first and second gene are OFF at τ = 0 and both have
asymptotic occupancy probabilities equal to 1/2. The comparison
is quantitative and uses the distance defined by (4.1).

5. TESTING THE PROPENSITY OF MRNA
AND PROTEIN INTRINSIC FLUCTUATIONS
TO REVEAL GENE-GENE INTERACTIONS

In this paper we used mathematical models to predict mRNA
and protein “intrinsic” fluctuations (by “intrinsic” we understand
fluctuations generated by the stochastic gene network dynamics).
An important question in this context is if “intrinsic” gene
expression fluctuations can be used to reverse engineer gene
networks. “Extrinsic” fluctuations (by “extrinsic” we understand
perturbations of gene networks coming from their environment)
of the transcriptome were extensively used in the past
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to reconstruct gene networks using correlation or mutual
information (for a popular method see [48]). A few reverse-
engineering studies obtained gene regulation parameters from
intrinsic gene expression fluctuations [12, 49]. Quantifying
intrinsic fluctuations requires single cell measurements of
several genes. A variety of technologies are now ready to
take this challenge—single cell sequencing [50], single-cell RNA
microscopy [10], various versions of time-lapse microscopy
[51], fluorescence correlation microscopy [12]. It is therefore
important to test the propensity of expression fluctuations to
discriminate between various gene network architectures.

The predictions of our PDP models are provided as
multivariate distributions of mRNAs and proteins copy numbers
for one or several genes. These predictions can be directly
compared with results obtained with molecular biology and
biophysics experimental methods.

First, one would like to test if the differences between
distributions predicted with various gene circuit models are

significant and therefore can be used to discriminate between
gene circuit models. To this end, we generated bivariate proteins
and mRNA distributions for five different gene circuits like in
Figure 4. The visual inspection of Figure 8, suggests that mRNA
distributions resulting from five different gene circuits, with
gene-gene interactions that differ by their signs, are very similar
in the same regime of switching (fast or slow) of the genes. The
mRNA distributions discriminate between model parameters
(fast or slow switching) but do not discriminate between circuit
architectures. The protein bivariate distributions are shown in
Figure 9. They differ strongly from mRNA distributions and
discriminate between both parameters and architectures.

As visual colormap differences may be judged subjective, we
developed a quantitative test for the discriminant power. This test
is based on the distance d defined by (4.1). We have computed
d pairwise, for mRNA and for protein distributions produced
from different gene circuits at steady state. In order to test
if these distances are significantly large we compared them to

FIGURE 9 | Steady state bivariate histograms of protein copy numbers from two interacting genes in circuits of different types and for four switching regimes of the

promoters, obtained with the Monte-Carlo method. The individual gene parameters are those used in Figure 5; f and h constants in fxi or hxi terms are chosen such

that mean mRNA and protein are the same in regulated and constitutive genes. The probability to color map relation is logarithmic.
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distribution of distances between random samples generated by
the same gene circuit model for a fixed number of cells. The
result of this comparison is shown in Figure 10 for the two gene
circuits G1 → G2 and G1 ⊣ G2 that differ by the sign of the
interaction; one can notice that the protein fluctuation based
distance is significant, whereas the mRNA fluctuation distance is
not, both for slow/slow and fast/fast genes.

We have also tested the significance of the correlation
computed from bivariate mRNA or protein distributions. A
simple gene reconstruction method is to consider that genes
interact if the correlation coefficient is significantly different
from zero. We have computed the Bravais-Pearson correlation
coefficient from bivariate mRNA and protein samples generated
with our PDP model, at steady state and for increasing numbers
of cells Nc. For both models G1 → G2 and G1 ⊣ G2 a significant
(upper tail probability p < 5%) protein-protein correlation is
obtained for moderate cell populations (Nc > 100 for p <

5%, see Figure 10). In order to obtain significant mRNA/mRNA
correlation one has to use very large numbers of cells (Nc >

1, 000 for p < 5%, see Figure 10). This is possible for single
cell sequencing and flow cytometry (with the drawback of the
lack of precision in estimating the mRNA copy numbers) but is
very difficult for techniques such as MS2 tagging microscopy, or
time-lapse microscopy.

6. DISCUSSION

We have discussed three methods to compute time-dependent
distributions of mRNA and protein copy numbers generated
by gene networks. All the three methods are much faster
than the Gillespie exact chemical master equation. The
finite difference Liouville-master equation method is precise
and fast for small models. Simple (non-adaptive) finite
difference schemes, however, are demanding in terms of

FIGURE 10 | Testing the capacity of mRNA and protein fluctuations to reveal gene-gene interactions. Upper row: the distance between distributions generated by

activating and repressive circuit (red line) are compared to the distances between random samples (Nc = 1, 000) generated by the same repressive circuit (blue

smoothed histogram). Middle and lower row: the Bravais-Pearson correlation coefficient ρ is computed from random samples containing increasing numbers of cells

and the corresponding p-value (p is the upper tail probability and correlation is significant when p is small) is represented vs. sample size. The parameters of the

simulations are those used in Figure 9.
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TABLE 1 | Execution times for different methods.

Model Monte-Carlo

[min]

FD Liouville-

master

[min]

Push-forward

[min]

Gillespie

[min]

One gene

slow

– 27.5 0.49 6425

One gene fast – 5.7 0.84 979

Two genes

slow-slow

45 – 1.8 15739

Two genes

fast-fast

74 – 7 1609

Two genes

slow-fast

243 – 6 37935

Two genes

fast-slow

249 – 0.76 41232

All the methods were implemented in Matlab R2018b running on a single core (multi-

threading inactivated) of a Xeon E5 2.4 GHz processor.

space and time resolution leading to computer memory
limitations. In future implementations of the Liouville-master
equation method we plan to use spectral methods for
bypassing these limitations. The push-forward method is
not as precise as the Liouville-master equation, but it is
much more stable, even at low resolution. The differences
between execution times of various methods are illustrated
in the Table 1 indicating that the push-forward method is
the fastest. The performance of the push-forward method
results from the reduced cardinality of the discrete phase
space (2 states for one gene, 4 states for 2 genes) which
is an improvement with respect to the initial version in
Innocentini et al. [47]. Further improvements, lifting the
mean-field approximation for gene coupling will be presented
elsewhere.

Piecewise-deterministic models are valuable tools for
understanding stochastic gene expression in a wide spectrum
of regimes, covering both slow and fast switching. The
source of stochasticity in such models are the random
transitions between discrete promoter states; a phenomenon
usually associated with transcriptional bursting. In
this paper we have only discussed dichotomous noise
(ON/OFF promoters), however, as seen in section 2, our
methods work also for promoters with more than two
states.

As application of our numerical methods we tested the
capacity of mRNA and protein copy numbers fluctuations
to unravel differences between gene circuit architectures. We
showed that protein fluctuations are sensitive to differences of
architecture and that protein-protein correlation reveals gene-
gene interactions for moderate cell population sizes (100 cells).
In contrast, mRNA fluctuations are much less sensible to
differences in circuit architecture and mRNA-mRNA correlation
is small, even for interacting genes. This reinforces the already
well established conclusion that proteome contains much more
information than the transcriptome. In the past we used
the spectrum of protein copy number fluctuations to extract

information about promoter repression mechanisms [12]. The
difference in behavior of the mRNA and protein fluctuations
can be explained by the fact that the mRNA half life is
usually much shorter than the protein half life. Gene-gene
interactions are mediated by proteins that slowly modulate the
gene switching times. Proteins follow these slow modulations,
which results in significant protein-protein correlation. mRNA
dynamics are permanently submitted to the faster (uncorrelated)
gene switching, which explains the lower correlation of steady
state mRNA fluctuations. This suggests that reconstruction of
gene networks from mRNA intrinsic fluctuations is submitted
to severe limitations. More general results concerning these
limitations will be presented elsewhere.
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