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Income redistribution is a feasible means to adjust the income among individuals, which

could reduce the gap between the rich and the poor and realize the social equity. By

means of taxation and public services, the income could be transferred from some

individuals to others directly or indirectly. We study how income redistribution affects

the evolution of global cooperation through proposing a multi-level threshold public

goods game model and introducing two kinds of income redistribution mechanisms.

We find that both of the income redistribution mechanisms promote global cooperation.

Furthermore, the global income redistribution is more in favor of the emergence of global

cooperative behaviors than the local income redistribution mechanism. On the other

hand, the fixation time of global cooperation is sharply shortened after introducing income

redistribution mechanisms. In threshold public goods games, only when the amount

of collected public goods reaches a certain threshold, the income of individuals can

be guaranteed. Hence, the influences of thresholds of different levels on strategies are

investigated in the paper.

Keywords: evolutionary game theory, public goods game, stochastic processes, human cooperation, income

redistribution

1. INTRODUCTION

Collective actions, such as a group of neighborhood residents donating money to construct a public
project, require voluntary contributions to collect public goods [1]. Voluntary contributing activity
is widespread and substantial [2–5]. It is beneficial for the group, however, costly for individuals.
Performing an altruistic act can weigh heavily on individual wellbeing and prosperity. Selfish
individuals always have an advantage over cooperators. Such social dilemma can be represented
as the public goods game (PGG) [6–8]. In human societies, people are often required to sacrifice
personal benefits for the common goods and work together to achieve what they are unable
to achieve alone [9, 10]. Especially when it comes to the situation that people are faced with
the option of voluntary contribution to achieve a collective goal, where public goods cannot
be provided in part, but only in whole after a certain cost (threshold) is covered. Threshold
public goods game (TPGG) models nicely capture the main features of the above described social
phenomena [11–18]. In the typical TPGG, the size of a proposed project and the associated total
cost (threshold) are predetermined. The public goods are provided if the total contributions meet
or exceed the threshold; otherwise, no goods are provided and all individuals suffer with nothing
irrespective of whether they contributed or not. Since cooperation forms the bedrock of our efforts
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for a sustainable and better future, understanding cooperative
behaviors in complex interactive systems has been one of the
grand scientific challenges of the global society [19–24]. The
problem is in many ways unnatural. Now that free riders can
enjoy the same benefits for free, what kind of mechanism can
motivate individuals to care for and contribute to the public
goods, if only the fittest survive?

Most governments devote considerable resources to the
provision of public goods available for all citizens to consume,
such as national defense, environmental protection, health
insurance and highways. Such universal provision schemes can
redistribute income from the rich to the poor [25], and further
realizing the fairness of the society [26–28]. Redistribution of
income may provide a nonexcludable benefit to those who give,
and many such schemes are universal in the sense that everyone
is eligible and the provision is free [29]. One of the classic forms
of income redistribution is the tax system, in which people are
taxed at fixed rates. People who make more money pay higher
taxes, thereby forfeiting more of their income to the government.
Tax funds are used to benefit the society as a whole by providing
a variety of public and social services by the government, and
the direct transfer of income may occur in the case of welfare
payments and other forms of cash assistancemade to low-income
members of society [30]. Previous works on physical models of
collective dilemmas, however, seldom theoretically analyze how
income redistribution influences the evolution of cooperation in
the complex social-economic system.

Motivated by this, we propose a multi-level threshold public
goods game model, where global and local public goods are
clearly distinguished. Although pure public goods are defined
as being non-rival in consumption and non-excludable [31],
however, there exist impure public goods in reality. Owing to
geographic space, some classes of goods are globally public, and
others are only locally public. Global public goods are available
to the entire population while local public goods may be available
only to the residents of a very small neighborhood [32, 33]. Thus,
players in the model can choose among selfishness, contributing
to global public goods, or local public goods. In particular,
the global public goods and local public goods both involve
the threshold. If the collected public goods are not enough,
dangers would happen. For example, coastal inhabitants may be
inundated owing to failure of fundraising for a dam [34], disease
may spread caused by inadequate voluntary vaccination [35–
39] and regional defense system may collapse due to insufficient
finance [40].

We then respectively consider two kinds of income
redistribution mechanisms in the multi-level TPGG. In the
model with local income redistribution, players have to pay
part of their idealized income to the focal group according
to a given income expenditure proportion after each round.
Distinguished from the contribution action during the PGG
process, such compulsory payment is named as the second-
order payment. Subsequently, the accumulated income are
redistributed to all the members of this group regardless of their
strategies and the quantity of their second-order payments. On
the other hand, for the global income redistribution, players
pay part of their idealized income to the whole population.

Similarly, the accumulated income is then redistributed to
all the players in the whole population. In reality, the local
income redistribution seems like a special transaction tax in
economic system, which is collected according to the definite
quantity of the volume of trade. And then, the revenue is
redistributed to the group members uniformly, which amounts
to the fiscal subsidy for a particular industry. While for the
global income redistribution, the processes of second-order
payment and income redistribution can be classified as the
process of collecting and redistributing the gross income of
personal income tax for the whole country. Based on this model,
we theoretically investigate the evolution of cooperations of
different levels and free-riders under collective risks, and focus
on the influence of diverse income redistribution mechanisms
on the global cooperation.

2. MODEL

In this paper, we study a finite population of N players. The
whole population is divided into M groups, then there are m =

N/M players in each of the group [41, 42]. Player x can choose
a strategy Sx ∈ {G, L, S}, where G, L and S represent global
cooperation, local cooperation and selfishness, respectively. Each
player has one unit of money at the beginning of the game. They
should decide whether put their money into Global account,
Local account or Personal account. If the money is put into the
Personal account, it is saved without multiplication. The player
will finally own the single unit of money. The money put into the
Local account are added and multiplied by a local gain-factor r1
(1 < r1 < m). Then it will be equally distributed to the players
in the focal group. The money put into the Global account are
summed and multiplied by a global gain-factor r2 (1 < r2 < N).
Then it is distributed to all the players in the whole population
irrespective of whether they are global cooperators or not.

After game interaction, players are asked to take part in
the process of income redistribution. We respectively consider
two cases: one is local redistribution, the other one is global
redistribution. For local redistribution, each player has to pay
part of their income to its group according to the given
income expenditure proportion p1. The parameter p1 denotes
the proportion of the second-order income obtained in the
PGG of the focal group. Subsequently, the accumulated income
expenditure of players in this group is redistributed to the m
group members irrespective of their strategies and the amount
of their second-order payments. Thus, the actual income of
player x in this group after local redistribution of income can be
calculated as

π l
x = πx × (1− p1)+

p1

m
×

m
∑

x = 1

πx, (1)

where πx denotes the income of a player after one PGG,
p1

∑m
x=1 πx is the sum of the accumulated second-order

payments of the groupmembers. Denote π1
G(i), π

1
L (l) and π1

S (m−

i − l) as the final payoff of each G, L and S player, respectively,
when there are i G players, l L players in the local group and
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the other N − i − l players all hold S strategy in the whole
population [43]:

π1
S (m− i− l) = (

i× r2

N
+

l× r1

m
+ 1)× (1− p1)+

p1

m
×

m
∑

x = 1

πx

(2)

π1
G(i) = (

i× r2

N
+

l× r1

m
)× (1− p1)+

p1

m
×

m
∑

x = 1

πx (3)

π1
L (l) = (

i× r2

N
+

l× r1

m
)× (1− p1)+

p1

m
×

m
∑

x = 1

πx, (4)

whereπx = ir2/N+lr1/m+1 for S player andπx = ir2/N+lr1/m
for G and L players.

On the other hand, for global redistribution, players are
mandatory to pay the part of their income to the whole
population according to a fixed proportion p2, which is the
second-order payment in global redistribution. We emphasize
that p2 denotes the income expenditure proportion of all
the second-order income player obtained in the PGG of the
whole population. Subsequently, the accumulated income is
redistributed to all the players irrespective of their strategies or
the quantity of their second-order payments. Thus, the payoff
of each player after the global income redistribution can be
calculated as

π
g
x = πx × (1− p2)+

p2

N
×

N
∑

x = 1

πx, (5)

where πx is the income of a player after PGG, p2
∑N

x = 1 πx is the
sum of the accumulated second-order payments of all the players.

We consider the two-level TPGG, thus the payoffs of players
are threatened by two-level risks. Here, we denote s1 as the local
threshold and s2 as the global threshold. Then we introduce the
threshold functions:

θ1(l) =

{

q1 for l× r1 < s1

0 for l× r1 ≥ s1
(6)

θ2(i) =

{

q2 for i× r2 < s2

0 for i× r2 ≥ s2
(7)

where i is the number of global cooperators and l is the number
of local cooperators in the focal group. If the amount of collected
global public goods is less than s2, a world-wide danger is on the
way with a probability q2. Once such danger happens, the payoffs
of all the individuals are zero. If the amount of public goods in
the Global account is more than s2, the collective target achieves
and disasters are not going to happen. In this case, all the players
will get their payoffs in the public goods game. However, if the
amount of local public goods in a group is less than s1, a potential
risk could happen with a probability q1. Once suffered such risk,
the payoffs of players in the focal group would be lost.

We use imitation process to describe the evolution of
strategies. Players are likely to learn the strategies of their

successful counterparts’. Firstly, we randomly select a player A
from theN population. Then, another player B should be chosen.
With a probability ϕ, B will be selected from the N population.
Otherwise, with probability 1 − ϕ, B is chosen only from A’s
local group. In other words, the larger ϕ is, the more likely
players interact with each other globally. In our daily life, the
interaction within a group is much more frequent than that
between groups. A would learn B’s strategy with a probability
1/[1 + e−ω(πB−πA)] [44–48], where πx is the payoff of individual
x. ω denotes the imitation intensity [49–52], measuring the
dependence of decision making on the payoff comparison. Here,
we define two different imitation intensities. We denote ω1 as
the imitation intensity within a group and ω2 as the imitation
intensity between groups. During the evolutionary process of
strategies, each player has the chance of switching its strategy to
a different one with a probability µ. In this paper, we assume the
exploration rate µ → 0. The parameters in the model are listed
in Table 1.

3. METHODS

We are interested in how global cooperation evolves. To this
end, we study the stationary distribution and the fixation time.
It is common that the interaction within a group is much more
frequent than that between groups [53, 54], thus the fixation
process of a single mutant in the population goes through two
steps: the fixation of this mutant in its local group and the fixation
of such group in the whole population. We theoretically analyze
the two kinds of income redistributions respectively.

3.1. Local Income Redistribution
We consider a single local group composed of m − i S players
and i G players. All the other groups in the whole population are
full of S players. Based on Equations (2, 3), the payoffs of each G

TABLE 1 | Parameters in the model.

Symbols The meaning of the parameters

N Population size

M Number of groups

m Number of players in each group

r1 Local gain-factor

r2 Global gain-factor

p1 Local income expenditure proportion

p2 Global income expenditure proportion

s1 Local threshold

s2 Global threshold

q1 Local risk probability

q2 Global risk probability

ϕ Globally learning probability

µ Exploration rate

ω1 Imitation intensity within a group

ω2 Imitation intensity between groups
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player and each S player in the focal group are:

π1
G(i) =

i× r2

N
× (1− p1)+

p1

m
×

m
∑

x = 1

πx (8)

π1
S (m− i) = (

i× r2

N
+ 1)× (1− p1)+

p1

m
×

m
∑

x = 1

πx. (9)

The number of G players changes from i to i± 1 in one time step
with a probability:

T±(i) = (1− ϕ)×
i

m
×

m− i

m
×

{

1+ e±ω1 [π
1
S (m−i)−π1

G(i)]
}−1

,

(10)

where ω1 is the imitation intensity within a group. The fixation
probability of a single G mutant invading a group of S players is
denoted by P1SG, which is given by Traulsen et al. [45] and Wu et
al. [54]:

P1SG =



1+

m−1
∑

j = 1

j
∏

i = 1

T−(i)

T+(i)





−1

=







1+

m−1
∑

j = 1

eω1
∑j

i = 1[π
1
S (m−i)−π1

G(i)]







−1

. (11)

We define the fixation probability of a local group full ofG players
invading the whole population full of S players as P2SG. The payoff
of each G player is denoted by π2

G(i) and that of S player is
π2
S (M − i) when there are i local groups full of G players and

the otherM − i groups full of S players.

π2
G(i) =

i× r2

M
× (1− p1)+

p1

m
×

m
∑

x = 1

i× r2

M
=

i× r2

M

(12)

π2
S (M − i) = (

i× r2

M
+ 1)× (1− p1)+

p1

m
×

m
∑

x = 1

(
i× r2

M
+ 1)

=
i× r2

M
+ 1. (13)

A new group full of G players arises when two players with
different strategies from different local groups are chosen, and the
S player alters its strategy through imitation, then it takes over its
local group. Thus, the probability to increase the number of local
groups full of G players by one is given by:

Ŵ+(i) = ϕ ×
i

M
×

M − i

M
×

{

1+ eω2 [π
2
S (M−i)−π2

G(i)]
}−1

× P1SG(k),

(14)

where ω2 is the imitation intensity between groups. P1SG(k)
represents the fixation probability of a single G mutant invading
a group of S players when there already exist k groups full of G.

Similarly, the probability to decrease the number of G groups by
one is:

Ŵ−(i) = ϕ ×
i

M
×

M − i

M
×

{

1+ eω2 [π
2
G(i)−π2

S (M−i)]
}−1

× P1GS(k).

(15)

Hence, the fixation probability of a G group in the whole
population is obtained as follows:

P2SG =



1+

M−1
∑

j = 1







eω2
∑j

i = 1[π
2
S (M−i)−π2

G(i)]

j
∏

i = 1

[

P1GS(k)

P1SG(k)

]











−1

.

(16)

We aim to analyze the multi-level TPGG. Thus, the payoffs above
are conditional. Once global danger happens, all the individuals
will lose their wealth. On the other hand, if local danger strikes,
the players in the focal group lose their wealth. By utilizing the
threshold functions, Equations (6, 7), the revised payoffs are as
follows:

π1
G(i) =

[

i× r2

N
× (1− p1)+

p1

m
×

m
∑

x = 1

πx

]

×(1− q1)× [1− θ2(i)] (17)

π1
S (m− i) =

[

(
i× r2

N
+ 1)× (1− p1)+

p1

m
×

m
∑

x = 1

πx

]

×(1− q1)× [1− θ2(i)] (18)

π2
G(i) = (

i× r2

M
)× (1− q1)× [1− θ2(i×m)] (19)

π2
S (M − i) = (

i× r2

M
+ 1)× (1− q1)× [1− θ2(i×m)].

(20)

Inserting Equations (17, 18) into Equation (11) and
Equations (19, 20) into Equation (16), we can get the following
equations when there are k groups full of G players:

P1SG(k) =







1+

m−1
∑

j = 1

eω1 (1−q1) (1−p1)
∑j

i = 1[1−θ2(i+mk)]







−1

(21)

P2SG =



1+

M−1
∑

j = 1







eω2 (1−q1)
∑j

i = 1[1−θ2(m i)]

j
∏

k = 1

[

P1GS(k)

P1SG(k)

]











−1

.

(22)

The fixation probability of a single Gmutant invading the whole
global population full of S players is defined as ρSG. Hence, we
have:

ρSG ≈ P1SG(0)× P2SG. (23)

Accordingly, we can get the fixation probability ρSG, and also ρGS,
ρSL, ρLS, ρLG, ρGL, which are given as follows:

ρSG ≈



1+

m−1
∑

j = 1

eω1 (1−p1) (1−q1) (1−q2) j





−1
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×



1+

M−1
∑

j = 1







eω2 (1−q1)
∑j

i = 1[1−θ2(m i)]

j
∏

k = 1

[

P1GS(k)

P1SG(k)

]











−1

(24)

ρGS ≈



1+

m−1
∑

j = 1

e−ω1 (1−p1) (1−q1) (1−q2) j





−1

×



1+

M−1
∑

j = 1







e−ω2 (1−q1)
∑j

i = 1[1−θ2(m i)]

j
∏

k = 1

[

P1SG(k)

P1GS(k)

]











−1

(25)

ρSL ≈







1+

m−1
∑

j = 1

eω1 (1−p1) (1−q2)
∑j

i = 1[1−θ1(i)]







−1

×







1+

M−1
∑

j = 1

e[ω2 (1−q1−r1)+ω1 (m−1) (1−p1)] (1−q2) j







−1

(26)

ρLS ≈







1+

m−1
∑

j = 1

e−ω1 (1−p1) (1−q2)
∑j

i = 1[1−θ1(i)]







−1

×







1+

M−1
∑

j = 1

e[−ω2 (1−q1−r1)−ω1 (m−1) (1−p1)] (1−q2) j







−1

(27)

ρLG ≈
1

m
×







1+

M−1
∑

j = 1

eω2
∑j

i = 1[1−θ2(m i)] (r1+q1
i r2
M )







−1

(28)

ρGL ≈
1

m
×







1+

M−1
∑

j = 1

e−ω2
∑j

i = 1[1−θ2(m i)] (r1+q1
i r2
M )







−1

.

(29)

During the evolutionary process, players have the chance of
exploring strategies with a probability µ. Since we assume the
exploration rate µ → 0, it assures that a single mutant vanishes
or fixates in the population before the next one appears [55, 56].
Thus, the evolutionary process can be approximated by aMarkov
chain where the state space is composed of homogeneous states
full of each type of players (G, L or S). The corresponding
transition probability matrix T is:

T =









TSS
µ
2 ρSL

µ
2 ρSG

µ
2 ρLS TLL

µ
2 ρLG

µ
2 ρGS

µ
2 ρGL TGG









. (30)

Here, Tii = 1 −
∑

k 6=i(
µ
2 ρik), where i, k ∈ {G, L, S}. Stationary

distribution describes the percentage of time spent by the
population in each homogeneous state in the long run, which
is determined by the normalized left eigenvector corresponding
to the eigenvalue 1 of the transition matrix. The stationary
distribution for Equation (30) can be calculated as follows:

XS =
ρGS ρLG+ρGS ρLS+ρLS ρGL

1
(31)

XL =
ρGS ρSL+ρSL ρGL+ρSG ρGL

1
(32)

XG =
ρSG ρLS+ρSL ρLG+ρSG ρLG

1
, (33)

where XS, XL, and XG represent the probability to find the
population in the homogeneous state consisting entirely of selfish
ones, local cooperators, and global cooperators, respectively. The
normalization factor 1 assures XS + XL + XG = 1.

On the other hand, the average time to reach a certain state
for the first time can be derived analytically in the limit of rare
explorations. For example, we denote fixation time τGS as the
average time starting in pure state of G to reach S. This fixation
time satisfies:

τGS = 1+ rGL τLS + rGG τGS, (34)

where rij = δij +
µN
2 (ρij − δij). It represents the transition

probability from the homogeneous state i to the homogeneous
state j. ρij expresses the fixation probability. δij denotes the

Kronecker delta. µN
2 means the rate at which mutants of type

j are born (as only two types of mutants can be produced
with equal probability), since on average it takes the time of
1

µN for per mutation. Then, we can get the average time of

reaching the homogeneous state S from the initial pure states
G and L:

τGS = 1+ µN
2 ρGL τLS + [1− µN

2 (ρGS + ρGL)] τGS (35)

τLS = 1+ µN
2 ρLG τGS + [1− µN

2 (ρLS + ρLG)] τLS. (36)

Solving Equations (35)-(36), we have:

τGS =
2 (ρGL+ρLG+ρLS)

µN (ρGS ρLG+ρGL ρLS+ρGS ρLS)
(37)

τLS =
2 (ρGL+ρGS+ρLG)

µN (ρGS ρLG+ρGL ρLS+ρGS ρLS)
. (38)

Similarly, expressions for other fixation time can be shown as
follows:

τSL =
2 (ρGL+ρGS+ρSG)

µN (ρGL ρSG+ρGL ρSL+ρGS ρSL)
(39)

τGL =
2 (ρGS+ρSG+ρSL)

µN (ρGL ρSG+ρGL ρSL+ρGS ρSL)
(40)

τSG =
2 (ρLG+ρLS+ρSL)

µN (ρLG ρSG+ρLS ρSG+ρLG ρSL)
(41)

τLG =
2 (ρLS+ρSG+ρSL)

µN (ρLG ρSG+ρLS ρSG+ρLG ρSL)
. (42)

Based on the solved fixation probabilities, Equations (24–29), we
can deduce the stationary distribution and the fixation time with
a complete form.

3.2. Global Income Redistribution
Similarly with the former analysis for local income redistribution,
we consider a single local group in which there are i G players
and m − i S players, and assume that all the other groups are
full of S players. Compared with Equations (17–20) for local
income redistribution, the payoffs of each G and S player for
global income redistribution are:

π1
G(i)

′ =

[

i× r2

N
× (1− p2)+

p2

N
×

N
∑

x = 1

πx

]

× (1− q1)
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×[1− θ2(i)] (43)

π1
S (m− i)′ =

[

(
i× r2

N
+ 1)× (1− p2)+

p2

N
×

N
∑

x = 1

πx

]

× (1− q1)

×[1− θ2(i)] (44)

π2
G(i)

′ =

[

(
i× r2

M
)× (1− p2)+

p2

N
×

N
∑

x = 1

πx

]

×(1− q1)× [1− θ2(m× i)] (45)

π2
S (M − i)′ =

[

(
i× r2

M
+ 1)× (1− p2)+

p2

N
×

N
∑

x = 1

πx

]

×(1− q1)× [1− θ2(m× i)]. (46)

Based on the payoffs, we can get the fixation probability ρ′
SG, ρ

′
GS,

ρ′
SL, ρ

′
LS, ρ

′
LG, and ρ′

GL for global income redistribution, which are
given as follows:

ρ′
SG ≈



1+

m−1
∑

j = 1

eω1 (1−p2) (1−q1) (1−q2) j





−1

×



1+

M−1
∑

j = 1







eω2 (1−p2) (1−q1)
∑j

i = 1[1−θ2(m i)]

j
∏

k = 1

[

P1GS(k)

P1SG(k)

]











−1

(47)

ρ′
GS ≈







1+

m−1
∑

j = 1

e[−ω1 (1−p2) (1−q1) (1−q2) j]







−1

×



1+

M−1
∑

j = 1







e−ω2 (1−p2) (1−q1)
∑j

i = 1[1−θ2(m i)]

j
∏

k = 1

[

P1SG(k)

P1GS(k)

]











−1

(48)

ρ′
SL ≈



1+

m−1
∑

j = 1

eω1 (1−p2) (1−q2)
∑j

i = 1[1−θ1(i)]





−1

×







1+

M−1
∑

j = 1

e[ω2 (1−q1−r1)+ω1 (m−1)] (1−p2) (1−q2) j







−1

(49)

ρ′
LS ≈







1+

m−1
∑

j = 1

e−ω1 (1−p2) (1−q2)
∑j

i = 1[1−θ1(i)]







−1

×







1+

M−1
∑

j = 1

e[−ω2 (1−q1−r1)−ω1 (m−1)] (1−p2) (1−q2) j







−1

(50)

ρ′
LG ≈

1

m
×



1+

M−1
∑

j = 1

eω2 (1−p2)
∑j

i = 1[1−θ2(m i)] (r1+q1
i r2
M )





−1

(51)

ρ′
GL ≈

1

m
×



1+

M−1
∑

j = 1

e{−ω2 (1−p2)
∑j

i = 1[1−θ2(m i)] (r1+q1
i r2
M )}





−1

.(52)

Based on these fixation probabilities, it is easy to deduce
the corresponding stationary distribution and the fixation
time with a complete form for the case of global income
redistribution.

4. RESULTS AND DISCUSSION

Sustainable development calls for more and more global
cooperation. Former collective risk dilemma models, however,
seldom distinguish global cooperators from local ones. In
this paper, we explicitly consider different cooperators arising
from the group structured population to address how global
cooperative behavior is affected by collective risk and income
redistribution mechanisms. Income redistribution is a means of
adjusting the income among individuals, which could make full
use of social capital. We explore how income redistribution of
different levels influence the evolution of global contribution in
multi-level threshold public goods games.

We first study the local income redistribution mechanism.
The stationary distribution of three strategies are compared in
Figure 1A. With the increment of the local income expenditure
proportion p1, XG (the stationary distribution of G) and XL

show an ascending trend while XS descends. It is found that the
global cooperation is promoted by local income redistribution
compared with typical TPGG, which is shown as p1 = 0.
In PGG model, the Nash equilibrium predicts zero provision.
Thus, the selfishness is the dominate strategy, while global
cooperation is inferior. When public goods can only be provided
if global contributions reach a minimum threshold, this creates
an advantage in that Pareto efficient outcomes can be Nash
equilibria. In TPGG, however, we still see significant under-
provision of the global public goods. After introducing the local
income redistribution, players share part of their payoffs. The
mechanism changes the comparison between different strategies
in the local group, which reduces the inferiority of global
cooperators. Especially under the high risk circumstance, the
global cooperation becomes a Nash equilibrium (if the collective
target is so large which requires almost all the players to
contribute). For different gain-factors, it is shown in Figure 1B

that the global cooperative behavior is promoted with the rise
of p1. It is well-known that, in the context of PGG, small
values of gain-factor favor defectors and large values benefit
cooperators. In our work, larger r1/r2 indicates much worse
condition for global contributors. Even though in such situations,
compared with the frequencies of global cooperation at p1 = 0,
global cooperators still have a much better chance for survival
when p1 > 0. That is because the wealth gap between global
cooperators and others is narrowed with increasing p1, which
makes the cooperative behaviors have more chance to prevail in
themulti-level TPGG rather thanwithout suchmechanism. Local
income redistribution balances the income difference among
individuals in the same group. Suffered as a consequence, the
final payoff of each player is strongly dependent on the quality
of its group. Obviously, more local cooperators make larger
contributions in the group with a fixed number of participants.
Thereinto, a player in the group withmore local cooperators has a
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competitive advantage over the other players. Thus, local income
redistribution, which acts as a driving force for promoting
cooperation in the local group, especially local cooperation, gives
prominence to the role of groups on the evolution of cooperation.

We then probe how global income redistribution mechanism
influences the evolution of different strategies in the multi-
level TPGG model. As is illustrated in Figure 2, the stationary
distribution of G (XG) shows an ascending trend while XS

and XL descend with the increment of p2. Different from
results in local income redistribution mechanism, only global
cooperation is obviously improved. Under the mechanism of
global income redistribution, the accumulated second-order
payments are redistributed to the whole population irrespective

of their strategies and contributions. Thus, on the one hand, the
payoff differences among strategies are reduced. On the other
hand, the evolutionary advantage of compact cooperative clusters
cannot spread to the whole population. Thus, the global income
redistribution actually inhibit the heterogeneity of groups. When
p2 → 1, almost all the players share all of their fortunes. Under
such circumstance, the whole population is in a state of random
drift. Each strategy holds a stationary distribution of 1/3.

In the following, we study how long the population fixates at
each state in both income redistribution mechanisms. We focus
on the fixation time of each strategy, especially that of G strategy.
With the increase of income expenditure proportion, both p1 and
p2, the changes of average time that a mutant of each strategy

FIGURE 1 | The influence of the local income expenditure proportion on the stationary distribution of strategies. In (A), the tendency of stationary distribution of

selfishness, local contribution and global cooperation (XS, XL, and XG) with respect to the increase of local income expenditure proportion p1 are shown. XG and XL
are promoted with the increasing p1, while XS decreases. It means that the effect of local income redistribution on promoting global cooperation becomes remarkably

obvious with the increase of the proportion of redistribution in groups. Parameters are m = 5, M = 20, N = 100, q1 = q2 = 0.8, r1 = 2, r2 = 3, s1 = 2, s2 = 160,

and ω1 = ω2 = 0.005. In (B), the tendency of the stationary distribution of global cooperation with the increase of p1 under different gain-factors are shown. We

respectively study three r1/r2 ratios.

FIGURE 2 | The influence of the global income expenditure proportion on the stationary distribution of strategies. In (A), the tendency of stationary distribution of S, L,

and G (XS, XL, and XG) with respect to the increase of global income expenditure proportion p2 are shown. XG is promoted with the increasing p2, while XS and XL
decrease. It means that the effect of global income redistribution on promoting global cooperation becomes remarkably obvious with the increase of the proportion of

redistribution in the whole population. Parameters are m = 5, M = 20, N = 100, q1 = q2 = 0.8, r1 = 2, r2 = 3, s1 = 2, s2 = 160, and ω1 = ω2 = 0.005. In (B), the

tendency of the stationary distribution of global cooperation with the increase of p2 under different gain-factors are shown. We respectively explore three r1/r2 ratios.
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invades population full of the other two respectively are shown
in Figure 3. After introducing an income redistribution (both
global and local) into the multi-level TPGG model, the time
for G invading the other two strategies are obviously shortened.
The larger the p1 (or p2), the more likely global cooperation
to be learned and adopted by other strategies’ holders. Then G
strategy could occupy the entire population more quickly. By
comparison, the G strategy under global income redistribution
mechanism fixates faster than local income redistribution. The
change of the fixation time of S is on the contrary. The time for S
invading the other two strategies remarkably prolong. It is known
that the fixation time of L is shortened in TPGG compared with
PGG. For the local income redistribution, the fixation time of L
declines. The difficulty for other strategies to invade L increases.
For the global income redistribution, however, although the time
for L invading S is shortened, the time for L invading G becomes
longer with the rise of p2. Compared with the promotion of global
cooperation and the inhibition of selfishness owing to the global
income redistribution, to a certain extent, it only has little impact
on local cooperation. For a limit case, when p2 = 1, the fixation
difficulty of all the strategies are the same.

We further investigate how decision-makings are affected by
the change of the thresholds. As shown in Figure 4, the global
cooperative behavior is promoted with the increasing global
threshold. By adding a threshold in global PGG, the game is
turned from a social dilemma into a sort of coordination game. In
particular, with a large threshold, players are facing a sufficiently
severe potential crisis. Such risk indicates that all the players
probably lose their wealth. Higher global threshold means a
bigger target which has to be reached to avoid the risk. Global
cooperation is necessary for public safety, and becomes more
and more important with the increasing risk. Once the disaster
happens, all the individuals are equally wealthy. Thus, global
cooperators can gain a foothold. Because income redistribution

could narrow the payoff differences among strategies, global
cooperation has more opportunity to be adopted in high risk
cases. This paves the way for them to emerge in the population.
In comparison, for the same income expenditure proportion,
p1 = p2, the growth of global cooperation is more obvious in
the global income redistribution mechanism than in the local
one. It hints that when sharing more wealth with the whole
population, the relationship among individuals becomes more
close. Hence, individuals are more inclined to cooperate globally

FIGURE 4 | The stationary distribution changes with the global threshold s2.

Global cooperation is promoted with the increase of the global threshold s2,

while selfishness and local cooperation decrease. It hints that players are more

apt to cooperate globally under high global risks. We investigate both of the

two income redistribution mechanisms, and the stationary distributions of

strategies are calculated respectively in each mechanism under the same

parameter values. Parameters are: m = 5, M = 20, N = 100, r1 = 2, r2 = 3,

s1 = 2, q1 = q2 = 0.8, p1 = 0.5, p2 = 0.5, and ω1 = ω2 = 0.005.

FIGURE 3 | The fixation time changes with the income expenditure proportions. (A) reflects the local income redistribution; (B) reflects the global income

redistribution. In each panel, average fixation time of each strategy invading the others are respectively shown. When a mutant G invades S population, denoting τSG
as the average time starting in pure state of S to reach G. When a mutant G invades L population, denoting τLG as the average time starting in pure state of L to reach

G. Both τSG and τLG decline with the increase of p2 and p1. Likely, a mutant L invades S population, a mutant L invades G population, a mutant S invades L

population, and a mutant S invades G population are respectively shown as τSL, τGL, τLS and τGS. It shows that the larger p2 and p1 benefit the fixation of global

cooperation. Parameters are: m = 5, M = 20, N = 100, r1 = 2, r2 = 3, s1 = 2, s2 = 160, q1 = q2 = 0.8, and ω1 = ω2 = 0.005.
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for collecting global public goods to resist the disaster. Moreover,
we study the influence of local threshold on the results. As
shown in Figure 5, the increase of s1 obviously promotes local

FIGURE 5 | The stationary distribution changes with the local threshold s1.

Local cooperation is promoted with the increase of s1, while selfishness

decreases. It has little influence on global cooperation, which slightly drops

with the increase of s1. Local risk makes the L strategy become a better

behavior to be chosen. The results are obtained under global income

redistribution mechanisms, while similar results can be found under the local

income redistribution case. Parameters are: m = 5, M = 20, N = 100, r1 = 2,

r2 = 3, s2 = 160, q1 = q2 = 0.8, p1 = 0.5, p2 = 0.5, and ω1 = ω2 = 0.005.

cooperation, while inhibits selfishness. Meanwhile, it has only
a little impact on global cooperation, which slightly drops with
the rise of s1. The results are obtained under global income
redistribution mechanisms, while similar results can be found
under the local income redistribution too. Compared with the
global threshold, local thresholds have much less effects on the
global cooperation. Since we focus on the global cooperation, we
mainly study the impacts of global threshold on the results in this
paper.

In the global income redistribution mechanism, we further
investigate the mutual influence of global threshold s2 and p2
on the evolution of strategies. As shown in Figure 6, with the
increase of s2 and p2, global cooperation shows an increasing
trend, while selfishness declines correspondingly. It is worth
noting that the trend for local cooperation with the change of
p2 is related to the size of global threshold s2. For smaller s2,
local cooperation decreases with the rise of p2; for larger s2, local
cooperation increases with the rise of p2. While for intermediate
s2, local cooperation rises under lower p2 and then reduces under
higher p2. It is found that there exists a most adaptable value
of p2 for local cooperators under global income redistribution.
This phenomenon means that, on one hand, the mechanism of
global income redistribution reduces income inequality within
the whole population, which is generally regarded to be a
positive improvement to society. But on the other hand, it
may negatively affect the efficiency of social-economic system
(local economic development). Thereby, the income expenditure
proportion, which can be described as the social tolerance,
should be limited under such case. Beyond these limits, the

FIGURE 6 | The stationary distribution changes with p2 under different global thresholds. Global cooperation is promoted with the increase of p2 as well as s2, while

selfishness decreases. It hints that players are more apt to cooperate globally under high global risks. As to local cooperation, it depends on s2. For lower s2, local

cooperation decreases with the rise of p2. For higher s2, local cooperation increases with the rise of p2. For moderate s2, local cooperation first rises and then drops

with the increase of p2. Parameters are: m = 5, M = 20, N = 100, r1 = 2, r2 = 3, s1 = 2, q1 = q2 = 0.8, and ω1 = ω2 = 0.005.
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enthusiasm of individual investment and rapid development of
social-economic system may be on the brink of collapse.

5. CONCLUSION

In this paper, we have studied the evolution of strategies in
the multi-level threshold public goods games, where global
and local cooperation are clearly distinguished. By introducing
two kinds of income redistribution mechanisms, we investigate
how income expenditure proportions (p1 and p2) and risks
(thresholds) influence the average abundance of strategies and
fixation time. It is shown that with larger income redistribution
proportions, players aremore apt to cooperate globally, especially
under high collective risks. When individuals are conscious
of an even greater calamity, they are apt to form an alliance
to prevent the risk through cooperation globally. The more
disruptive the danger is, the more likely they succeed in
collective target. Selfishness is effectively inhibited under both
income redistribution mechanisms. It implies that an income
redistribution mechanism may be effective for solving the
social dilemma of free-riders and promoting social equity. We
further compare the influences of the local and global income
redistribution on the global cooperation and local cooperation. It
is found that compared with local income redistribution, global
income redistribution is more in favor of global cooperation.
On the contrary, local income redistribution is more beneficial
for local cooperation. Our model is relatively simple compared
with the actual situations, but it characterizes some main features

of the systems with income redistribution, and show results
that the frequency of global cooperation may be promoted in

some cases. This study may provide some useful implications
for investors, fundraisers and also government officials. The
theoretical analysis in this work is only a first step toward
the models of learning process. Since learning and interaction
between players should be on the same scale, we hope more
accurate theoretical methods on this kind of models could be
explored in the future.
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