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In this paper we discuss recent results regarding the question of adaptation to

changing environments in intermediate timescales and the quantification of the amount

of information a cell needs about its environment, connecting the theoretical approaches

with relevant experimental results. We first show how advances in the study of noise

in genetic circuits can inform a detailed description of intracellular information flow and

allow for simplified descriptions of the phenotypic state of a cell. We then present the

different types of strategies that cells can use to respond to changing environments, and

what a quantitative description of this process implies about the long term fitness of the

population. We present an early approach connecting the transmission of information to

the average fitness, and then move on to a full model of the process. This model is then

simplified to obtain analytical results for a few cases. We present the necessary notation

but avoid technical detail as much as possible, as our goal is to emphasize the biological

interpretation and significance of the mathematical results. We focus on how carefully

constructed models can answer the long-standing objection to the use of information

theory in biology based on decision-theoretic considerations of the difference between

the amount of information and its fitness value.
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INTRODUCTION

It has long been recognized that information about the environment is crucial for survival of
all living things, and that a connection exists between long term environment and genotype and
short term environment and phenotype. It has even been proposed that information storage and
transmission is the fundamental feature of evolution [1]. Since evolution occurs via progressive
changes in the genome, some information about the history of the environments the ancestors
have faced must be stored in the genetic sequence [2]. On shorter timescales, a given genotype
can result in different phenotypes through interactions with the environment and intracellular
stochasticity. This can range from gene expression changes in bacteria in response to changes in
the surrounding media, to the extreme differences in form and function between specialized cells
in mammals. It follows that the phenotype of a cell has information about the current environment
and/or the surrounding environment during development. Since selection happens at the level of
phenotype, these two levels of information transmission and storage must be connected to the
process of evolution. It therefore seems useful to quantify this flow of information in biological
systems, which might allow for predictive calculations in a similar way to how optimizing the flow
of mass and energy has advanced ecology [3].
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Early attempts to use the formal definition of information
[4] in biology ran into the following problem: every bit
of information is in principle equally valuable in abstract
communication channels, but for an organism some bits are
more valuable than others. If there is a 50/50 chance that a
predator is behind a bush, knowing for sure is a very useful
bit, whereas knowing whether its left or right molar is bigger
is a less useful bit. Since the meaning of each bit is irrelevant
for the engineering problem of information transmission, many
biologists thought that the amount of information was irrelevant
and the important quantity was its decision-theoretic value [5]:
the expected fitness given some particular information minus the
expected fitness without it. In the predator-behind-bush example,
presumably the best strategy (for the prey) under uncertainty is
to leave the bush alone, incurring in a fitness cost in terms of lost
food. With full information, half of the time the prey knows that
the predator is not there and it can get the food and half of the
time it has to run away, so on average he gets half of the food. In
this case the value of the information on whether the predator is
there or not is the fitness gain of half a bush worth of food, which
is not in units of information. Unfortunately, quantifying this
in principle would require an intimate knowledge of the fitness
function and the dependence of phenotype on environmental
cues. Furthermore, such calculations require knowing the fitness
value of the wrong combinations of phenotype and environment,
which are not easy to observe. For example, determining the
value for a type of bird of knowing when the seasons come would
require determining how it would do if it didn’t migrate. For
evolutionary timescales, this wouldmean knowing the maximum
fitness it could have if it eventually adapted to not migrating.
The fundamental difference between the information-theory
approach and the decision-theory approach is one of the issues
answered by the research reviewed here.

For the case of unicellular organisms, it is easier to both
define and measure such quantities in laboratory settings.
The possible environments for evolution can be defined
experimentally [6], short term fitness is directly measurable
from competition experiments [7], behavior can be controlled
through genetic manipulation [8], and evolution experiments
can be performed in human timescales [9]. A more tractable
subset of the general problem of information flow in biology
is then the quantifying of both the amount and fitness value
of the information that a population has about a particular
set of environments, and how it would evolve for intermediate
timescales.

This question is related to another important problem in
biology: how do cells adjust their expression pattern (phenotype)
to respond to changing environments? It certainly involves
the biochemical mechanisms through which a cell senses the
environment and alters gene expression, but the question goes
far beyond mechanistic responses. For example, it has been
shown that under certain conditions it might be better for a
cell not to try to determine precisely what environment it is
facing but randomly switch between possible responses [10, 11].
This could be done blindly, but more generally, the response
to external signals is increasingly found to be a combination of
deterministic and stochastic parts that can result in changing

distributions of phenotypes, in what is known as a conditional,
distributed or bet-hedging strategy [12]. This is equivalent to
mixed strategies in game theory [13]. The possible strategies are
sketched in Figure 1: assuming only three possible states of the
environment and phenotype, matched by color, the distribution
of phenotypes in the population for different environments is
given by the bar graphs. In perfect sensing, the response is
deterministic and simply changes to the appropriate state after
some delay. In a purely stochastic strategy (blind switching), the
cells are not measuring the environment and have a constant
distribution. This means that for any change in environment
some cells will already be in the new correct state but also that
in any environment a sizable fraction is in the wrong states.
For simplicity the figure ignores the important fact that growth
differences would bias the distribution to the correct state, as
will be shown in Figure 2, making it look like the distributions
for conditional switching. In a conditional switching strategy,
cells transition between states but with transition probabilities
that depend on a measure of the environment, resulting in
distributions that are biased toward the correct state but
nevertheless always have some cells in the wrong state. These cells

FIGURE 1 | Sketch of phenotype distributions corresponding to

different strategies for adapting to fluctuating environments. In this example

there are three possible environmental and corresponding phenotypic states.

In perfect sensing, cells measure the environment and all change to the

correct state. In blind stochastic switching, cells just try to maintain a

distribution (which doesn’t have to be uniform) regardless of environment. Here

we don’t show the important effect that growth differences would have,

biasing the distribution to the correct state. In conditional stochastic switching,

cells switch between states but with rates that depend on information from the

environment and can bias it to the correct one even discounting growth effects.
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are in a sense a “hedge,” or insurance in case the environment
changes and the delay in changing accordingly is costly.

Given the inevitable stochasticity in intracellular processes
[15], the cases where the response appears deterministic imply
a noise reduction system [16, 17], whereas in many cases
this variability is amplified and converted into a distribution
of phenotypes [18]. A medically important example of this
switching strategy is the phenomenon of bacterial persistence
[19], where a very small fraction of a population switches on
a timescale of hours in and out of a non-growing or slow-
growing state that confers it tolerance against many antibiotics
and other attacks. If the rest of the population is killed and the
insult withdrawn, these cells can restore the population, but it
is important to note that this new population is still susceptible
to the insult, as opposed to the case where a genetic mutation
confers resistance to the resulting population. The amount of
cells in this persistent state does depend on the environment, but
it is not simply a deterministic response to it, since a phenotype
distribution including a persistent fraction is present before the
insult [20]. This exemplifies the type of adaptation that will be
discussed here.

INFORMATION IN AN EVOLUTIONARY
CONTEXT

A discussion on whether evolution can be profitably studied as
an optimization process (illustrated by the discussions between
Maynard-Smith [21] and Gould and Lewontin [22]) has raged on
for 40 years between philosophers of biology. There are valuable
arguments about the difficulty of defining an objective function
(instantaneous individual fitness, inclusive fitness, long term
population growth, evolutionary stability?), and other important
points that remain under active research. Similarly, the use
of information theory in biology has a long history of ardent
proponents [1, 23] and detractors [24, 25].

However, a large group of researchers has simply sidestepped
the discussion by profitably using optimization and information
theory in various fields, from sequence analysis [26] to
neural coding [27]. In particular, the recent availability of
sequence data has allowed the direct comparison of information
theoretic limits with actual observed distributions of sequences
in particular contexts [28, 29]. It has even been proposed
that information processing constitutes a driver to increasing
organismal complexity [30]. Adami [31] has written a very
readable account of the use of information concepts in
evolutionary biology. Another field where information theory
has found great success is neuroscience, where it is nowadays
an essential tool; a good review is given by Dimitrov et al.
[32]. Such breadth of fields using information theory has led
to competing definitions of information for different situations,
including mutual information [4], directed information [33],
Fisher information [34], and others. While each has advantages,
we focus on mutual information, which has important theoretic
advantages [35] although directed information will make an
appearance later on. It is also important to note that while
we focus on prokaryotic gene expression noise for simplicity,

phenotypic differences depends not only on gene expression but
also on protein states [36] and localization [37] and on epigenetic
markers such as methylation [38]. The approaches worked out
here will still hold for these other mechanisms, although the
details of the calculations of noise and information will vary; see
for example Cheong et al. [39], Thomas and Eckford, [40], or
Micali and Endres et al. [41]. We also leave aside the long term
relation between sequence and selection, although it underlies the
assumptions of near optimality.

THE ROLE OF NOISE

What has changed in the meantime is our knowledge of noise
and dynamics in intracellular circuits and our experimental tools
to probe them. We have an ever growing collection of data and
models which provides examples for many types of circuits in
different organisms [42]. We have a rough description of the
processes that lead to cell specialization in many multicellular
organisms [43, 44]. We have detailed models and measurements
of the way stochasticity arises in intracellular circuits [15,
17] and how it can result in phenotypic variability [45, 46].
Experimentally, we have measurements at the single molecule
level of mRNAs and proteins [47, 48], single cell transcription
data [49, 50], and automated ways to observe populations [6]
and single cells [51] in changing environments over long periods.
We also have the tools of synthetic biology to probe and
manipulate circuits [52, 53], and the methods of experimental
evolution [9] and competition [7] in unicellular populations. This
detailed knowledge of the noise allows us to compute directly the
information content of various biochemical processes. In the next
section we will see the example of a single gene, but many other
examples have been worked out.

An objection showing up as late as 1997 to the use of
information theory in biology was that biology was not stochastic
enough [54]. The underlying argument is that if signaling
happens through molecules, their numbers are so high that
interactions are essentially nonrandom processes. Quantitatively,
one could expect that a typical signaling protein with numbers
of the order of 10000 would have fluctuations of the order
of

√
10000 = 100, resulting in a relative noise (coefficient

of variation) of 1%, and making a probabilistic description
unnecessary. This is misleading not only because there are many
relevant situations where the number of signaling molecules can
be <1 [55], but also because we now know that the most relevant
noise in protein level does not come from the fluctuations in the
number of proteins itself but in that of the mRNAs that produce
it [11], the binding and unbinding of transcription factors that
control it [56], and the fluctuations transmitted from other parts
of the cell [57, 58]. This means that noise in genetic circuits
is large and ubiquitous, and that a detailed description of their
dynamics should include its probabilistic aspects.

We have also learned about the effect of feedbacks in genetic
circuits, where they can be used to reduce fluctuations or
amplify them [59, 60], and can generate metastable states and
multimodal distributions [59]. These in turn correspond to
different phenotypic states, and in some cases we know how the
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distribution of states is determined and how tomanipulate it [61].
So we now have mechanistic knowledge, in a few cases, of how
phenotypic diversity is generated and maintained. Conversely,
since those states are in general maintained by the dynamics
of noisy genetic circuits, they are susceptible to error and any
memory contained within them is limited and imperfect [62].
Therefore if we are interested in how cells adapt to changing
environments, we need to know how much information a cell
can actually store about the environmental history and howmuch
information can actually be transmitted from the environment to
intracellular circuits in the presence of noise.

INFORMATION CONTENT OF GENE
EXPRESSION

Tkačik et al. [63] utilize analytical, approximate models of noise
in gene expression to determine the channel capacity of a gene,
which is the maximum rate of information transmission for a
single gene under various conditions. In particular, they look
at transcription factor binding and unbinding and the intrinsic
noise of gene expression and show that the capacity of a single
regulatory element is 1 bit under typical conditions and that
under reasonable but more restrictive assumptions it can increase
to around 3 bits. This has important implications for biology:
the first point validates the use of Boolean networks, a popular
approximation to genetic networks, in many cases. The second
illustrates that although protein levels are usually on the order of
thousands, the reliable transmission of more than a few levels is
limited by the stochasticity in the system and parameters need to
be carefully tuned to achieve it. In the particular case of the design
of synthetic circuits, the need for proper impedancematching has
already been noted [64], but the results of Tkačik et al. show that
the stochastic effects also need to be properly tuned.

Following their notation, we look at a single gene controlled by
a single transcription factor. Let g be the level of expression of the
gene (in a simple case, the protein number) and c the amount of
transcription factor. c corresponds to the input signal, which can
have a distribution pTF (c). If gene expression were deterministic,
there would exist a function g∗ (c) that directly mapped input
level to expression. Since gene expression is stochastic, this
situation is described through p (g|c), the conditional probability
of observing expression g given input c. Later we will explicitly
incorporate the time dependence. With these definitions, we
can look at information theory quantities such as the mutual
information between the input and output distributions. Using
p (g, c) = p (g|c) pTF (c) and pg (g) =

∑

c p (g|c) pTF (c) the
mutual information would be

I
(

g, c
)

=
∑

g, c

p(g, c) log2

(

p
(

g, c
)

pg
(

g
)

pTF (c)

)

=
∑

g, c

p
(

g|c
)

pTF (c) log2

(

p
(

g
∣

∣c
)

pg
(

g
)

)

(1)

where the logarithm is in base 2 to obtain units of bits, and
we have used g and c for both the random variables and their

distribution to simplify the notation. Here we can see more
precisely what we meant by “tuning the stochastic effects: ”if
the gene expression is to respond with many distinguishable
levels, the distribution of transcription factors cannot be
arbitrary. For example, a gene with a step response curve
could pass no information if the corresponding transcription
factor distribution was zero on one side of the threshold. More
realistically, a gene with a sigmoidal response curve could
transmit more information if the corresponding transcription
factor had a distribution proportional to the slope of the response
curve than if it had a bimodal distribution.

This approach seems to imply that the system is maximizing
the amount of information transmitted. A simple example to
the contrary is the case of a binary output, where the cell only
needs to precisely transmit the information of whether a certain
threshold has been crossed and respond by fully turning on a
gene. In this case, the information lost far from the threshold is
irrelevant, and a bimodal distribution of inputs would be best.
It is important to distinguish two possible issues: one is that
not all information might be relevant, and the other is that the
evolutionary value (or decision-theory value) of information is
not the same as the amount of relevant information. The issue of
how much information is actually useful for prediction has been
largely solved by the “information bottleneck” method proposed
by Tishby et al. [65], where they show how to determine the
amount of relevant information a variable has for any particular
prediction goal. In the present discussion, what the goal is needs
to be quantified using the fitness.We will later return to this point
to show how to account for the fitness value of the transmitted
information. But first, we need to determine what exactly we
mean by fitness for the cases of interest.

SENSING VS. GUESSING AS A STRATEGY

Real environments are a mix of predictable and stochastic
characteristics. Cells have different ways of managing their
phenotypes/strategies to adapt, including systems that allow the
prediction of the reliable parts such as circadian clocks, sensing
mechanisms such as chemotaxis, and bet-hedging strategies such
as the phenomenon of bacterial persistence explained above.
While the possibility of bet-hedging as a strategy had been
analyzed before [11, 66, 67], it is in the work of Kussell and
Leibler [68] that we find a framework that captures the full
range of possibilities. An idealized extreme would be to have
perfect sensing, where the cell would respond to an environment
s (described in general by a vector) with the gene expression
pattern g that gives the highest fitness f (g, s) in that environment,
g∗ (s). Perfect sensing is impossible, but even imperfect sensing
has a metabolic cost, which must increase with the accuracy
of sensing. For example, the noise of ligands binding and
unbinding from their receptors can be ameliorated by averaging
over more receptors, but those cost energy to produce and
recycle. Additionally, there is an unavoidable delay between
measurement and response, which in principle can be reduced
but again at a metabolic cost [69]. So even in the case of
direct sensing there is a tradeoff between the fitness cost of
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responding late and sometimes wrongly and the fitness cost of
increased metabolic load. Note that this description implies that
the quantity to be optimized is not the instantaneous fitness
f (g, s) but the long term average growth for a sequence of
environments.

At the other extreme the idealized case is that of a completely
stochastic response: a population that generates large phenotypic
variability so as to cover the different possible environments. It
can be easily implemented by a positive feedback tuned to amplify
noise to produce broad ormultimodal distributions of expression
[59]. This strategy has some advantages: since the possible state
of the environment is given by multiple variables, some of
which are continuous, there are infinite possible environments.
It then becomes impossible to have sensors for every case, and
unfeasible even to have enough to precisely determine the set
that would correspond to each possible phenotypic state. Another
important effect is that if the switching is slow compared to the
environment, a bigger fraction than determined by switching
alone will be in the correct state simply because they grow faster.
But since there is a fraction of the population that will always have
suboptimal fitness, this strategy would seem in principle to be
inferior to (imperfect) sensing. By explicitly taking into account
the cost of sensing and the disadvantages of delay in a simplified
situation, Kussell and Leibler show the range of cases where pure
stochasticity surpasses sensing as a strategy. One situation in
particular gives the advantage to bet-hedging: cases where there
are states of the environment that are rare but rapidly lethal for
the wrong phenotype, such as for bacteria in the presence of
antibiotics. In this situation, preemptively having a small fraction
of the population in a state that can survive in the presence of
antibiotics can be advantageous even if those cells are at a big
disadvantage in other environments.

The general case is one where the system responds
stochastically, but with the probabilities of transition
between phenotypic states influenced by what is sensed of
the environment. This is the case, for example, in bacterial
persistence. While Kussell and Leibler mentioned it as a
conjecture, we know now that the rates of transition into and
out of the persistent state depend on the media: the probability
of going into the persistent state increases if the cell is stressed
[70] (for example, by antibiotics) and the probability of coming
out increases in rich media. It is important to note that this does
not imply that persistence occurs only as a response to stress; it
was shown by Balaban et al. that cells enter the persistent state
before the stress is applied [20]. It is the probability of going into
the persistence state that changes.

Clear experimental evidence for the viability of the stochastic
switching strategy comes from the experiments of Acar et al.
[14]. They engineered two strains of S. cerevisiae to stochastically
switch the gal operon on and off at different rates, but with the
URA3 gene under its control. This gene was used because it allows
for both positive and negative selection: when the media contains
no uracil, cells that express URA3 have an advantage, but when
the media contains both uracil and 5-fluoroorotic acid (5-FOA),
this small molecule is transformed by the URA3 protein into a
toxic compound that gives a disadvantage to the cells that express
it but no disadvantage to those that do not. By comparing the

growth rates of the strains in media that alternated with different
rates between media without uracil and media with uracil and
5-FOA, they found that the strain with fast switching had a
faster average growth rate than the slow switching strain in fast
switching-media and vice versa.

This experiment is very illustrative for the present discussion
for various reasons. If we ignore the time dependence, the slow
switchers and fast switchers are simply bet-hedging with different
distributions, as can be seen in Figure 2A. In nonselective media
there are cells with very different levels of gene expression, and
the two clear peaks in the distributions represent the two possible
states. Figure 2B shows the distributions of expression after 4
days in media without uracil (environment S1) and Figure 2C

shows the distributions of expression after 4 days in media with
uracil and 5-FOA (environment S2). Although they have no
direct sensing of the two environments, the fact that only the
correct phenotype can grow results in very skewed distributions
in selective media. Note that in both cases the fast switchers
have a larger fraction that is not in the correct state (the red
tails), and this results in slower growth after some time in either
environment but also on an initial advantage after a media
change (Figures 2D,E). This happens because the fraction of
cells in the wrong state after a long time in an environment
is also the fraction of cells that are already in the correct state
when the environment changes. However, in repeatedly changing
environments the winner depends on the speed of change.
If the environment changes every 40min, the fast switchers
have a long term advantage because in the time it takes the
slow switchers to switch, the fraction of the fast switchers
that was “wrong” has been already growing (Figure 2F). If the
environment changes every 100min the slow switchers have the
advantage because they spend longer in the situation where they
have the advantage (Figure 2G). While the differences are small
for the cases shown, they are amplified exponentially and result
in measurable differences in average growth rate. This shows
that the instantaneous fitness f (g, s) is not necessarily what
is optimized by evolution, but perhaps its long term average
over the population is [71–73]. This can be visualized as the
red and blue shaded areas in Figures 2F,G representing the
cumulative growth advantage of each strain. For rapidly changing
environments the total of the red areas is larger than the blue, and
conversely for the slowly changing environments.

Since this system was artificial in its construction and
the possible states of the environment, it approached the
idealized limit of bet-hedging. However, the media was changed
periodically rather than randomly. In natural cases of adaptation
to a periodically switching environment cells can adapt over
evolutionary timescales by developing a matching internal clock,
but one that is not completely independent of the environment so
that it can be entrained to avoid phase drift [74, 75]. However, it
is easy to see that if the environments were changed randomly
with average times close to those used in the periodic cases
the main effect would still hold: cells that switched with rates
matching the environment would have an advantage over those
that switch with the wrong rates. Their system thus illustrates a
question that will be answered more generally later: if the cells
will adopt a distribution of phenotypes without measuring the
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FIGURE 2 | Long term growth in a bet-hedging strategy. (A) Long term distribution of phenotypes (gene expression) for the slow switchers (blue) and fast switchers

(red) in nonselective medium. Cells have mostly either high (ON) or low (OFF) expression. (B) In media without uracil (environment S1), only cells that are ON can grow,

but the distributions are wide because cells are still switching. The distribution of fast switchers is wider because of a faster stream of cells switching off, resulting in a

larger fraction of cells in the wrong state (red tail). (C) Conversely, in media with uracil and 5-FOA (environment S2) only OFF cells can grow, but the distribution is still

wider for the fast switchers. (D) When changing from a long time (4 days) in S2 to S1, cells have low growth until the ON fraction grows. After some time, the slow

switchers grow faster, because of the different fractions in the ON state shown in (B). (E) When changing from a long time (4 days) in S1 to S2 cells have low growth

until the OFF fraction grows. Again after some time, the slow switchers grow faster. (F) If media are alternated every 40min, this results in longer periods where the

fast switchers grow faster than the slow switchers, leading to higher average growth. The total advantage can be visualized by the areas shaded in red vs. the areas

shaded in blue. Intuitively, if the time is short the initial advantage of the fast switchers exceeds the eventual advantage of the slow switchers. (G) The opposite

happens if the period is changed to 100min. Adapted from Acar et al. [14].

environment, how do they choose the distribution of phenotypes
that maximizes their fitness?

OPTIMIZATION OF AVERAGE FITNESS
UNDER INFORMATION CONSTRAINTS

In the context just explained of a finite set of possible
environments and a set of possible phenotypes, but taking into
account the stochasticity mentioned before, it is possible to
properly define one of our original questions: given the full
fitness f (g, s) for all possible states of gene expression and
environment, what is the best possible p (g|s)? The ideal g∗ (s)
can be directly obtained from f , but since the cell cannot measure
s nor maintain g with infinite precision the most it could do is
optimize the conditional distribution p (g|s). But why not simply

make it as narrow a peak as possible around g∗ (s)? Notice
that the metabolic costs mentioned before would in principle
go into the state g, but that makes the question somewhat
tautological. We must be clear about the timescales and genes
under study; as Maynard-Smith noted, we cannot be sure that
the optimum has been achieved and what the physical limitations
involved are in general, but optimization is a useful heuristic for
a limited system. In this case, this means limiting the timescale of
study to changing levels of gene expression and perhaps protein
affinities rather than the evolution of an entirely different sensing
system, and the genes to a particular set directly involved with
the response to a particular characteristic of the medium. The
disadvantage of this approach is that metabolic costs are hidden
in the fitness function; perhaps they can be taken into account by
explicitly including the energy needed for a particular sensing and
expression control system. This would be a strong simplification,
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FIGURE 3 | Graphical representation of the definitions. (A) Height map of a possible fitness function f (g,s) (as percentage of the maximum) of one dimensional

environmental state and phenotypic state in arbitrary units. Inspired by Taylor et al.’s analysis [76] of Dekel and Alon’s data [77]. (B) The function g* (s) is given by the

phenotypic state with the highest fitness for each environmental state. (C) Because of intracellular stochasticity, even a fixed known environment can result in a

distribution of phenotypes, given by p (g|s) (gray). The mean would not need to lie exactly on g* (s) because f (g,s) can drop off asymmetrically, and evolution would

optimize <f (g,s)> (colored rectangle). (D) The shape of the distribution of phenotypes can change for different reasons: The noise in the distribution tends to increase

with increasing mean for statistical reasons, but the pressure to reduce the width can vary (in this case, increase) with the curvature of f (g,s). This is represented by

the colors indicating the fitness within the distribution. (E) If the environment also has a distribution, p (s) (black), the convolution of all p (g|s) with p (s) gives the total

distribution of phenotypes, p (g). Note that this doesn’t mean that p (g,s) is just the multiplication of probabilities, but it’s shape will be determined in part by f (g,s). In

this case 〈f (g, s)〉 corresponds to the height in the colored region, integrated with weight p (g,s).

which would only make sense if the way the fitness function was
computed in the first place was through a balance of energies.

Taylor et al. [76] solve this problem by using the information
concepts explained before. They group the factors that would
incur a metabolic cost into the mutual information between g
and s, and propose that the optimization be done maximizing
the average fitness for a given mutual information, or conversely
minimizing the mutual information needed to achieve a given
level of fitness. In this view,

I
(

g, s
)

=
∑

g,s

p
(

g|s
)

p (s) log

(

p (g|s)
pg
(

g
)

)

(2)

and

〈

f
(

g, s
)〉

=
∑

g, s

p
(

g, s
)

f
(

g, s
)

=
∑

s

p(s)
∑

g

p
(

g|s
)

f
(

g, s
)

(3)

where for simplicity we omit the vectorial notation. The last
expression has a clear biological interpretation: averaging over
the possible states of the environment (externally determined),
then for each particular environmental state averaging over the
possible responses of the cell to that environment (determined
by the genes under study) of the fitness function (determined
by the relevant biochemistry). These definitions are illustrated
schematically in Figure 3. The fitness function f

(

g, s
)

for a one
dimensional environmental state s and phenotypic state g can
be represented as a heat-map (Figure 3A). The ideal phenotype
g∗(s) would be the maximum of this function for each possible
value of s (Figure 3B). Even in a fixed environment s1, noise in

the sensing systems and in gene expression prevents the cells
form knowing g∗ (s1) precisely and maintaining a particular
level of expression, resulting in a distribution of expression
p
(

g|s1
)

(Figure 3C, in gray), in principle centered on g∗ (s1).
Note that the shaded area in the heat map represents the average
fitness for a single cell or the total fitness for a population
with the given distribution of expression. The distribution of
expression is in general not symmetric, nor is the slope of
f
(

g, s1
)

around g∗ (s1). If the population is optimizing the total
fitness, but is constrained by the noise, it could in principle
still shift the shape and position of the distribution within some
constrains. For different values of s the optimal shape of the
distribution would be different, as shown in Figure 3D. This
can be further complicated by the fact that the environments
the cell encounters also have a distribution p(s), shown in
Figure 3E in black. Note that the resulting distribution of
phenotypes p(g), shown in Figure 3E in gray, is not simply the
projection of p(s) through the function g∗(s). As the colors in
Figure 3D show, it is more costly in fitness terms to deviate
from the optimal value around g∗ (s2) than around g∗ (s1) .
This means that the resulting optimal distribution will depend
on the entire range of f

(

g, s
)

. The colored area in Figure 3E

corresponds to the support of p
(

g, s
)

= p
(

g|s
)

p (s), and
〈

f
(

g, s
)〉

would correspond of the sum of the fitness values in this area
weighted by p

(

g, s
)

.
The problem is thus reduced to an optimization under

constrains which can in principle be solved through variational
calculus. Intriguingly, when posed in this form the problem has
a formal solution reminiscent of a familiar result from statistical
mechanics:
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p
(

g|s
)

= p (g)

Z (s)
eλ f (g,s) (4)

where Z (s) is the normalization for each environment and λ is
the Lagrange multiplier for the condition of fixed average fitness.
Since p (g) =

∑

s p (g|s) p (s), this expression is an implicit
solution. This problem has been solved as one of rate distortion
functions in the field of communications [78]. However, this
still requires an explicit form for the fitness function, which is
difficult to obtain even for single variables for the gene and the
environment.

There is one case where the fitness, functionally defined as
the growth rate in a bacterial culture, has been determined
experimentally. Dekel and Alon [77] manipulated the lac system
of E. coli so that they could externally induce the expression
independently of the lactose in the media. They then tested the
growth rate at multiple combinations of gene expression and
media, and thus from their data the fitness function f

(

g, s
)

can
be obtained [76] in terms of the particular g (expression of
the lac operon) and s (lactose concentration in the medium).
It should be noted that this is not the long term limit for
changing media as described before but simply the growth
rate in a particular environment. Additionally, from their
fitness they obtain the optimal expression g∗ (s) and show
that over relatively short times of about 400 generations in a
constant medium cells adjust their average expression to this
level.

A FULL MODEL OF ADAPTATION

A difference between the approaches explained so far is that in
one case the input is an intracellular signal c and in the other
the conditioning variable is the actual state of the environment s.
In reality a cell cannot optimize p

(

g|s
)

since it must work with
its perception of the environment, so at least for the timescales
of interest it can only optimize p

(

g|c
)

, where c is a variable that
correlates imperfectly with the environment. What c is depends
on the particular case, and depends mostly on what we define as
the system of interest. For example, in the case of chemotaxis
in E. coli the environmental signal of interest s is the local
concentration of a given small molecule, but the only information
the cell has access to is the occupancy level of receptors for that
molecule. While clearly correlated, these two quantities are not
the same. Furthermore the expression of those receptors is under
control of the cell, so c could vary from cell to cell in the same
environment s. All of this needs to be included in a full model.

The effect of delays and memory, or more precisely, the fact
that the current state of the cell can depend on previous states
of itself and the environment should also be included. Their
importance was shown experimentally by Lambert and Kussell
[79], who measured the growth rates of E. coli in media that
switched periodically between lactose and glucose as the carbon
source, and confirmed that the growth rate even after changing
media depended on what the cell had been exposed to before, in
some cases almost a generation earlier.

A model incorporating all of these aspects is constructed by

Rivoire and Leibler [73]. We present it in a hybrid of their

notation and the one we have been using so far. Let p (st|st−1)

be the probability of finding the environment in state st at
time t given that it was in state st−1in the previous time. The
discretization of the time works in general, but the underlying
assumption here is that the environment is Markovian. Let
π
(

gt|gt−1, ct
)

be the conditional probability we had been calling
p
(

g|c
)

. This notation allows for the possibility of memory and

avoids confusion with other probabilities. This is the part that will
be optimized, and it is strongly constrained by any details known
about the circuits controlling the expression of the relevant genes,

including their stochasticity. Let q
(

ct|gt−1, st
)

be the probability
of having ct as the internal variable given that the state of
the environment is st and the previous state of the cell was
gt−1.This allows for each cell to receive different information
from the environment and have different internal representations
of it; in the example of chemotaxis, gt−1 would include the
amount of surface receptors present. Finally, the fitness f (gt , st)
is interpreted as the expected number of descendants in the
next generation given expression gt in environment st . This is a
stochastic process in itself. In this notation, a very general model
of adaptation to changing environments can be constructed as
shown in Figure 4A. The objective function for optimization
would be the asymptotic growth rate of the total population size
[71], 3p,f ,q (π) = 1

t

〈

log |Nt|
〉

. This corresponds to the Lyapunov
exponent in dynamics. Biologically, it can be understood as
the growth rate of all cells in the population averaged over
different time histories of the environment, for times that
are long compared to the average time spent in a particular
environment. It is a delicate definition, since the average depends
on the statistics of the environmental states, but for reasonable
conditions it can be shown to exist. Care should be taken when
using it inmore general cases, as when takingmutations explicitly
into account. With this definition, the optimal strategy is simply
the conditional probability π̂

(

gt|gt−1, ct
)

= argmax 3p,f ,q (π),
which is the part that the cell can control.

Note that despite its generality this model does not include
the possibility of the environment depending on the actions
of the cells. This is an important omission, as it excludes for
example a normal growth curve where the media changes with
cell activity as well as cases like chemotaxis, where changing the
local environment is the function of the circuit. This point is
exemplified in the famous evolution experiments of Lenski and
Travisano [9] where a population cell is evolved over thousands
of generations in media that changes daily through depletion by
the population and subsequent reinoculation in fresh media. As
shown in detail in similar experiments by Oxman et al. [80],
shorter lag times appear earlier than faster growth rates, because
it doesn’t help to be able to grow faster if in the meantime a
competing mutant has depleted the media. This kind of effect
could not be predicted by the present model.

ANALYTIC SOLUTION FOR A SIMPLIFIED
MODEL

The full model cannot be solved in general, but Rivoire and
Leibler follow a very meticulous procedure of starting with
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FIGURE 4 | Schema of the models for a cell’s response to changing environments. (A) Full model as described in the text. Note the black arrow, which represents the

possibility that the cells will change their environment. (B) In the simplified system, all cells receive the same information from the environment, independently of their

state. Cells have no memory, the instantaneous fitness is a multiplication factor rather than a probability and it is 0 except for one phenotypic state per environment.

Based on Rivoire and Leibler [73].

multiple simplifying conditions to obtain a simple analytical
result and then exploring the consequences of successively lifting
some of those conditions. The main insights from a simplified
model were obtained previously by Donaldson-Matasci et al.
[72], in an engaging article where they emphasize the parallels
with the use of information theory in ecology. We present them
in the context of the full model because it makes the conditions
and limitations of the simple model clearer.

The first condition is that the stochasticity in reproduction is
ignored, so that f (gt , st) is simply the number of descendants
in the next generation for a cell of phenotype gt . This greatly
simplifies the definition of the long term growth rate of
the population, which will determine the objective function
of the optimization, but explicitly excludes the possibility of
extinction. The second simplifying condition is that cells have
no memory, π

(

gt|gt−1, ct
)

= π
(

gt|ct
)

. This excludes the long
term maintenance of subpopulations as in the case of persistence
or differentiation. The third simplifying condition is that the
information that can be obtained from the environment is the
same for all cells, q

(

ct|gt−1, st
)

= q (ct|st). This excludes the
possibility of cells controlling their sensing mechanisms through
feedback as in chemotaxis. The fourth simplifying condition

is that there is the same number of possible states for the
environment and the cell, with only one phenotypic state per
environment where cells can grow, f

(

gt , st
)

= 0 except for a
single pair

(

gt , st
)

per environment. We call sg the environment
corresponding to a given phenotype in these pairs. While clearly
non-biological, this last condition is necessary for obtaining
simple analytical solutions and could in principle be lifted at the
expense of cumbersome calculations without changing many of
the insights from the paper. Note also that using a discrete, small
number of phenotypic states is justified by the results of section
Information Content of Gene Expression. The system described
by all of these conditions is a much simpler one, summarized in
Figure 4B.

Our initial questions can be fully answered in this simplified
model: the best strategy in this case is given simply by Bayesian
inference. If the only information a cell population had about
the environment was the steady state distribution p (s), the
best strategy would be proportional betting [81]: to assign
the phenotypic states proportionally to the probability of the
corresponding environmental state, π̂0

(

g
)

= p (s). A classic
example is betting on horse races: if you know the probability
of winning for each horse and assuming proportional payoffs,
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you might consider betting all on the horse with the best
chance. That would maximize your expected payoff for a single
game. But if you want to play many times, that strategy would
result almost certainly in you losing everything after a few
races. A better long term strategy would be to bet a bit on
the other horses to ensure that you can’t lose all in a single
game. But you would not bet equal amounts on all horses; if
the odds are fair the amount should be proportional to the
chance each horse has of winning. This intuition was formalized
by Kelly [81], who showed that not only is proportional
betting the optimal strategy even for unfair odds but that
using it your money would grow exponentially with a rate
limited by the amount of information you have about the
horses.

When a signal ct is present, the cells can estimate better the
current state of the environment, and the best guess for each
state is given by a Bayesian estimate, giving rise to conditional
proportional betting,

π̂
(

g|c
)

=
p
(

sg
)

q(c|sg)
q (c)

(5)

where q (c) =
∑

s q(c|s) p(s). As the authors point out, this
problem has close equivalents in finance and other areas. In
the horse race example, this would be equivalent to knowing
that the probabilities of each horse winning depend on the
jockeys, so you would adjust your bets every race depending
on the current jockeys. In both cases mentioned, the cells need
to have knowledge of the steady state distributions. If that
information can be genetically encoded, the optimization of the
long term growth rate insures that evolution would select the
mutants with the encoded distribution closest to reality. It is
in this sense that evolution can be thought of as the long term
process of encoding information about external conditions in
the DNA.

The second question, about the value of information, can also
be directly answered here: since those two strategies correspond
to the best possible outcomes with and without information
about the environment, the difference in the objective function
is the value of the information acquired. In this case

3p,f ,q

(

π̂
)

− 3p,f ,0

(

π̂0

)

= I (c, s) , (6)

the mutual information. While this is valid only for an
oversimplified model, it is remarkable that the issue mentioned
in the introduction about the difference between the amount of
information and the value of information completely disappears:
they are in this case the same.

In the paper, Rivoire and Leibler obtain various corrections for
this result, usually as bounds, when the simplifying assumptions
are relaxed, moving back toward the full model. Two points in
particular are worth mentioning here: the first is that allowing
cells to have memory changes the relevant quantity from the
mutual information to the directed information. The second
point is that while the calculations presented here compare
optimal strategies under different amounts of information,
the formalism permits the calculation of the cost of using a
suboptimal strategy π . This is important because as mentioned

before, there’s no guarantee that the population has attained
optimality, and for evolutionary experiments it would be useful
to predict the changes in growth rate as the cells change their
strategy to adapt to a new medium. Remarkably, this cost can
be expressed as another information theoretical quantity, the
relative entropy or Kullback-Leibler divergence [82]:

3p,f ,q

(

π̂
)

−3p,f ,q (π) = DKL
(

π̂ ||π
)

= −
∑

g,c

π̂
(

g|c
)

log

(

π
(

g|c
)

π̂
(

g|c
)

)

≥ 0 (7)

The main insight from these results is that under certain
conditions the decision theoretical value of information in
an evolutionary context can be written explicitly in terms of
information theoretical quantities.While no equivalent analytical
result exists for the full model, it seems plausible that the conflict
between the information theory and decision theory approaches
can be solved by a quantitative model with the long term
population growth rate as the function to be optimized.

DISCUSSION AND OUTLOOK

The use of information theory tools has been profitable in many
branches of biology, and advances in the study of stochasticity
in gene expression and microbial growth have provided new

test beds for its applicability. Fundamental questions about how
organisms manage information on their environments and how
evolution can optimize their strategies to respond to uncertain

environments can be posed in a more limited but better defined
form as they apply to the growth of microorganisms in changing
media. This allows precise mathematical formulations that can
provide general insight as well as providing experimental means
of testing those predictions. In this context, one overarching
doubt about the applicability of formal measures of information
to situations where the semantic content of a message should

be paramount is elegantly resolved by showing an explicit
connection between the information theory measure and the
decision-theory value of information. Furthermore, increasing
numbers of experimental studies are allowing ever more precise
questions to be asked and the generality of any claims to be
directly explored.

Despite these advances, many open questions remain.
Reasonably complete models are very hard to solve analytically,
so it remains to be seen what extensions of the results for
simple models are possible. Given the increasing parallels with
problems in communication and finance, there is large scope
for collaborations with specialists in those areas. The tools
reviewed here are necessary because for it to be approachable
by interdisciplinary collaborations, a formal description of the
problem is needed. Since the analytical results presented here give
clear predictions but for limited situations, those cases need to be
tested experimentally to ensure any further advances rest on a
solid foundation. In particular, we propose to expose populations
to changingmedia in different runs where instead of the (average)
period the transition probabilities are changed, over a timescale
of hundreds of generations. If done for a well characterized
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system like the lac operon, this would allow for a direct test of
the adaptive changes in π̂

(

g|c
)

.
A longer term goal could be the incorporation of information

as a standard quantity alongside mass and energy in optimization
arguments in other fields such as behavioral ecology. While
much work would need to be done in solidifying and
expanding the results mentioned here before they can be
used across fields, it could be extremely fruitful. Some of
the most powerful types of findings in physical systems are
conserved quantities, as they provide the basic limitations
to any dynamical process. Should information flow solidify
into a similar rule in biology, it could greatly expand the

number of cases where an optimization procedure can be used
predictively.
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