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In a line-defect waveguide of a planer photonic crystal (PhC), we found a new rotational

state of polarized light, which exhibits “polarization rotation” on the PhC plane, when

a phase mismatch m was added to the air-hole alignment of the waveguide, where

mode splitting was simultaneously observed in the dispersion curve. To account for

the polarization rotation together with the mode splitting, we propose a two-state

model that is constructed from Schrödinger equation obtained from the equation for

electromagnetic waves. The proposed two-state model gives an explanation on the

relation between the polarization-rotational angle θ and the mismatch m and on its

rotational direction (i.e., clockwise or anticlockwise direction) that depends on the mode.

Using the two-state model, we also discuss the angular momenta of the polarized light in

the PhC waveguide, which are directly related to the Stokes parameters that characterize

the polarization rotations.

Keywords: silicon photonics, polarization, photonic crystal, phase mismatch, Stokes parameters

1. INTRODUCTION

In a line-defect waveguide of a planer photonic crystal (PhC), the polarization of light can rotate
on the two dimensional PhC plane by addition of a phase mismatch to the air-hole alignment of
the waveguide, which occurs without non-linear optical interactions (e.g., optical Kerr effects and
photorefractive effects). Originally, the presence of light rotation, given as an optical vortex that
carries angular momentum, in photonic bandgap media [1–4] via such non-linear interactions has
been found in theoretical and experimental investigations [5–10]; This mechanism is attributed to
the localized vortex state induced by those non-linear effects in the bandgap media, which is thus
sometimes called a gap vortex. This is an analogous concept to a gap soliton in the bandgap media
[11, 12].

However, without such non-linear effects, we can show the presence of a rotational state of
polarized light just by adding themismatchm (0 < m < a) to the air-hole alignment of a sidewall of
the waveguide [13], as illustrated in Figure 1, where a is the air-hole period of the PhC waveguide.
Mock et al. also studied the same waveguide [14], but did not report such rotation. They just
reported that the light path in the waveguide was “zigzag.” An interesting feature of the rotation
that we found is that if light propagates from a non-mismatched region to the mismatched region
with a gradual mismatch change between them, the light polarization gradually rotates. Here we
can define its rotational angle θ for a givenm, and as will be shown later, θ is proportional tom (for
smallm compared with a) via numerical simulations.
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FIGURE 1 | PhC line-defect waveguides, where light propagates through the

central part in the x-direction. The white circles are air-holes made on a black

material (e.g., silicon), where the air-hole spacing (or lattice constant) is a, and

the air-hole diameter is assumed to be smaller than a. (A) Air-hole alignments

are symmetric with respect to the central line (or the x-axis). (B) The lower part

of the air-hole alignment is shifted with the addition of a mismatch m, which

causes the polarization rotation of light.

Moreover, with the addition of m, mode splitting (or level
splitting) is observed in the dispersion curve [13, 14], which
is created from an originally degenerated mode that contains
different polarizations. The main cause of this mode splitting is
symmetry breaking; When m = 0, structural symmetry in the
x and y directions is maintained (despite the presence of a line-
defect waveguide at y = z = 0), which causes highly degenerated
states in the dispersion curve. But, structural symmetry breaking
caused bym 6= 0 can resolve the degenerated states, creating two
split modes, as will be shown in detail in section 2.

We infer from our numerical simulations that the polarization
rotation is intimately connected with the mode splitting, because
they occur simultaneously, triggered by the addition of m.
(Because of the above reasons, the mechanism of the rotational
light obtained in our research is completely different from that
of a gap vortex with non-linear interactions; the rotation that
we found is spatial rotation, not temporal rotation seen for the
localized vortex.)

In this paper, we will gain a qualitative understanding of the
simultaneous polarization rotation and mode splitting from our

FIGURE 2 | Band structure of the PhC line-defect waveguide. Here, the

air-hole period a is 450 nm, the air-hole radius is 0.29 a, and the waveguide

width is 1.2
√
3 a. Mode-crossing points exist for m/a = 0. As m increases

(e.g., m/a = 1/8, 1/4, 3/8, 1/2), each mode-crossing point splits into two

modes (the upper and lower modes) and the split-mode spacing (or gap size)

becomes large. The light line for the waveguide with upper and lower

air-claddings is indicated by the slanted dashed line.

two-state model constructed via Schrödinger equation derived
from the equation for electromagnetic (EM) waves in the
waveguide. In this analysis, we can show that there is a relation
between the polarization-rotational angle θ and the mismatch
m (via a relation between the mode-splitting spacing ω and the
mismatch m), which is an analogous relation to that between an
electron-energy-level splitting h̄ω and an applied magnetic field
B, or h̄ω ∝ B.

In the next section, we will give some numerical simulation
results, and then introduce a theory that connects the mode
splitting with the polarization rotation within linear optics.

2. NUMERICAL RESULTS FOR MODE
SPLITTING AND POLARIZATION
ROTATION

Finite-difference time-domain computations [13, 14] show that
when m = 0, the band structure (or the dispersion curve)
of a PhC line-defect waveguide has mode-crossing points, as
depicted in Figure 2. Each of the mode-crossing points consists
of two degenerated modes with different polarizations, which are
yielded by band-folding (realized in the reduced zone for the
wavenumber k at −π/a ≤ k ≤ π/a). With the addition of
non-zero m, the two-fold degeneracy is resolved (see Figure 2),
thereby creating two split modes, where the gap size f between
the split modes increases with increasingm. (Schematic diagrams
of Figure 3 well describe this behavior, and show that the mode
splitting can be regarded as level splitting). The electric fields
with different polarizations (with even or odd modes) come to
what we call TE−1 or TE+1 , respectively, as displayed in Figure 4

for k = 0.2925 × 2π/a at m/a = 0, 1/8, 1/4, 3/8, 1/2. (Much
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FIGURE 3 | Schematic diagrams for (A) a mode-crossing point with m = 0, which can be regarded as a single level with degeneracy, and (B) mode-split points with

m 6= 0, which can be looked upon as two split levels.

FIGURE 4 | Electric fields with different polarizations that come to the TE−1 - and TE+1 -polarizations with even and odd modes, respectively, for m/a = 0, 1/8, 1/4, 3/8,

1/2 at k = 0.2925× 2π/a. Here, the absolute value of Ex and Ey is plotted.

clearer polarization rotation can be seen in Hz , and this will also
be shown below.)

Figure 5 with the blue (TE+1 ) and red (TE−1 ) curves depicts a
calculated m-dependence of the split modes, TE+1 and TE−1 , that
correspond to those in Figure 3B, which are produced from the
lowest degenerated TE1 mode at 190.13 THz with k = 0.2925 ×
2π/a. Here, we chiefly focus on the lowest mode (TE1) because its
crossing point at 190.13 THz with k = 0.2925 × 2π/a is placed
inside the light cone, that is, the light at that point is a really-
propagating mode, not a radiation mode. Also, we observed that
a maximum gap size fmax = 8.68 THz was obtained atm/a = 0.5
and that the splitting behavior was symmetric for (a) 0 < m/a ≤
0.5 and (b) 0.5 < m/a < 1. Thus we plotted the figure for
Case (a) only, which is sufficient to look at the essence of the

behavior. The inset of Figure 5 shows the m-dependence of the
normalized gap size, f /fmax. Here, we phenomenologically found
that it had good linearity, i.e., f /fmax = g m/a (g = 2.5615)
at m/a . 0.3 (but f /fmax leveled off near m/a = 0.5). The
g = 2.5615 was obtained via the least square fitting with a straight
line for the data points at m/a less than or equal to 0.2875. Note
that we also observed that the center (say �̄ = (�0 + �1)/2)
of the TE+1 and TE−1 modes (say �0 and �1) showed little m-
dependence (almost nom-dependence), as indicated by the black
dashed curve in Figure 5 (although�1−�0 = ω = 2π f showed
a largem-dependence, as seen in Figure 5).

We then give clearer field and intensity profiles of the TE−1
and TE+1 modes for Hz : Figure 6A shows the field profile or the
real part of Hz in a unit cell at k = π/a of the Brillouin-zone
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FIGURE 5 | Calculated m-dependence of the two split modes, TE+1 (blue

curve) and TE−1 (red curve), produced from a mode-crossing point at 190.13

THz with k = 0.2925× 2π/a of a degenerated TE1 mode. The centre of the

TE+1 and TE−1 modes has little m-dependence, as indicated by the black

dashed curve. The gap size f between the TE+1 and TE−1 modes increases

with m, and the maximum gap size fmax(= 8.68 THz) is obtained at m/a = 0.5.

The inset shows the m-dependence of f/fmax by the green dots, where the

green dots at m/a . 0.3 fit well with the black dashed line with

f/fmax = gm/a (g = 2.5615).

(BZ) end, and Figure 6B shows the intensity profile |Hz|2 at a
mode-crossing point, k = 0.2925 × 2π/a. We then observe
clearer tilted field and intensity profiles with a tilted angle (or a
rotational angle) θ that increases with increasing m. In this case,
we found that the rotation of the intensity profiles of TE+1 (TE−1 )
in Figure 6B was in the anticlockwise (clockwise) direction; A
similar tendency remained in the field rotations of Figure 6A at
the BZ end (since we observed in numerical simulations that the
mode-splitting spacing became large even at the BZ end as m
increased).

The above results were obtained only from the numerical
simulations (i.e., with no theoretical explanations via analytical
methods). In the next section, we will explain the observed
simultaneous polarization rotation and mode splitting by use of
an analytical method with a two-state model derived from the
equation for EM waves.

3. ANALYTICAL INTERPRETATION AND
DISCUSSION

To derive the two-state model to account for the above
phenomena, we start with the following wave equation (obtained
fromMaxwell’s equations) for light propagating in the x direction
with polarization Ei:

(

∇2 − n2

c2
∂2

∂t2

)

Ei = 0, (1)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, n is the refractive index
that includes the PhC spatial modulation, and c is the velocity of
light.

In the following, we make an approximation that the input-
pulse spatial-width W(> λ) is larger than the air-hole period a
in the waveguide, where the input wavelength λ also needs to
suffices λ > a. This approximation makes it possible to deal
with the phenomenon (light rotation) analytically, but cannot
well describe it near the PhC band edge because the backward
reflection of propagating light is strong due to Bragg reflection
with the air-hole arrays. Within the above approximation, an
average nature of the rotation of light in a size of order ∼ λ can
be obtained.

While keeping the above approximation, we insert Ei =
ui e

i(βx−wt) into Equation (1) and obtain the next Schrödinger
equation [15] (see Appendix):

ih̄
∂ui

∂t
= − h̄2

2neff
∇2
2 ui + Vui (2)

≡ H(t) ui, (3)

where we used the notations: h̄ ≡ λ/2π , t ≡ x, V ≡ neff−n, β =
neffk = 2πneff/λ, ∇2

2 = ∂2/∂y2 + ∂2/∂z2, and neff is the effective
refractive index in the waveguide. Here we also used the slowly-
varying-envelope approximation, |∂2ui/∂x2| ≪ |2β ∂ui/∂x|. In
addition, we omitted a small difference in β for waves with
different polarizations (and with the same node numbers). In
this situation, we can perfectly utilize ideas and descriptions in
quantum mechanics to study the phenomena. Hereafter, we will
deal with all quantities in units of h̄ = c = 1, as often used in
quantum mechanics.

Now we concentrate on the lowest eigenvalue of the right-
hand side of Equation (2) whenm = 0, as described in section 2.
In this case, we denote �̄ as the lowest eigenvalue, or the lowest
frequency at the crossing point (with m = 0). When m is added
(i.e., m 6= 0), since the mode with �̄ with degeneracy splits into
two modes, we set their eigenvalues to be �0 and �1, where
�0 = �̄− ω/2 and �1 = �̄+ ω/2 with a gap size of ω(= 2π f )
between the two split modes, where ω has a large m-dependence
but �̄ has littlem-dependence, as already shown in Figure 5.

For those two split modes, the Hamiltonian H(t) in Equation
(3) can be written in the matrix representation as

H(t) =
(

�1 0
0 �0

)

= �1 +�0

2
1̂+ �1 −�0

2
σ̂3

= �̄ 1̂+ ω σ̂3
2
, (4)

which is known as a two-state model [16]. In Equation (4), 1̂ is a
unit matrix and σ̂3 is the z-component of the Pauli matrices (σ̂1,
σ̂2, σ̂3):

σ̂1 =
(

0 1
1 0

)

, σ̂2 =
(

0 −i
i 0

)

, σ̂3 =
(

1 0
0 −1

)

(5)
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FIGURE 6 | Mode profiles of TE+1 and TE−1 at m/a = 0, 1/8, 1/4, 3/8, 1/2 (for odd and even modes). (A) Field profile of the real part of Hz at k = π/a of the BZ end.

(B) Intensity |Hz|2 at k = 0.2925× 2π/a of a crossing point.

that suffice

[σ̂i, σ̂j] = 2iǫijkσ̂k, (6)

{σ̂i, σ̂j} = 2δij1̂ (7)

and thus

σ̂iσ̂j = δij1̂+ iǫijkσ̂k, (8)

where [X,Y] = XY −YX, {X,Y} = XY +YX, and i, j, k run from
1 to 3. ǫijk is the Levi-Civita symbol, and δij is the Kronecker delta.
In what follows, we also use the vector notation of Equation (5),
i.e., σ̂ = (σ̂1, σ̂2, σ̂3).

For the Hamiltonian (4), the Schrödinger equation is of the
form:

i
d

dt
|φ(t)

〉

= H(t)|φ(t)
〉

, (9)

=
(

�̄ 1̂+ ω σ̂3
2

)

|φ(t)
〉

, (10)

where |φ(t)
〉

is a two-component wave function, or a spinor
[17, 18]. (Its detail is described below.) In Equation (10), using
the following transformation

|φ(t)
〉

= e−i�̄1̂t|ψ(t)
〉

= e−i�̄t|ψ(t)
〉

, (11)

we can simplify the Equation (10) as

i
d

dt
|ψ(t)

〉

= H (t)|ψ(t)
〉

, (12)

where

H (t) = ω
σ̂3

2
. (13)

In Equation (11), deriving the e−i�̄t-term from |φ(t)
〉

is accepted,
because we observed a sizable field/intensity tilt induced by a
change inm orω (becauseω has a largem-dependence, but not �̄
because �̄ has littlem-dependence). Thus clearly, we can say that
the tilt does not depend on �̄. Furthermore, when we calculate
the expectation value for an operator Ô , we can rigorously say
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that no �̄ term contributes to the expectation value: In fact, we
obtain via the transformation (11).

〈

Ô
〉

t
=

〈

φ(t)|Ô|φ(t)
〉

=
〈

ψ(t)|Ô|ψ(t)
〉

. (14)

Further, at the initial state (or at t = 0), the next relation holds:

|φ(0)
〉

= |ψ(0)
〉

≡ |ψ
〉

, (15)

where |ψ
〉

is the (time-independent) eigenvector of Equation
(13), or a spinor:

|ψ
〉

=
(

u1
u2

)

. (16)

Here, u1 and u2 are polarized electric fields or wave functions
that will come into the TE−1 mode and TE+1 mode, respectively.
Equation (16) is almost the same as the Jones vector constructed
with polarized electric fields, which is expressed as a spinor with
an appropriate basis [19, 20]. There is a slight difference in
definition between Equation (16) and the Jones vector defined
with plane EM waves, because our EM waves are the waves
propagating along the PhC waveguide with different polarization
directions; nonetheless, almost the same definition can be used
(except for the polarization directions).

The above spinor of a two-state model with Equation (13)
can be regarded as that of an electron with spin 1

2 . In this case,
as is well-known, the size of ω in Equation (13) is proportional
to the strength B of an applied magnetic field, i.e., ω ∝ B
(for weak B) [16]. In this situation, we can look upon m as B
phenomenologically by help of the “equivalence” between ω ∝ m
and ω ∝ B (for smallm and B).

Next, to see the time evolution of the system with H (t), we
use the following equation for a unitary operator U(t) [16, 21].

i
d

dt
U(t) = H (t)U(t). (17)

Equation (17) can be derived from the derivative of the identity
U(t)†U(t) = U(t)U(t)† = 1̂, that is,

i
dU(t)

dt
U(t)† = −iU(t)

dU(t)†

dt
, (18)

which indicates that the left-hand side of Equation (18) is
hermitian. If we set this hermitian part as H (t), Equation (17)
can be obtained from Equation (18).

By inserting Equation (13) into Equation (17) and integrating

Equation (17) with the initial condition U(0) = 1̂, we obtain

U(t) = 1̂− i

∫ t

0
dt1 H (t1)+ (−i)2

∫ t

0
dt1

∫ t1

0
dt2 H (t1)H (t2)+ . . .

(19)

=
∞
∑

n = 0

(−i)n
(

ω
σ̂3

2

)n tn

n!
(20)

= e−iω
σ̂3
2 t (21)

= 1̂ cos
ω t

2
− iσ̂3 sin

ω t

2
, (22)

where the time-integration parts have been simply calculated as

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtn = tn

n!
(23)

because H (t) = ω σ̂3/2 has no time-dependence.
In this case, the time-evolution |ψ(t)

〉

of the spinor |ψ
〉

in
Equation (16) is of the form:

|ψ(t)
〉

= U(t)|ψ
〉

(24)

= e−iω
σ̂3
2 t|ψ

〉

(25)

=
(

1̂ cos
ω t

2
− iσ̂3 sin

ω t

2

)

|ψ
〉

. (26)

where if we interpret that ω t is an angle θ for the polarization
rotation, then Equation (26) gives a double-valuedness to u2 (or
u1) in the θ-rotation. Here, t should be interpreted as the length of
the interconnection part between the non-mismatched entrance
and the mismatched exit (when we use the units of h̄ = c = 1);
The “t” is a constant when the interconnection length has a fixed
value. Even in this situation, θ can vary asm changes because the
insertion of f = g fmaxm/a into ω = 2π f in Equation (26) gives
θ = ω t = 2πgfmaxt m/a = θ0m/a, where θ0 = 2πgfmaxt is a
constant. Inserting ω t = θ into Equation (26), we obtain

|ψ(θ)
〉

=
(

1̂ cos
θ

2
− iσ̂3 sin

θ

2

)

|ψ
〉

, (27)

which provides the relation |ψ(2π)
〉

= −|ψ(0)
〉

. Furthermore,
Equation (27) can explain the aforementioned anticlockwise
(clockwise) rotation of the TE+1 (TE−1 ) mode, because the explicit
expression of Equation (27) with

|ψ(θ)
〉

=
(

u1(θ)
u2(θ)

)

, |ψ
〉

=
(

u1
u2

)

(28)

is of the form:
(

u1(θ)
u2(θ)

)

=
(

e−iθ/2 u1
eiθ/2 u2

)

. (29)

Thus, if u2(θ) rotates anticlockwise, then u1(θ) rotates clockwise
(and vice versa). Note that in terms of |φ(t)

〉

(not |ψ(t)
〉

), we
obtain in place of Equation (29):

(

u1(θ)
u2(θ)

)

=
(

e−i20 e−iθ/2 u1
e−i20 eiθ/2 u2

)

, (30)

where 20 = �̄ t is a constant when the “length” t is a constant,
as described above. If m = 0, then θ = 0, but 20 remains as
a constant (because �̄ in 20 has (almost) no m-dependence); in
this case (orm = 0), Equation (30) becomes

(

u1(0)
u2(0)

)

=
(

e−i20 u1
e−i20 u2

)

. (31)

Equation (31) corresponds to the zero-m fields, as given at
the leftmost ones in Figure 6A. We can see that adjusting the
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parameter “t” in 20 of Equation (31) enables setting various
initial polarized states at m = 0. We should examine the field
tilt for m 6= 0 as a difference from those initial field profiles,
(u1(0) u2(0)), and thus what we should look upon as a field tilt
is given by

(

u1(θ)
u2(θ)

)

=
(

e−iθ/2 u1(0)

eiθ/2 u2(0)

)

, (32)

and hence we obtain the same result as that in Equation (29).
As for the evolution of the angular momentum operator σ̂ , we

can calculate it as

σ̂ (t) = U†(t)σ̂U(t). (33)

Using Equations (21),(33), we obtain





σ̂1(t)
σ̂2(t)
σ̂3(t)



 =





cosωt − sinωt 0
sinωt cosωt 0
0 0 1









σ̂1
σ̂2
σ̂3



 , (34)

where Equations (8),(22) have been used in the calculations. For
convenience, we rewrite Equation (34) as

σ̂i(t) = aij(t)σ̂j, (35)

where j is a dummy index and runs from 1 to 3. Since σ̂i is defined
in the SU(2) space [22], it is not yet related to a vector in our real
space, i.e., in the SO(3) space.

Next, we show how a vector rotating in SO(3) space is related
to σ̂i in the SU(2) space. To perform this, we start with the
following Schrödinger equation:

i
d

dt
|ψ(t)

〉

= H (t)|ψ(t)
〉

, (36)

i
d

dt
|ψ(t)

〉

− H (t)|ψ(t)
〉

= 0. (37)

By multiplying
〈

ψ(t)|σ̂i from the left to Equation (37), we obtain

i
〈

ψ(t)|σ̂i
d

dt
|ψ(t)

〉

− ω

2

〈

ψ(t)|σ̂iσ̂3|ψ(t)
〉

= 0, (38)

where Equation (13) was also used. We then multiply σ̂i|ψ(t)
〉

from the right to the hermitian conjugate of Equation (37) and
obtain

− i

(

d

dt

〈

ψ(t)|
)

σ̂i|ψ(t)
〉

− ω

2

〈

ψ(t)|σ̂3σ̂i|ψ(t)
〉

= 0. (39)

By subtracting Equation (39) from Equation (38), we have

i
d

dt

〈

ψ(t)|σ̂i|ψ(t)
〉

− ω

2

〈

ψ(t)|[σ̂i, σ̂3]|ψ(t)
〉

= 0, (40)

i
d

dt

〈

ψ(t)|σ̂i|ψ(t)
〉

+ iǫij3
〈

ψ(t)|σ̂j|ψ(t)
〉

ω = 0, (41)

where [σ̂i, σ̂3] = 2iǫi3kσ̂k = −2iǫij3σ̂j was used. In Equation
(41),

〈

ψ(t)|σ̂i|ψ(t)
〉

is an expectation value of σ̂i at “time” t and

is observed as a vector in the SO(3) space. Also, we can show that
〈

ψ(t)|σ̂i|ψ(t)
〉

is actually proportional toMi(t) of a general vector
M(t) rotating in the SO(3) space, where it suffices the same-form
equation as Equation (41):

d

dt
Mi(t)+ ǫij3Mj(t)ω = 0 (42)

that is obtained [23] from

d

dt
M(t)− ω ×M(t) = 0, (43)

whereM(t) is fixed in amoving systemwith an angular frequency
vector ω = ωe3 and e3 is a unit vector in the e3-direction.
Furthermore, in order to check the transformation property of
〈

ψ(t)|σ̂i|ψ(t)
〉

, by use of |ψ(t)
〉

= U(t)|ψ
〉

, we get

〈

ψ(t)|σi|ψ(t)
〉

=
〈

ψ |U†(t)σiU(t)|ψ
〉

(44)

= aij(t)
〈

ψ |σj|ψ
〉

. (45)

This means that
〈

ψ(t)|σi|ψ(t)
〉

is a vector that transforms via
aij(t), i.e., the rotation in SO(3). In the above, we have assumed
ω t = θ since its use in Equations (27),(29). Thus, we consistently
use it in the rotation of the angular momentum. We then obtain





〈

σ̂1
〉

θ
〈

σ̂2
〉

θ
〈

σ̂3
〉

θ



 =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1









〈

σ̂1
〉

〈

σ̂2
〉

〈

σ̂3
〉



 (46)

as the explicit matrix representation of Equation (45), where
〈

σi
〉

=
〈

ψ |σi|ψ
〉

and
〈

σi
〉

θ
=

〈

ψ(t)|σi|ψ(t)
〉

with ω t = θ (or
〈

σi
〉

θ
=

〈

ψ(θ)|σi|ψ(θ)
〉

). The relation of
〈

σi
〉

θ
with the electric

fields is easily obtained from the direct calculations of
〈

σi
〉

θ
=

〈

ψ(θ)|σi|ψ(θ)
〉

with Equations (5),(28):

〈

σ̂1
〉

θ
= u∗1(θ)u2(θ)+ u1(θ)u

∗
2(θ)

= 2 Re(u∗1(θ)u2(θ)) ≡ S2, (47)
〈

σ̂2
〉

θ
= −iu∗1(θ)u2(θ)+ iu1(θ)u

∗
2(θ)

= 2 Im(u∗1(θ)u2(θ)) ≡ S3, (48)
〈

σ̂3
〉

θ
= |u1(θ)|2 − |u2(θ)|2 ≡ S1, (49)

where S1, S2, and S3 are the Stokes parameters that characterize
polarization rotations [24, 25]. The electric-field intensity relates
to the rest (S0) of the Stokes parameters:

〈

1̂
〉

θ
= |u1(θ)|2 + |u2(θ)|2 ≡ S0. (50)

Note that the rotation of the angularmomentum in Equation (46)
shows a single-valuedness with respect to θ , which is completely
different from the double-valuedness of the wave function |ψ(θ)

〉

;

If we treated an electron of spin 1
2 , |ψ(θ)

〉

would be the wave
function of the electron, and the angular-momentum motion
would correspond to spin precession [26].

In this paper, we have pointed out the “equivalence” between
the PhC line-defect waveguide with an added phase mismatch m
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and the spin-half electron with an applied magnetic field B. In
particular, the EM wave equation in the PhC waveguide could be
reduced to the Schrödinger equation; Both systems showed the
same two-level splitting and had the split mode or level spacing in
proportion to the size of the perturbation,m or B. At the present
stage of the theory with some approximations, we cannot prove
the “equivalence” mathematically, but we showed it from some
supporting evidence. A further development of the theory with
much less approximations will be able to explain the equivalence.

4. SUMMARY

Using the Schrödinger equation derived from the EM wave
equation, we have built a two-state model that can explain the
observed polarization rotation and mode splitting that occur
simultaneously when a phase mismatchm is added to a PhC line-
defect waveguide. The theory has given a double-valuedness to
the light field (or the wave function) with different polarizations
and a single-valuedness to themotion of angularmomenta. Using
a spinor representation, the former has explained the difference
in the rotational direction (i.e., clockwise or anticlockwise
direction) of TE−1 or TE+1 mode, and the latter has clarified the
relation between the angular momenta and the Stokes parameters
that define the polarization rotations. Also, the theory has given
a relation between the rotational angle θ and the mismatch m

for small m (via the numerical result between f and m). In
this analysis, the “equivalence” between both systems has been
indicated for the light field with two split modes and the electron
wave function with two split levels and for the light angular
motion and the electron spin precession.
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APPENDIX

To derive the Schrödinger equation from the wave equation, we
insert Ei = ui e

i(βx−wt) into

(

∇2 − n2

c2
∂2

∂t2

)

Ei = 0, (A1)

and obtain

∇2
2 ui e

i(βx−wt) + ∂2ui

∂x2
ei(βx−wt) + 2iβ

∂ui

∂x
ei(βx−wt)

+
(

n2

c2
w2 − β2

)

ui e
i(βx−wt) = 0, (A2)

where ∇2
2 = ∂2/∂y2 + ∂2/∂z2 and β = neffk = 2πneff/λ, k is the

wavenumber in vacuum, and w is the angular frequency.
By use of the slowly-varying-envelope approximation,

|∂2ui/∂x2| ≪ |2β ∂ui/∂x|, Equation (A2) is of the form:

∇2
2 ui + 2iβ

∂ui

∂x
+

(

n2

c2
w2 − β2

)

ui = 0. (A3)

By substituting β = neffk for Equation (A3) and using an
approximation, |n− neff| ≪ n+ neff, we obtain

iλ–
∂ui

∂x
= − λ–2

2neff
∇2
2 ui + (neff − n)ui, (A4)

where λ– = λ/2π . In Equation (A4), by setting h̄ = λ–, V =
neff − n, we finally get

ih̄
∂ui

∂t
= − h̄2

2neff
∇2
2 ui + Vui. (A5)
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