
ORIGINAL RESEARCH
published: 19 July 2018

doi: 10.3389/fphy.2018.00069

Frontiers in Physics | www.frontiersin.org 1 July 2018 | Volume 6 | Article 69

Edited by:

Ashild Fredriksen,

UiT The Arctic University of Norway,

Norway

Reviewed by:

Jan Sladkowski,

University of Silesia of Katowice,

Poland

Bikas K. Chakrabarti,

Saha Institute of Nuclear Physics,

India

*Correspondence:

Christine C. Moran

corbett@caltech.edu

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 13 April 2018

Accepted: 13 June 2018

Published: 19 July 2018

Citation:

Moran CC (2018) Quintuple: A Tool for

Introducing Quantum Computing Into

the Classroom. Front. Phys. 6:69.

doi: 10.3389/fphy.2018.00069

Quintuple: A Tool for Introducing
Quantum Computing Into the
Classroom

Christine C. Moran*

TAPIR, California Institute of Technology, Pasadena, CA, United States

In May 2016 IBM released access to its 5-qubit quantum computer to the scientific

community, its “IBM Quantum Experience” since acquiring over 60,000 users from

students, educators and researchers around the globe. In the time since the “IBM

Quantum Experience” became available, a flurry of research results on 5-qubit systems

has been published derived from the platform hardware. Quintuple is an open-source

object-oriented Python module implementing the ideal simulation of “IBM’s Quantum

Experience” hardware. Quintuple quantum algorithms can be programmed and run

via a custom language fully compatible with the “IBM’s Quantum Experience” or in

pure Python. Over 40 example programs are provided with expected results, including

Grover’s Algorithm and the Deutsch-Jozsa algorithm. Quintuple’s implementation is

aimed at students and educators wishing to incorporate quantum computing into the

classroom and enables students to follow a quantum computing calculation step-by-step

and to verify hand calculations. For these students and educators,Quintuple contributes

to the study of 5-qubit systems and the development and debugging of quantum

algorithms for deployment on the “IBM Quantum Experience” hardware.

Keywords: quantum computation, IBM quantum experience, classroom tools, quantum computing simulation,

quantum algorithms

1. INTRODUCTION

Quantum computers can perform certain tasks more efficiently than classical computers [1, 2].
Furthermore, the results and limitations of realistic quantum computers gives us insight into the
fundamentals of quantummechanics. Quantum computation has thus attracted great interest from
the research community. In 2016, IBM released access to its 5-qubit quantum computer to the
scientific community under the moniker “IBM Quantum Experience” [3]. The IBM Quantum
Experience provides access to a 5-qubit quantum computer with a limited set of gates described
by IBM as “the worlds first quantum computing platform delivered via the IBM Cloud.” A body of
research focuses on properties of 5-qubit systems [4, 5], and much of it has recently been released
or updated to rely upon results running on IBM’s Quantum Experience [6–13]. With IBM’s release
of 16- and 20- qubit systems, the study of 5-qubit systems remains ideal for the education context,
in which it is large enough to illustrate foundational quantum algorithms, yet small enough to
illustrate calculations on the blackboard.

Analyzing and simulating 5-qubit systems in detail can prepare students to exploit the
capabilities of, and developing and debugging algorithms for deployment on experimental
quantum computing infrastructure as this infrastructure scales to an increasing number of qubits
in the coming decades.

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2018.00069
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2018.00069&domain=pdf&date_stamp=2018-07-19
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:corbett@caltech.edu
https://doi.org/10.3389/fphy.2018.00069
https://www.frontiersin.org/articles/10.3389/fphy.2018.00069/full
http://loop.frontiersin.org/people/277886/overview

Moran Quintuple

Within the universal gate quantum computation paradigm,
a variety of existing software toolkits are useful in quantum
computation study and research, ranging from the general
QuTIP [14, 15] available in Python, to more specialized
toolkits available in a variety of scientific computing languages:
QUBIT4MATLAB (Matlab) [16], QCMPI (Fortran 90) [17]
provide rapid evaluation of quantum algorithms, including noise
analysis, for a large number of qubits by exploiting parallel
computing. The FEYNMAN (Maple) [18–21] program offers
interactive simulations on n-qubit quantum registers without
restrictions other than available memory and time resources
of computation. The QDENSITY (Mathematica) [22] program
provides commands to create and analyze quantum circuits. The
libquantum package (C) provides the ability to simulate a
variety of processes based on its implementation of a quantum
register [23], Qinf (Maxima) allows themanipulation of instances
of objects that appear in quantum information theory and
quantum entanglement [24]. Most relevant to the IBMQuantum
Experience, is the QISKit SDK [25] which is a comprehensive
Python library for the Quantum Experience API. A detailed
comparison between other quantum simulators is beyond the
scope of this work. Those that are available use various
computer languages, the majority in C/C++, and have different
focuses, ranging from particular algorithms, generalisability, or
scalability. A more comprehensive list of available tools for work
in quantum computation is given on the Quantiki wiki [26].

This paper focuses on universal gate quantum computation,
but it is useful to note the plethora of work in quantum
computing focusing on quantum annealing [27–29] Of
particular note in the education context is an introduction to the
simulation of such quantum annealers constructed specifically
for the classroom [30].

In this paper, I describe Quintuple, an open-source Python
module allowing both simulation of all operations available via
IBM’s Quantum Experience hardware and programming for a
5-qubit quantum computer at a high level of abstraction [31].
Quintuple is available for download and updates at https://
github.com/corbett/QuantumComputing. Quintuple allows the
researcher, educator or student to quickly and repeatedly execute
code in a simplified language compatible with execution on
the IBM Quantum Experience hardware and/or in pure Python
compatible with other Python code and libraries. By dialing in
the focus of Quintuple on the uniquely available IBM Quantum
Experience hardware, it can be deployed on the platform without
additional configuration. By keeping the implementation to just
those elements necessary to perform an ideal simulation of
IBM’s 5-qubit quantum computer, and not relying on a much
larger, fuller featured toolkit, as well as by providing an open-
source object-oriented implementation in a widely used high
level language, Python, it is hoped this module will be useful
to more novice programmers and/or those less experienced in
the intricacies of quantum computation. The core of Quintuple

is only 675 lines of Python code, and Quintuple additionally
provides over 40 example programs with expected results,
including examples of Grover’s Algorithm and the Deutsch-
Jozsa algorithm, for execution within Quintuple or on the IBM
Quantum Experience.

In section 2 a brief overview is given of the terminology and
mathematics necessary to follow the operation of Quintuple.
In section 3, the Quintuple code and the APIs to design and
test 5-qubit quantum algorithms in simulation and/or on IBM’s
hardware are introduced. In section 4, through the lens of an
algorithm which swaps the state of two qubits, various modes of
usage of the APIs presented in section 3 are presented. Section 5
provides a summary and outlook for potential future work.

2. OVERVIEW OF QUANTUM

INFORMATION

Here I give a brief primer on quantum information and
computation necessary to describe Quintuple’s implementation
and assisting in understanding the IBM Quantum Experience.
Knowledge of complex conjugation, basic linear algebra fluency;
matrix operations including multiplication, tranpose, trace, and
tensor products is assumed, among other mathematical concepts.
Explicit exposition of this formalism and any explanation of the
whys of quantum mechanics is beyond the scope of this limited
overview of quantum information. For an detailed overview
of the math and quantum mechanics of quantum information,
as well as a lucid exposition of the fundamentals of quantum
information in detail, an excellent resource is the canonical
textbook of Nielsen and Chuang [32]. For further overview of
the simulation of n-qubit systems the overview by Radtke is an
excellent supplement to this more limited exposition [18].

A qubit is the quantum generalization of a classical bit.
Unlike a classical bit, it can take any value corresponding
to a linear superposition of its constituents: formally two
orthonormal eigenstates. Our default choice of basis throughout
this manuscript is

{|0〉 =

(

1
0

)

, |1〉 =

(

0
1

)

}

This multi-purpose notation (〈| or |〉), used throughout this
manuscript to represent a quantum state, is called bra-ket or
Dirac notation and is standard in quantum mechanics. Without
getting into a detailed discussion of the mathematics, one can,
simplistically, think of the symbol lying between the |〉 notation
as being a label for the state. Whether the notation is |symbol〉 vs.
〈symbol| indicates whether it is represented as a column or a row
vector respectively, where 〈symbol| is the conjugate transpose of
|symbol〉 and vice versa.

Thus a generic one-qubit state |ψ〉 is

|ψ〉 = a |0〉 + b |1〉 . (1)

The coefficients a, b are complex numbers and these complex
coefficients provide the representation of ψ in the |0〉 , |1〉 basis.
The probability of finding |ψ〉 in state |0〉 is |a|2 = aa∗ where
a∗ is the complex conjugate of a, similarly the probability of

finding |ψ〉 in state |1〉 is
∣

∣b
∣

∣

2 = bb∗. These two probabilities

normalize to one:|a|2 +
∣

∣b
∣

∣

2 = 1. A single qubit state |ψ〉 can be
physically realized by a variety of mechanisms which correspond

Frontiers in Physics | www.frontiersin.org 2 July 2018 | Volume 6 | Article 69

https://github.com/corbett/QuantumComputing
https://github.com/corbett/QuantumComputing
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Moran Quintuple

to a quantum-mechanical two-state systems, for example a two
spin system, or a two level system, amongmany others. The Bloch
sphere is a useful way to visualize the state of a single qubit on
a unit sphere. Formally, in the Bloch sphere representation the
qubit state is written as

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 , (2)

where θ and φ are the polar coordinates to describe a vector on
the unit sphere.

To make use of the power of quantum computation we will in
general want more than one qubit. In a classical n-bit register we
can initialize each bit to 0 or 1. For example to represent the base
10 number 19 in a classical 5-bit register we can set its elements
to 10011. For n qubits, to create an analogous state, a so-called
quantum register we prepare the state |10011〉 = |1〉 ⊗ |0〉 ⊗
|0〉 ⊗ |1〉 ⊗ |1〉. Here ⊗ corresponds to the tensor product (also
known as the direct or Kronecker product). Generically an n-bit
quantum register can hold any superposition of n-qubit states.

For an n qubit state there are 2n possible values of which
the n-qubit state can, in general, be a superposition of. For
example for a 2-qubit state we have 22 = 4 possible states,
{|00〉 , |01〉 , |10〉 , |11〉}. For a 3-qubit state we have 23 = 4
possible states or

{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}. (3)

Numbering the states from 0 to 2n − 1, the canonical ordering
used throughout this manuscript is:

1
∑

m=0

. . .

1
∑

j=0

1
∑

i=0

|ij...m〉, (4)

where the number of summations corresponds to the total
number of qubits. Thus if we incorporate the amplitudes,
the complex coefficients of these states, we can compute the
probability of finding

|ψ〉 =
1
∑

m=0

. . .

1
∑

j=0

1
∑

i=0

cij...m |ij...m〉, (5)

in state |ij...m〉 as the squared absolute value of cij...m, |cij...m|2 =
cij...mc

∗
ij...m.

If we can represent an n-qubit state as the tensor product of
the states of individual qubits

|q0q1 . . . qn〉 = |q0〉 ⊗ |q1〉 ⊗ . . .⊗ |qn〉, (6)

the state is called separable. However, due to the nature of
superposition, it may be that a multi-qubit state is non-separable
and individual qubits states are not well defined independent of
other qubits. This non-local correlation phenomenon known as
entanglement is a necessary resource to achieve the exponential
speed up of quantum compared to classical computation [33]. As

such, the concept of quantum registers, necessary to store multi-
qubit non-separable states, will play a primary role in quantum
computation simulation.

We have outlined the analogy to the classical n-bit register,
the n-qubit quantum register for keeping track of quantum data.
Here we will do the same with a classical gate and a quantum
gate, which evolve classical and quantum states respectively. In
classical computation, a classical gate operates on a classical
register to evolve its state. In quantum computation, a quantum
gate operates on a quantum register to evolve its state. Quantum
states can be represented by matrices; the mathematics of the
evolution of quantum states can unsurprisingly be represented
by matrices as well. To represent quantum gates, these matrices
must conform with the postulates of quantum mechanics as they
multiply a state to produce an evolved state. Specifically, we know
that the evolution of states must conserve probability (preserve
norms); we cannot produce a state which is a superposition of
states with probability greater than one.

Matrices which ensure the conservation of probability when
they multiply states are called unitary. Formally, this corresponds
to any matrix U which satisfies the property that its conjugate
transpose U† is also its inverse, that is U†U = UU† = I, where
I is the identity matrix. In quantum computation, a quantum
gate corresponds to a unitary matrix, and any unitary matrix
corresponds to a valid quantum gate. Since unitary matrices
are always invertible, quantum gates and thus computation is
reversible; any operation we can do we can undo [34]. As a
qubit state can be realized physically by a variety of quantum
mechanical systems, so can quantum gates be physically realized
by a variety of quantum mechanical mechanisms, which must
necessarily depend on the system’s representation of the qubit.
For example, in a system where qubits are represented by ions in
a quantum trap, a laser tuned to a particular frequency can induce
a unitary transformation effectively acting as a quantum gate.

Gates acting on a single qubit can be applied to a quantum
register of an arbitrary qubit number. For example, for a gate
X if the desired qubit to act on is the 3rd qubit in a 4-qubit
quantum register. X is a gate which flips the qubit it acts on from
|0〉 to |1〉 or from |1〉 to |0〉. The appropriate gate is formed via
X3of4 = I ⊗ I ⊗ X ⊗ I where I is the 2 × 2 identity matrix. In
general, to create a gate Gmofn to operate on the mth qubit of a
register of n qubits from a gate G that operates on a single qubit,
one may use

Gi of n =
n
⊗

i=1

{

I if i 6= m

G if i = m.
(7)

Here,
⊗n

i=1 is the analog of
∑n

i=0 corresponding to the tensor
product, instead of the summation operation. We can see that
the application of a gate on a single qubit in this fashion doesn’t
generate entanglement as it never results in the expansion of the
size of the quantum register it is acting on.

Specific sets of classical gates, for example the the NOT and
AND gates can be used to construct all other classical logic gates
and thus forms a set of universal classical gates. Other such sets
exist; in fact the NAND, negative and gate alone is a universal
classical gate [32]. In quantum computation, to obtain a universal

Frontiers in Physics | www.frontiersin.org 3 July 2018 | Volume 6 | Article 69

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Moran Quintuple

gate set we will need a multi-qubit gate which applies on 2-qubits
of an n-qubit register. The CNOT gate is one such gate. CNOT
is the 2-qubit controlled not gate. Its first input is known as the
control qubit, the second as the target qubit and the state of
the target qubit is flipped on output if and only if the control
qubit is |1〉. The application of CNOT can under many scenarios
generate entanglement. CNOT combined with single qubit gates
can approximate arbitrarily well any (unitary) operation on a
quantum computer [35]. Quantum gates can be combined to
form quantum circuits, the analog to classical circuits composed
of logic gates connected by wires. The full set of gates that both
the IBM Quantum Experience and Quintuple support, form a
(non-minimal) universal quantum gate set, such that we can
combine the gates in a quantum circuit to create any multi-qubit
logic gate we desire.

We’ll need to understand how measurement functions in
quantum mechanics to understand the constraints of extracting
information from a quantum register. Measurement in quantum
mechanics is something which engages a lot of discussion, but its
properties are straightforward to state in mathematics if not in
philosophy. It is possible to perform a measurement of a single
qubit with respect to any basis {|a〉 , |b〉} (not just the default
{|0〉 , |1〉} basis) so long as this basis is orthonormal, that is that
the total probability is one. It likewise is possible to measure a
multi-qubit systemwith respect to any orthonormal basis. Earlier,
we stated that the probability of finding:

|ψ〉 =
1
∑

m=0

. . .

1
∑

j=0

1
∑

i=0

cij...m |ij...m〉, (8)

in state |ij...m〉 is the squared absolute value of cij...m,
∣

∣cij...m
∣

∣

2 =
cij...mc

∗
ij...m. Here when we perform ameasurement we actually do

find the system in one of these states |ij...m〉 with the appropriate
probability |cij...m|2. After the measurement is performed, the
state is collapsed and all further measurements return the same
result, state |ij . . .m〉 with probability 1.

3. QUANTUM INFORMATION TOOLS

REPRESENTED IN QUINTUPLE

Only those states and gates which are useful to interfacing with
IBM’s 5-qubit quantum computer are supported by Quintuple.
The only external Python module Quintuple relies upon is the
numpymodule. The core of Quintuple is just 675 lines long.

3.1. States
States are available as static member variables of the
class State. The following qubit states are are available

Standard (z) basis (State.zero_state,State.one_state):

|0〉 =

(

1
0

)

, |1〉 =

(

0
1

)

. (9)

Diagonal (x) basis (State.plus_state,State.minus_state):

|+〉 =
1
√
2

(

1
1

)

, |−〉 =
1
√
2

(

1
−1

)

. (10)

Circular (y) basis (State.plusi_state,State.minusi_
state):

|�〉 =
1
√
2

(

1
i

)

, |	〉 =
1
√
2

(

1
−i

)

. (11)

The class State has a variety of helper methods, including
those to transform to the x or y basis, to see if a multi-
qubit state is simply separable into individual qubits in the
set {|0〉, |1〉, |+〉, |−〉, |�〉, |	〉}, and to extract the nth qubit
from a separable multi-qubit state. This class implements the
measurement method, following the limitations of nature, and
supports retrieving a state’s representation on the Bloch sphere,
not possible in nature but feasible in simulation. The class also
has a method to create a state from binary string (e.g., “01011”
corresponding to |01011〉) and return a string from a separable
state. For example, we can compute the representation of the state
|10011〉 in theQuintuplemodule numerically with

np.kron(State.one_state ,np.kron(

State.zero_state ,np.kron(

State.zero_state ,np.kron(

State.one_state ,State.one_state))))

or more concicely by State.state_from_string(“10011”).

3.2. Gates
A variety of single qubit gates are supported, as is the 2-qubit
gate CNOT. Later, the class QuantumComputer will use these
gates as building blocks to define gates which operate on quantum
registers of up to 5-qubits appropriately. In the following gate
definitions the Python syntax is given in parenthesis.

H gate; Hadamard gate (Gate.H):

H =
1
√
2

(

1 1
1 −1

)

. (12)

X,Y ,Z gates; Pauli gates (Gate.X,Gate.Y,Gate.Z):

X =

(

0 1
1 0

)

, (13)

Y =

(

0 −i
i 0

)

, (14)

Z =

(

1 0
0 −1

)

. (15)

I gate; Identity gate (Gate.eye):

I =

(

1 0
0 1

)

. (16)

S gate; Phase gate (Gate.S):

S =

(

1 0
0 i

)

. (17)

Frontiers in Physics | www.frontiersin.org 4 July 2018 | Volume 6 | Article 69

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Moran Quintuple

S† gate (Gate.Sdagger):

S† =

(

1 0
0 −i

)

. (18)

T gate; π/8 gate (Gate.T):

T =

(

1 0

0 e
iπ
4

)

. (19)

T† gate (Gate.Tdagger):

T† =

(

1 0

0 e−
iπ
4

)

. (20)

CNOT gate (Gate.CNOT2_01):

CNOT =











1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0











. (21)

It can easily be checked that these gates produce the desired
behavior. All other combinations of target and control qubits
are available within class Gate acting on quantum registers
of up to 5 qubits. Here, the number appearing after the CNOT
indicates the number of qubits in the register the gate is to operate
on, the first subscript indicates the control qubit index in the
entangled qubit register, and the second subscript indicates the
target qubit index, both 0 based. For example CNOT4_03 is to
operate on a 4-qubit register with the 0th qubit corresponding
to the control qubit and the 3rd qubit corresponding to the
target qubit. The class QuantumComputer helpfully supports
specifying only the target and control qubits when applying the
CNOT gate and automatically deploys the correct gate to achieve
this based on the internal configuration of its quantum registers.

3.3. Probabilities
Several convenience methods are provided to help
compute probabilities and expectation values. For a
qubit residing in a quantum register representing an
arbitrary number of entangled qubits, the method
Probability.get_probabilities(qubit) returns an
array of probabilities representing the quantum register in
the canonical ordering defined in Equation (4). The method
Probability.pretty_print_probabilities prints each
state and its associated probability for easy examination. For
a state representing a single qubit, there are several additional
methods available within class Probability to help calculate
the expectation of the state in the standard (z), circular (x) or
diagonal bases, respectively.

3.4. QuantumRegister
To represent a possibly non-separable group of distinguishable
qubits, one can treat them together in terms of a single quantum
register to keep track of their ordering and their entangled state.

Quintuple uses the class QuantumRegister for this purpose,
and the register is managed by the class QuantumComputer
so that it isn’t necessary to follow how the qubits within
class QuantumComputer are internally arranged for the user
to be able to perform operations and measurements. The
QuantumRegister object can be queried as to the number of
qubits it represents, which particular qubits it represents, its state,
and whether it is equal to another QuantumRegister object.

The class QuantumRegister has an additional method not
provided in nature. Specifically a qubit is a superposition of states
and when measured its state collapses to just one of these states
with a probability given by the probability amplitude squared.
All further measurements return the same state as the qubit is
no longer in a superposition of states. The QuantumComputer
supports measurement in the fashion of nature, but it also for
convenience of further analysis, saves the value of the full state
before collapse in the QuantumRegister object, which can be
retrieved with the method get_noop().

3.5. QuantumRegisterCollection
The class QuantumRegisterCollection is an abstraction
that assists the class QuantumComputer in managing its
QuantumRegisters. This class returns the register in which
a particular qubit resides, manages the merging of two
QuantumRegisters under the hood via its entangle_qubits
method, and allows easy querying as to the order of the qubits it
is representing. This is useful to the class QuantumComputer
as it supports the user querying about the state of the qubits
in any increasing order the user desires. The abstraction of the
QuantumRegisterCollection allows the QuantumComputer
to keep the qubits separately, in separate registers for as long as
possible, only merging into a single register when necessary. This
means that the matrix operations associated with gate action are
kept smaller and that states are kept separated for clarity for as
long as is possible.

3.6. QuantumComputer
The class QuantumComputer manages five qubits in an
arbitrary grouping of quantum registers and allows the
user to apply quantum gates and measure and extract
state information without having to consider how the
qubits are internally represented. At creation or upon
reset, the class QuantumComputer prepares five qubits
named “q0,” “q1,” “q2,” “q3,” “q4,” and “q5” each having
state |0〉. Its two primary methods are apply_gate and
apply_two_qubit_gate_CNOT, which allow the user to
apply the respective one and two qubit quantum gates which
Quintuple supports. Additionally, the execute method allows
the user to execute code snippets in a simplified syntax designed
to be fully compatible with execution on the IBM Quantum
Experience hardware, which compiles to use the appropriate
pure Python methods. After the evolution code has been
executed, the internal state can be easily queried and compared
to expected results.

Frontiers in Physics | www.frontiersin.org 5 July 2018 | Volume 6 | Article 69

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Moran Quintuple

3.6.1. Applying Gates to Individual Qubits
The method apply_gate takes as arguments a gate of the
class Gate and the name of the qubit to act on. Under the
hood, this method acts on this qubit by simply applying the gate
if the qubit is the only element of its quantum register, or if the
qubit is a member of a quantum register with more than one
element, by creating and applying the corresponding gate to act
on that qubit within the register.

3.6.2. Applying Controlled Gates to Two Qubits
The apply_two_qubit_gate_CNOT method has a similar
syntax, taking as an argument the name of the control and
the name of the target qubit. No gate name is needed as this
method handles CNOT only. The quantum register(s) containing
these two qubits, potentially the same register, are found within
the QuantumComputer’s QuantumRegisterCollection. If the
two quantum registers the method is acting on (containing
the control and the target qubit respectively) are distinct
and each contain one qubit only, then a combined state
corresponding to the tensor product of these two states is
created and the default Gate.CNOT2_01 gate is applied. If
after application, the combined state is fully separable into
two individual qubits in the z basis ({|0〉 , |1〉}), the target
qubit is alone changed and the two are not entangled. If,
however, after the application the combined state is not fully
separable in this fashion, they are merged into a single quantum
register.

If one or both of the quantum registers given contain more
than one qubit, then their states are likewise combined via a
tensor product as necessary (if they don’t already reside in the
same quantum register). Then the appropriate CNOT matrix
formulation for the combined state is applied to the combined
state. The state of the relevant quantum register–the new register
if one was created, otherwise the existing register which held
both qubits–is set to the output of this calculation. Although
Quintuple currently supports only the CNOT controlled gate
out of the box; additional controlled gates could be easily
supported. Indeed, given that the gate set Quintuple supports is
universal further controlled gates can be built out of supported
components without modification.

3.6.3. Measurement
The measure method of the class QuantumComputer does
a probabilistic measurement of the quantum register in which
the desired qubit resides. The measurement is performed in
the default (z) basis and collapses the state. Since we are in a
simulation, we can perform the same computation repeatedly
and verify that the measurement operation statistically converges
to the distribution given by the probability amplitude of the
state in superposition resulting from the computation. Since
we are in a simulation we can also have direct access to these
amplitudes. For convenience, before ameasurement is performed
the state in superposition is stored and is accessible later via
the method get_noop() of the class QuantumRegister.
Nature doesn’t give us this information, but the Quintuple

module can. This is useful for testing or later analysis. The

bloch method of class QuantumComputer implements the
capability of visualizing a single qubit on the bloch sphere. If the
value of get_noop() is set, the state has been accessed and is
collapsed.

3.6.4. Checking Output
Internally, class QuantumComputer may be representing
qubits in any combination of QuantumRegisters and within
each QuantumRegister in any order. To compare to expected
outputs, we need to be able to compare the probability amplitudes
or qubit states for a collection of qubits in a specified order
or to compare the Bloch coordinates for a given qubit to an
expected result. Thus, methods are provided so that the user can
specify a qubit or group of qubits in a comma separated string,
along with the expected result in their specified order and use
an equality to test whether the result matches. The algorithm
used to output the entangled state in the desired order is given in
Appendix A (SupplementaryMaterial). At this time the requested
order must be in increasing qubit index order due to the detailed
implementation of the reordering algorithm.

The probabilites_equal and qubit_states_equal

methods function similarly, the former comparing probabilities
and the latter amplitudes. If one of the quantum registers
contains the requested qubits in order directly, this is simply
computed and returned. Otherwise, an algorithm is run to output
an entangled state representing the ordered tensor product of
the requested qubits, and the probability or amplitude vector
representing this entangled state is compared to that specified
by the user. The bloch_coords_equal simply compares the
Bloch representation of the desired qubit to that specified, if it
happens to be in its own quantum register. If the desired qubit is
in a quantum register with other qubits, it attempts to separate
it from the quantum register in which it resides. The “easy”
separation algorithm is simplistic, and only succeeds if the state
is a permutation of the tensor product single-qubit states which
are in the set {|0〉, |1〉, |+〉, |−〉, |�〉, |	〉}. Thus, just because the
separation algorithm returns failure does not imply the state
is fundamentally inseparable. If the desired qubit is not easily
separable from others in its quantum register, the comparison
method raises an exception. If it is, then the method finds the
desired qubit, now in a single qubit state, and compares the result
to that desired.

3.6.5. Execution of Programs in IBM’s Syntax
Programs for execution on Quintuple’s
class QuantumComputer can be written in a concise format,
compatible with direct execution on the IBM Quantum
Experience hardware. It is the language which is printed out to
accompany the graphical setup of states, gates, and measurement
operations in the IBM Quantum Experience interface. The
interface also allows the user to simply copy and paste programs
in this language, rather than forcing them through the graphical
intermediary.

Currently, the following syntax for use in
class QuantumComputer’s execute method encompasses all

Frontiers in Physics | www.frontiersin.org 6 July 2018 | Volume 6 | Article 69

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Moran Quintuple

that a user is able to do on the 5-qubit IBM Quantum Experience
hardware:

available qubit list q[0],q[1],q[2],q[3],q[4]

1-qubit gate list h,t,tdg,s,sdg,x,y,z,id

1-qubit gate action “gate q[i];”

2-qubit CNOT gate list cnot

2-qubit CNOT gate action “cnot q[control], q[target];”

measurement operation list measure, bloch

measurement operation action “operation q[i];”

Here {h,t,tdg,s,sdg,x,y,z,id} correspond to the Python

Gate.H, Gate.T, Gate.Tdagger, Gate.S,
Gate.Sdagger,

Gate.X, Gate.Y, Gate.Z, Gate.eye

A program in this syntax it can be executed easily. Program code
can be put in a Python string or equivalently read in from a
file into a string. The code can be executed with the execute
method, and afterwards the state of the quantum computer can
be probed as desired in pure Python. The following section
4 contains an explicit example of code in this syntax and its
usage. For convenience, although the execute method takes in
a string representing the program code, for testing and keeping
track of program output the class Program is provided. This
has the code in its code variable but additionally can store an
expected result_probability or bloch_vals. For perusal,
use, elaboration and testing, over 40 example programs are
collected in the class Programs.

4. QUINTUPLE CODE, EXPLORATION OF

MODES OF USAGE

In this section a variety of modes of usage of the Quintuple

module are provided. For consistency and comparison,
each example mode of usage executes the same algorithm,
corresponding to swapping the states of two qubits. As a more
detailed overview of the action of this algorithm, here the
quantum computer begins with |q1〉 = |0〉, |q2〉 = |0〉. Then the
code applies the X gate to |q2〉 which inverts it to be |q2〉 = |1〉.
Thus at the initial stage |q1q2〉 = |01〉. The algorithm then
applies a series of CNOT and H gates such that we end up with
|q1q2〉 = |10〉, a swapping of the states of the qubits at the initial
stage.

4.1. Syntax Compatible With IBM Quantum

Experience Hardware
To prepare for execution, we set the swap_code variable to the
string containing the program code:

x q[2];

cx q[1], q[2];

h q[1];

h q[2];

cx q[1], q[2];

h q[1];

h q[2];

cx q[1], q[2];

measure q[1];

measure q[2];

We can then execute and examine the results with:

qc=QuantumComputer()

qc.execute(swap_code)

Probability.pretty_print_probabilities(

qc.qubits.get_quantum_register_
containing(

"q1").get_state())

which will print, as expected:

|psi>=|10>

Pr(|10>)=1.000000;

4.2. Swap Program in Pure Python
This same algorithm can be executed in pure python using the
machinery of class QuantumComputer

qc=QuantumComputer()

qc.apply_gate(Gate.X,‘‘q2’’)

qc.apply_two_qubit_gate_CNOT("q1","q2")

qc.apply_gate(Gate.H,"q1")

qc.apply_gate(Gate.H,"q2")

qc.apply_two_qubit_gate_CNOT("q1","q2")

qc.apply_gate(Gate.H,"q1")

qc.apply_gate(Gate.H,"q2")

qc.apply_two_qubit_gate_CNOT("q1","q2")

qc.measure("q1")

qc.measure("q2")

4.3. Swap in Pure Python, Without the

QuantumComputer Machinery
Equivalently this algorithm can be run using the machinery of
the Quintuple module states and gates without relying on the
abstraction of its class QuantumComputer in the following
manner:

q1=State.zero_state

q2=State.zero_state

q2=Gate.X∗q2
new_state=Gate.CNOT2_01∗np.kron(q1,q2)
H2_0=np.kron(Gate.H,Gate.eye)

H2_1=np.kron(Gate.eye,Gate.H)

new_state=H2_0∗new_state
new_state=H2_1∗new_state
new_state=Gate.CNOT2_01∗new_state
new_state=H2_0∗new_state
new_state=H2_1∗new_state
new_state=Gate.CNOT2_01∗new_state

This manner of working with the module provides the most
complete mathematical understanding of the operations that
class QuantumComputer is abstracting. Any individual state

Frontiers in Physics | www.frontiersin.org 7 July 2018 | Volume 6 | Article 69

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Moran Quintuple

or gate can be printed, and it is clear how entanglement is
represented as this is not done under the hood. This mode
of execution also provides the most clear understanding of
the convenience that Quintuple’s class QuantumComputer
affords. Explicit execution in this manner requires a more
complicated syntax, manual management of quantum registers,
and no convience methods are available.

5. SUMMARY AND OUTLOOK

Quintuple has been developed to aid the study and research
of 5-qubit systems, with a focus on educational application.
Quintuple facilitates the understanding and exploration of
quantum algorithms for deployment on IBM’s Quantum
Experience by providing an out-of-the-box self-contained ideal
simulator of IBM’s 5-qubit hardware and software infrastructure.
Using the widely available and open source computer language
Python and its numerical module numpy, Quintuple provides
full support for all operations available on the IBM Quantum
Experience hardware. This quantum computer class can be used
interactively or scripted, in native Python or using a simplified
syntax directly compatible with that used on the IBM Quantum
Experience infrastructure. Quintuple has been designed to be
flexible enough to be simply extended to support further qubits,
gates, syntax, and algorithmic abstractions as the IBM Quantum
Experience infrastructure itself expands in functionality. These
expansion endeavors would themselves integrate well into the
classroom.

Several extensions of Quintuple are planned. First, as the
IBMQuantumExperience evolves, whether to support additional
gates, qubit number, or abstraction, Quintuple will necessarily
need to be updated to keep parity. Some of these updates can
and will be done in anticipation, so long as the simplicity of
Quintuple is maintained and is backwards compatible with the
existing IBM Quantum Experience hardware support. Second,
Quintuple is an ideal quantum computer simulator, but a real
quantum computer has a variety of interactions of a quantum
register with its environment. Hardware designers attempt to
minimize such interactions, but realistically always exist. These

interactions, due to the noise of the environment, induce a non-
unitary evolution component to the system, resulting in a loss of
information called decoherence. The IBM Quantum Experience

hardware is no exception to being susceptible to these non-
ideal interactions, and it is possible to model these as well in
simulation. Doing so will make Quintuple even more useful to
researchers designing and implementing algorithms to run on
the IBM Quantum Experience, so integrating such modeling is
planned for a future update ofQuintuple.

The author has successfully usedQuintuple as an educational
tool to introduce students to quantum computing concepts such
as universal gate quantum computing, qubits, quantum registers,
quantum gates, quantum circuits and quantum algorithms.
Quintuple’s approach allows teaching students without a firm
grasp of linear algebra at a level in between the abstraction of
the IBM Quantum Experience and low-level hand calculations
involving more detailed mathematical understanding. Early
exposure to quantum computation encourages and enables
students to acquire the necessary mathematical ability as they
progress in their studies. The author currently is writing
a textbook companion to this classroom usage. After the
publication of the codebase and the textbook a detailed study as
toQuintuple’s use in the classroom is planned.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
approved it for publication.

ACKNOWLEDGMENTS

This paper was written while on leave from NSF AAPF grant
1501208 to conduct observations in Antarctica with the South
Pole Telescope. I would like to thank Dr. Casey Handmer and
Dr. Jerry M. Chow respectively for helpful comments during
the preparation of this manuscript. I acknowledge use of the
IBM Quantum Experience for this work. The views expressed
are those of the author and do not reflect the official policy or
position of IBM or the IBM Quantum Experience team.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2018.00069/full#supplementary-material

REFERENCES

1. Shor PW. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J Comput. (1997) 26:1484–09.

doi: 10.1137/S0097539795293172

2. Bennett CH, Bernstein E, Brassard G, Vazirani U. Strengths and weaknesses

of quantum computing. SIAM J Comput. (1997) 26:1510–23.

3. IBM Quantum Experience (2018). Available online at: http://www.research.

ibm.com/quantum/

4. Touchette D, Ali H, Hilke M. 5-Qubit Quantum Error Correction in a Charge

Qubit Quantum Computer. arXiv:10103242. [Preprint]. (2010) Available

online at: https://arxiv.org/abs/1010.3242

5. Das R, Bhattacharyya R, Kumar A. Quantum information processing by

NMR using a 5-qubit system formed by dipolar coupled spins in an oriented

molecule. J Magnet Reson. (2004) 170:310–21. doi: 10.1016/j.jmr.2004.07.008

6. Devitt SJ. Performing quantum computing experiments in the cloud. Phys Rev

A (2016) 94:032329. doi: 10.1103/PhysRevA.94.032329

7. Alsina D, Latorre JI. Experimental test of Mermin inequalities on a 5-qubit

quantum computer. arXiv:160504220. [Preprint]. (2016). Available online at:

http://arxiv.org/abs/1605.04220

8. Rundle R, Tilma T, Samson JH, Everitt MJ. Quantum state reconstruction

made easy: a direct method for tomography. arXiv:1605.08922 (2016).

9. Berta M, Wehner S, Wilde MM. Entropic uncertainty and measurement

reversibility. N J Phys. (2015) 18:073004. doi: 10.1088/1367-2630/18/7/073004

10. Takita M, Córcoles AD, Magesan E, Abdo B, Brink M, Cross

A, et al. Demonstration of weight-four parity measurements in

the surface code architecture. Phys Rev Lett. (2016) 117:210505.

doi: 10.1103/PhysRevLett.117.210505

11. Li R, Alvarez-Rodriguez U, Lamata L, Solano E. Approximate quantum

adders with genetic algorithms: an IBM quantum experience. Quant

Frontiers in Physics | www.frontiersin.org 8 July 2018 | Volume 6 | Article 69

https://www.frontiersin.org/articles/10.3389/fphy.2018.00069/full#supplementary-material
https://doi.org/10.1137/S0097539795293172
http://www.research.ibm.com/quantum/
http://www.research.ibm.com/quantum/
https://arxiv.org/abs/1010.3242
https://doi.org/10.1016/j.jmr.2004.07.008
https://doi.org/10.1103/PhysRevA.94.032329
http://arxiv.org/abs/1605.04220
https://doi.org/10.1088/1367-2630/18/7/073004
https://doi.org/10.1103/PhysRevLett.117.210505
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Moran Quintuple

Measure Quant Metrol. (2017) 4:1–7. doi: 10.1515/qmetro-2017-

0001

12. Castelvecchi D. Quantum cloud goes commercial. Nature (2017) 543:159.

doi: 10.1038/nature.2017.21585

13. Deffner S. Demonstration of entanglement assisted invariance

on IBM’s Quantum Experience. Heliyon (2017) 3:e00444.

doi: 10.1016/j.heliyon.2017.e00444

14. Johansson JR, Nation PD, Nori F. QuTiP: An open-source Python framework

for the dynamics of open quantum systems. Comput Phys Commun. (2012)

183:1760–72. doi: 10.1016/j.cpc.2012.02.021

15. Johansson JR, Nation PD, Nori F. QuTiP 2: A Python framework for

the dynamics of open quantum systems. Comput Phys Commun. (2013)

184:1234–40. doi: 10.1016/j.cpc.2012.11.019

16. Tóth G. QUBIT4MATLAB V3.0: A program package for quantum

information science and quantum optics for MATLAB. Comput Phys

Commun. (2008) 179:430–7. doi: 10.1016/j.cpc.2008.03.007

17. Tabakin F, Juliá-Díaz B. QCMPI: A parallel environment for

quantum computing. Comput Phys Commun. (2009) 180:948–64.

doi: 10.1016/j.cpc.2008.11.021

18. Radtke T, Fritzsche S. Simulation of n-qubit quantum systems. I. Quantum

registers and quantum gates. Comput Phys Commun. (2005) 173:91–113.

doi: 10.1016/j.cpc.2005.07.006

19. Radtke T, Fritzsche S. Simulation of n-qubit quantum systems. II.

Separability and entanglement. Comput Phys Commun. (2006) 175:145–66.

doi: 10.1016/j.cpc.2006.03.006

20. Radtke T, Fritzsche S. Simulation of n-qubit quantum systems. III.

Quantum operations. Comput Phys Commun. (2007) 176:617–33.

doi: 10.1016/j.cpc.2007.02.106

21. Radtke T, Fritzsche S. Simulation of n-qubit quantum systems. IV.

Parametrizations of quantum states, matrices and probability distributions.

Comput Phys Commun. (2008) 179:647–64. doi: 10.1016/j.cpc.2008.06.007

22. Juliá-Díaz B, Burdis JM, Tabakin F. QDENSITY-A Mathematica

quantum computer simulation. Comput Phys Commun. (2009) 180:474.

doi: 10.1016/j.cpc.2008.10.006

23. Butscher B, Weimer H. Libquantum (2016). Available online at: http://www.

libquantum.de

24. Lapeyre, J . Qinf Quantum Information and Entanglement Package for the

Maxima Computer Algebra System (2016). Available online at: http://www.

johnlapeyre.com/qinf/index.html

25. QISKit API: GitHub repository (2018). Available online at: https://github.

com/QISKit/qiskit-api-py

26. Quantiki: List of QC simulators (2016). Available online at: https://quantiki.

org/wiki/list-qc-simulators

27. Das A, Chakrabarti BK. Colloquium: quantum annealing and

analog quantum computation. Rev Modern Phys. (2008) 80:1061.

doi: 10.1103/RevModPhys.80.1061

28. Albash T, Lidar DA. Adiabatic quantum computation. Rev Modern Phys.

(2018) 90:015002.

29. Tanaka S, Tamura R, Chakrabarti BK. Quantum Spin Glasses, Annealing and

Computation. Cambridge University Press (2017).

30. Rodríguez-Laguna J, Santalla SN. Building an adiabatic quantum

computer simulation in the classroom. Am J Phys. (2018) 86:360–7.

doi: 10.1119/1.5021360

31. Quintuple Source Code (2018). Available online at: https://github.com/

corbett/QuantumComputing

32. Nielsen MA, Chuang IL. Quantum Computation and Quantum Information.

Cambridge University Press (2010).

33. Jozsa R, Linden N. On the role of entanglement in quantum-computational

speed-up. In: Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences. The Royal Society (2003). p.

2011–32.

34. Bennett CH. Logical reversibility of computation. IBM J Res Dev (1973)

17:525–32.

35. Barenco A, Bennett CH, Cleve R, Divincenzo DP, Margolus N, Shor P, et al.

Elementary gates for quantum computation. Phys Rev A (1995) 52:3457–67.

doi: 10.1103/PhysRevA.52.3457

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Moran. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 9 July 2018 | Volume 6 | Article 69

https://doi.org/10.1515/qmetro-2017-0001
https://doi.org/10.1038/nature.2017.21585
https://doi.org/10.1016/j.heliyon.2017.e00444
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2008.03.007
https://doi.org/10.1016/j.cpc.2008.11.021
https://doi.org/10.1016/j.cpc.2005.07.006
https://doi.org/10.1016/j.cpc.2006.03.006
https://doi.org/10.1016/j.cpc.2007.02.106
https://doi.org/10.1016/j.cpc.2008.06.007
https://doi.org/10.1016/j.cpc.2008.10.006
http://www.libquantum.de
http://www.libquantum.de
http://www.johnlapeyre.com/qinf/index.html
http://www.johnlapeyre.com/qinf/index.html
https://github.com/QISKit/qiskit-api-py
https://github.com/QISKit/qiskit-api-py
https://quantiki.org/wiki/list-qc-simulators
https://quantiki.org/wiki/list-qc-simulators
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1119/1.5021360
https://github.com/corbett/QuantumComputing
https://github.com/corbett/QuantumComputing
https://doi.org/10.1103/PhysRevA.52.3457
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Quintuple: A Tool for Introducing Quantum Computing Into the Classroom
	1. Introduction
	2. Overview of Quantum Information
	3. Quantum information tools represented in Quintuple
	3.1. States
	3.2. Gates
	3.3. Probabilities
	3.4. QuantumRegister
	3.5. QuantumRegisterCollection
	3.6. QuantumComputer
	3.6.1. Applying Gates to Individual Qubits
	3.6.2. Applying Controlled Gates to Two Qubits
	3.6.3. Measurement
	3.6.4. Checking Output
	3.6.5. Execution of Programs in IBM's Syntax

	4. Quintuple Code, exploration of modes of usage
	4.1. Syntax Compatible With IBM Quantum Experience Hardware
	4.2. Swap Program in Pure Python
	4.3. Swap in Pure Python, Without the QuantumComputer Machinery

	5. Summary and Outlook
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

