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For many pathologies, early structural tissue changes occur at the cellular level, on the

scale of micrometers or tens of micrometers. Magnetic resonance imaging (MRI) is a

powerful non-invasive imaging tool used for medical diagnosis, but its clinical hardware

is incapable of reaching the cellular length scale directly. In spite of this limitation,

microscopic tissue changes in pathology can potentially be captured indirectly, from

macroscopic imaging characteristics, by studying water diffusion. Here we focus on

water diffusion and NMR relaxation in the human prostate, a highly heterogeneous

organ at the cellular level. We present a physical picture of water diffusion and

NMR relaxation in the prostate tissue, that is comprised of a densely-packed cellular

compartment (composed of stroma and epithelium), and a luminal compartment with

almost unrestricted water diffusion. Transverse NMR relaxation is used to identify fast and

slow T2 components, corresponding to these tissue compartments, and to disentangle

the luminal and cellular compartment contributions to the temporal evolution of the

overall water diffusion coefficient. Diffusion in the luminal compartment falls into the

short-time surface-to-volume (S/V ) limit, indicating that only a small fraction of water

molecules has time to encounter the luminal walls of healthy tissue; from the S/V ratio,

the average lumen diameter averaged over three young healthy subjects is measured

to be 217.7 ± 188.7µm. Conversely, the diffusion in the cellular compartment is highly

restricted and anisotropic, consistent with the fibrous character of the stromal tissue.

Diffusion transverse to these fibers is well described by the random permeable barrier

model (RPBM), as confirmed by the dynamical exponent ϑ = 1/2 for approaching

the long-time limit of diffusion, and the corresponding structural exponent p = −1 in

histology. The RPBM-derived fiber diameter and membrane permeability were 19.8 ±
8.1µm and 0.044 ± 0.045 µm/ms, respectively, in agreement with known values from

tissue histology and membrane biophysics. Lastly, we revisited 38 prostate cancer cases

from a recently published study, and found the same dynamical exponent ϑ = 1/2

of diffusion in tumors and benign regions. Our results suggest that a multi-parametric

MRI acquisition combined with biophysical modeling may be a powerful non-invasive

complement to prostate cancer grading, reducing the need for biopsies.

Keywords: prostate diffusion, microstructure imaging, prostate cancer, gleason score, RPBM, diffusion tensor
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INTRODUCTION

Magnetic resonance imaging (MRI) research aims to identify and
validate imaging biomarkers that offer insight for diagnosing
diseases and monitoring their progression. This problem is
difficult, because MRI hardware limitations result in images of
about 1mm resolution in all three dimensions. This resolution
is too coarse to directly observe and categorize pathologies
originating, primarily, at the cellular level of∼1–100µm. Hence,
tissue characterization with MRI has generally been empirical
in nature. However, recently the field of quantifying tissue
microstructure with MRI has been gaining increasing attention,
with the number of publications growing exponentially [1].
While not accessing the cellular-level structure directly, its
overarching goal is to quantify typical microstructural tissue
parameters indirectly, relying on biophysical modeling of the
NMR signal acquired (i.e., averaged) over a macroscopic imaging
voxel [2, 3].

The possibility of model-based microstructural mapping has
spurred with the advent of diffusion MRI (dMRI) [4, 5], an
imaging technique based on diffusion NMR [6–8], that measures
the spatial Fourier transform Gt,q of the voxel-averaged diffusion
propagator Gt,x (i.e., probability density of water molecules’
displacements x(t) over time t), in each voxel. By shifting the
focus from nominal hardware resolution, to the effective length
scale probed by the Brownian motion of spin-carrying molecules
in each voxel, dMRI becomes sensitive to the microscopic
tissue structure commensurate with the diffusion length (rms
molecular displacement) L (t) ∼

√
D (t) t. The time-dependent

diffusion coefficient D (t) = 〈x2(t)〉/2t ∼ 1 µm2/ms, or more
generally, the time-dependent diffusion tensor, characterizes the
rate of effective coarse-graining [3] of the tissue structure by
the diffusing molecules over the diffusion time t. This time
scale, and with that, the coarse-graining window L (t), can be
experimentally controlled within the range between a few to a few
tens of microns, limited by the tissue NMR T1 ∼ 1,000ms time
scale.

The fundamental challenge lies in interpreting the measured

diffusion propagator Gt,q, or its basic characteristics [e.g., the
cumulants, such as the bulk diffusion coefficient D (t)], in the
context of the complex mesh of biological tissue. In physics
terms, for a given tissue, one has to identify the relevant degrees
of freedom of its structural complexity at the scale of L (t),
that affect the bulk measurement the most, and thus can be
quantified using biophysical modeling. Therefore, from the basic
science standpoint, clinically-relevant dMRI research falls into
the category of transport in classical disordered (random) media,
a part of modern-day condensed matter physics. This establishes
a somewhat unexpected yet exciting and fruitful connection
[3, 9, 10] between the fundamental characterization of classical
disordered transport, and the potentially clinically impactful
applications in diagnostic radiology and in assessing treatment
efficacy.

This study is focused on identifying the relevant degrees of
freedom for dMRI within the prostate, which is a male organ
that has highly heterogeneous tissue at multiple length scales
Figures 1A,B [11]. While dMRI is used in clinic for prostate

cancer diagnosis [12], the basic MRI-relevant characteristics of
prostate microstructure have yet to be identified and validated.
We will use prostate dMRI as an example to illustrate our basic
physics-inspired approach for revealing and validating potential
diagnostic markers of in vivoMRI.

To give a general sense of the relevant prostate anatomy

(Figure 1), signal arising from any given voxel will come
from a mixture of macroscopic stroma, epithelium, and lumen
contributions, usually referred to as “compartments” [13]. Here,

“macroscopic” means that their sizes exceed the available range
of diffusion length scales. Yet the diffusion inside each of these
compartments, at the scale L (t), may be quite complex (non-

Gaussian), as we will argue below. The stroma and epithelium
compartments are densely packed and have comparable cellular
length scales ∼10 µm, which allows us, for simplicity, to lump
them into a single “cellular” compartment, whereas the glandular

lumen are considerably larger and biophysically distinct—
reminiscent of the “lakes” of almost unrestricted water, of ∼100
µm diameter in healthy tissue Figure 1B [14, 15]. (Later, we will
comment on the relative roles of epithelium and stroma in the

dMRI signal).
Partial-volume contributions of macroscopic compartments

have been a persistent problem for model selection in dMRI.

An empirical approach to intermixing compartments is by
representing them with a multi-Gaussian diffusion signal
expression, in which the signal is separated into components
with different diffusion coefficients (or tensors), equivalent to
the Laplace transform with respect to the so-called “diffusion
weighting” parameter b = q2t, such that the Gaussian propagator
corresponds to a monoexponential diffusion signal S ∼ e−bD.
A bi-exponential signal representation, with “fast” and “slow”
empirical diffusion coefficients, has been shown to fit very well
to signals from fresh and fixed ex-vivo prostates [16], however
the biophysical origin of compartment fractions and diffusivities
has remained unclear.

The parameter b does not fully characterize a measurement,
since, generally speaking, signal from each tissue compartment
does not have to be Gaussian, in which case one needs to specify
two parameters – e.g., q and t, or, as we will do here, b and t, in
adherence to existing historical conventions [5]. In fact, the time
dependence of the overall diffusion coefficient D (t) necessarily
means that at least one macroscopic tissue compartment n is
characterized by time-dependent diffusion, in which case its

propagator G(n)
t,q must be non-Gaussian [10], i.e., the Taylor

expansion of lnG(n)
t,q should generally have time-dependent

higher-order cumulant terms O(q4), O(q6), . . . . Recently, we
found significant time-dependence of the diffusion coefficient
in benign and cancerous human prostates [17], highlighting
the need to re-interpret multiexponential fits. Even at fixed t,
over-interpreting the bi-exponential fit of the signal in terms of
genuine Gaussian diffusion compartments has been cautioned
against [18, 19].

Several studies have compared various modeling approaches
side-by-side to determine the “correct” model using fit
quality. Unfortunately, there is still no clear consensus on
the preferred biophysical model, or even the most optimal
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FIGURE 1 | Schematic of prostate microstructure and coarse-graining. H&E stained cross sections are shown from a radical prostatectomy (A,B). To emphasize the

structures and orientations, K-means clustering was applied onto the H&E images to emphasize the different intra-voxel compartrments and stromal orientations. In

(A) we show that there is considerable structural anisotropy and local coherence in stromal cell orientation. There is an apparent directionality as certain fiber bundles

of smooth muscle appear in both perpendicular and longitudinal cross sections within the a 1,000 × 784 µm2 section. In (B) we show that stroma and glandular

lumen can reside very close to each other, therefore the signal contribution from a voxel will be a weighted average depending on various tissue weightings. (C) As the

echo time (TE) increases, the cellular compartment (stripes) decays with a faster T2, while the luminal compartment (solids) decays with a slower T2. By modeling the

T2 weighting of each compartment, the signal weighting, W, of each tissue subtype can be determined based on the diffusion-free signal, S0, cellular compartment

fraction, f, and relaxation parameters T1, T
C
2 , and TL2 . Given the compartment weights, the overall diffusion tensor may be subsequently separated into cellular-only

and lumen-only tensors. Once tissue compartments are separated, the evolution of D(t) in each tissue compartment can be interpreted through the context of the

underlying microstructure. Diffusing molecules “see” the compartmental microstructure through the lens of a Gaussian filter of width L (t) ∼
√
D (t) t, which increases

with t.

signal representation (i.e., a set of basis functions, cf. ref
[1]). Some studies favor a mono-exponential [20, 21], others
favor bi-exponential [16], while some suggest that including
the empirical fourth-order cumulant (kurtosis) term in the
overall signal provides the best fit [22]. Most importantly,
each of these works agree that even the simplest mono-
exponential representation of diffusion (at fixed t) already
fits clinical data reasonably well. Putting their conclusions
together, these works suggest that there may not be enough
information to reliably select the adequate biophysical tissue
model by studying diffusion (at fixed t) alone in clinically feasible
acquisitions.

While identifying tissue compartments using diffusion is
a challenge, separating compartments using transverse NMR
relaxation, T2, has been done as early as 1987 [23]. There
has been a catalog of studies [23–27], which state that
there exists a fast-decaying T2 component, associated with
cellular (epithelium+stromal) tissue, TC

2 ∼ 50 ms, and a
slowly-decaying T2 component, associated with luminal tissue,
TL
2 ∼ 350 ms. Interestingly, the luminal compartment

has a small volume fraction in the average MRI voxel
(<10%) [13], yet due to its much longer T2, it may
notably contribute to the overall signal, as we confirm below.
Meanwhile, the distinct geometry [14, 15] of cellular and luminal
compartments should give rise to distinct functional forms
for the time-dependent diffusion coefficients DC(t) and DL (t),
respectively.

Here we introduce the following diffusion-relaxation model
in the 3-dimensional parameter space: b, t, and echo time, TE

(Figure 2), with the signal as a sum of (generally non-Gaussian)

contributions with distinct T2 times:

S
(

b, t,TE

)

= S|b, t,TE=0 ·
∑

n=C,L

fn e
− TE

T
(n)
2

−bD(n)(t)+O(b2)
. (1)

In this work, we limit ourselves to the two major compartments,
cellular = (stroma + epithelium), with volume fraction fC ≡
f , and luminal, with fL = 1 − f . Due to the notable
difference in T2 relaxation rates, the cellular compartment will
lose its signal much faster than the luminal compartment with
increasing echo time TE, thereby creating a large dynamic
range that will facilitate the separation of tissue compartments
and their diffusion properties, as schematically pointed in
Figure 1C. We will keep the b-value low, to stay in the diffusion
tensor regime (effectively, factoring out the q-dependence) (see
Supplemental Information), and vary the mixing time TM

of the stimulated echo sequence (Figure 3), thereby studying
the dependence of diffusion tensors in the cellular and
luminal compartments separately on the diffusion time t. The
qualitatively distinct time-dependencies of DC(t) and DL(t) will
be utilized for model selection in each compartment.

RELEVANT MODELS OF
TIME-DEPENDENT DIFFUSION

Short-Time Limit: D(t) as a Probe of S/V
At short diffusion times, the time-dependence of the diffusion
coefficient can be described solely by the surface-to-volume
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FIGURE 2 | The parameter space of MRI experiments. Varying the b-value

(that yields, progressively, diffusion tensor imaging, diffusion kurtosis imaging,

intravoxel-inherent motion, multiexponential diffusion, and other signal

representations) has been the most popular approach to studying diffusion

weighting (red vertical line). Diffusion time, t, giving measurements regarding

structural disorder, and echo time, TE, which can be used for altering the

compartment weighting, have both been largely unexplored as effects on the

diffusion measurements in the prostate. The blue volume surrounding the

3-axes represents the extent of parameter space covered by this study.

ratio (S/V) of the pore walls (e.g., cell membranes), and the
unrestricted (free) diffusivity D0 [28]:

D (t) = D0

(

1−
4

3d
√

π

S

V

√

D0t

)

. (2)

This equation assumes isotropic distribution of the restrictions
to diffusion in d spatial dimensions. The advantage of this limit is
that it offers a biologically relevant length scale, the inverse S/V ,
without too much model complexity and minimal assumptions.
The disadvantage is in being sensitive only to the net amount
of restrictions, rather than to their relative positions in space
(i.e., structural correlations) and their permeability, as it occurs
at longer times.

The range of times over which the S/V limit (2) is applicable
is t ≪ l2pore/(2dD0), where lpore is the pore characteristic length
scale; this estimate was recently validated in a phantom on
the same clinical scanner used in this study [29]. Assuming
that glandular lumen has D0 ≈ 3 µm2/ms (free water at
body temperature), and diameter lpore ∼ 100 µm, the S/V
limit will apply for t ≪ 500 ms. This indicates that the S/V
limit would be applicable in the healthy glandular lumen over
a broad t range. However, luminal diameters do shrink with
tumor grade [15, 30], which will shorten the range of t over
which the S/V limit is applicable in patients. The corrections to
Equation (2) due to wall curvature or permeability are beyond
the scope of this work, due to signal-to-noise ratio and scan time
limitations.

Long-Time Limit: D(t) as a Probe of
Membrane Permeability and Structural
Correlations
In contrast to the luminal compartment, the cellular
compartment is densely packed and contains cells with
small ∼10µm diameters, which may shrink even further with
increasing tumor grade [31]. Assuming D0 ∼ 1 µm2/ms, locally
in d = 2-dimensions due to fibrous geometry [13, 32] (as we will

also confirm below), the range over which the S/V limit would
apply is expected to be t ≤ 25ms. For clinically accessible t,
diffusion in the cellular compartment will be acquired outside of
the S/V limit. Exceeding this limit, the diffusion length becomes
comparable or greater than the characteristic length scale of the

tissue (cell diameter), andD(t) becomes dependent on numerous
tissue parameters describing both cell geometry and membrane
permeability. In general, modeling diffusion in tissue geometry
over a broad range of times is an unsolved problem, as it is
unclear which features of tissue microarchitecture need to be
included.

To identify what features of tissue complexity are most
relevant for the measurement, Novikov et al. [9] showed that it
is advantageous to observe time-dependent diffusion in the long
time limit, approaching the bulk diffusion coefficient D∞. Time-
dependence in this limit reveals the most essential footprint of
the underlying structure via the dynamical exponent ϑ in the
instantaneous diffusion coefficient

Dinst (t) ≡
1

2

∂

∂t

〈

x2 (t)
〉

∼ D∞ + A · t−ϑ , t → ∞. (3)

Here,A is the associated strength of the structural disorder, which
is being effectively coarse-grained [3] by the molecules traveling
over an increasing diffusion length. The exponent

ϑ = (p+ d)/2 (4)

is related to the statistics of the global arrangement of tissue
microstructure—in our case, of stroma and epithelium cells—
via the structural exponent p in d spatial dimensions. The
exponent p defines the structural universality class [9] of random
media. Roughly speaking, the larger the exponent p, the faster
the structural fluctuations decrease at large distances, and the
more ordered the medium. Formally, this exponent describes
the low-k behavior of the power spectrum Γ

(

k
)

∼ Akp of
the restrictions, corresponding to the decay of their density-

density correlation function Γ (r) =
∫

ddk
(2π)d

eikrΓ
(

k
)

at large

distances r. The Poissonian, and more generally, short-range
disorder corresponds to p= 0, strong disorder to p< 0 (diverging
fluctuations at large distances, e.g., due to spatially extended
restrictions [9, 33]), and hyper-uniform disorder to p > 0
(variance of fluctuations within a volume growing slower than
the volume [34]). The gradual coarse-graining of the structure
embodied in Γ (r) over an increasing diffusion length L(t) ∼
r results in the universal scaling, Equation (3). Note that the
dimensionality d of the diffusion process has to be inferred from
the shape of the diffusion tensor. In an isotropic case d = 3,
whereas, for instance, for an axially symmetric diffusion tensor
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FIGURE 3 | Diagram of the Stimulated Echo Acquisition Mode (STEAM) sequence showing how to manipulate parameters of NMR relaxometry (T2 and T1) by varying

the echo time, TE, and the mixing time, TM; and how to manipulate parameters of diffusion weighting by varying the applied gradient amplitude, G, the applied

gradient duration, δ, and the spacing 1 between applied gradients. The diffusion time t is approximately given by 1; the accuracy in its definition is set by the value of

δ, cf. section 2.3 of Novikov et al. [3].

(e.g., in tissue fibrous geometry), d = 2 for the transverse and
d = 1 for the longitudinal diffusion eigenvalues λ⊥ and λ||,
correspondingly.

The universal asymptotic law (3), with the relation (4) between
the structure and diffusive dynamics, is a recipe for model
selection. However, dMRI measures the cumulative D (t) =
1
t

∫ t
0 Dinst

(

t′
)

dt′. Such temporal averaging limits the range
of directly-measurable exponents (without differentiating noisy
data), since the corresponding long-time tail inD (t)will have the
exponent ϑ̃ = min (ϑ , 1) [9, 35]. We now outline a few relevant
structural universality classes.

Structural order in any d, and hyperuniform disorder (p >

0) in d ≥ 2 dimensions all have ϑ > 1, which means that the tail
in the cumulative D (t) will have exponent ϑ̃ = 1, masking the
genuine ϑ :

D (t) ≃ D∞ + A · t−1, t → ∞. (5)

Hyperuniform disorder suppresses structural fluctuations and
may arise in optimal random packings [36]. In a sense,
hyperuniform disorder is the closest to a perfectly periodic
arrangement of the building blocks in a medium. Equation (5)
tells that any such arrangement (e.g., a periodic lattice of barriers
[37], or the “crystal lattice” of identical cells) would yield the
asymptotic∼1/t behavior in D(t).

A similar-looking 1/t tail arises when a tissue compartment
corresponds to perfectly impermeable cells of size ∼

√
A (fully

restricting cell walls), placing a hard upper bound on
〈

x2 (t)
〉

.
This is, perhaps, the simplest non-Gaussian compartment model,
and it has been popular in describing dMRI signal from tumors
[38–42].

Short-range disorder in 2 dimensions (e.g., transverse to
aligned fibers randomly packed in a bundle) yields ϑ = 1 and
the corresponding ln( t/δ)/t tail in D(t), which, for the diffusion
gradient pulse width δ > tc exceeding the corresponding
correlation time across the packing correlation length, yields the
behavior [43]

D (t, δ) ≃ D∞ +
A

2δ2
(

t − δ
3

)

[

t2 ln
t2 − δ2

t2

+δ2 ln
t2 − δ2

δ2
+ 2tδ ln

t + δ

t − δ

]

, t > δ, (6)

that asymptotically becomes A ln( t/δ)/t for t ≫ δ.

Extended-disorder (randommembranes), e.g., random lines
in d = 2 dimensions or randomly placed and oriented planes in
d = 3, yields the slow power-law tail [33]

D (t) ≃ D∞ + A · t−
1
2 , t → ∞. (7)

This disorder geometry was approximately described for all
t by the random permeable barrier model (RPBM) based on
the real-space renormalization group approach to the diffusion
equation represented as a scattering problem [33]. The RPBM
was subsequently found to well describe diffusion transverse to
muscle fibers (d = 2) [9, 44–46], where diffusion along fibers was
practically unrestricted, while the transverse diffusion coefficient
strongly decreased with t.

Note a subtle yet important difference between Equations
(6) and (7), as applied to the d = 2 fiber geometry: Equation
(6) applies if the fibers are randomly packed in a bundle,
hindering the extra-cellular water (such as a random packing
of disks in the cross-section [43]), yielding Γ

(

k
)

∼ const
for k → 0, i.e., p = 0, while Equation (7) applies if the cell
walls appear to be locally flat (i.e., lines in the cross-section,
Figure 4A) and sufficiently permeable, so that the intra- and
extra-cellular spaces can be considered on an equal footing.
The exponent ½ arises due to the distinct spatial statistics
of the restrictions, Figure 4A, represented by the locally flat
permeable membranes (fiber walls) that extend for longer
than the diffusion length, and yield the corresponding low-k
divergence in Γ

(

k
)

∼ k−1; the temporal scaling (7) emerges
when these membranes are traversed more than once during the
diffusion time t.

We have recently shown that there is a measurable effect of a
time-dependent D(t), which differs between benign and various
stages of peripheral zone cancer [17]. This adds to a growing
body of research that is interested in modeling D(t) for cancer
applications [42]. However, at that point we have not separated
the relative compartment contributions to the overall D(t). We
realized that partial volume effects [47] need to be overcome, so
that the microstructure of intermixing tissue can be identified.
In what follows, by decomposing the dMRI signal into fast and
slow T2 compartments, model selection for D(t) within cellular
and luminal tissues will be performed independently, based on
the above range of models of diffusion in disordered media.
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FIGURE 4 | Structural Correlation from histopathology. H&E stained samples of benign fibromuscular stroma from a radical prostatectomy were considered. In the

body of the text, we found that extended disorder geometry, related to random membranes, defined the structural disorder for DC⊥. We plot 55 randomly oriented

membranes in 2D (A) as an idealistic case for extended disorder and 3 samples (B–D) of segmented prostate fibromuscular stroma, which are predominantly taken

through perpendicular cross sections. The segmentation was used to emphasize the cell walls as the primary sources of restriction to diffusion. The average length

scale from was determined by calculating S/V = 2l/A (A) and S/V = l/A for (B–D), where l is the number of voxels found at the edge of each cell, and A is the area of

the sample. The number of randomly oriented barriers in (A) was selected to match the average fiber diameter 4V/S for the histological samples. For (A–D) the Fourier

transform density autocorrelation function, Γ (k) was determined by radially averaging over k-space and plotting 1,200 bins from the 1,440 × 1,440 pixel2 / 590 × 590

µm2 images (E). The dashed black line represents the fit Γ (k) = Ak−1.

We emphasize, that here we are performing model selection
by inferring the distinct functional form of the measured D(t),
rather than relying on goodness-of-fit metrics which can be often
misleading [1]. By identifying the dynamical exponent (4), or
the short-time regime (2), we are, in a way, asking the tissue
to reveal its type of structure (the S/V limit, or a structural
universality class), instead of imposing a particular model of
restricted diffusion from the outset. Identification of the disorder
class will then justify searching for the most parsimonious model
within that class. This logic naturally follows the fact that the
structural complexity is hierarchical; its most relevant degrees
of freedom should be identified first (they define the signal’s
overall functional form), followed by fine-tuning the remaining
microscopic details, SNR permitting.

METHODS

Subjects
This study was in compliance with the Health Insurance
Portability and Accountability Act guidelines and was approved
by the institutional review board of New York University
School of Medicine. Following written informed consent, 3 male
volunteers (ages: 22, 28, 32) with no history of prostate disease
were imaged on aMAGNETOM 3T Prisma system (Siemens AG,
Erlangen, Germany) using the 18-channel phased array body coil.

MRI Acquisition
The major challenge in separating between the compartment
diffusivities is to accurately map out the necessary parameters

pertaining multi-compartment relaxation, and to measure the
diffusion in a broad range of diffusion times for the model
selection purpose. For these reasons, we used a stimulated
echo acquisition mode (STEAM) sequence (WIP916B, Siemens),
which allows us to study diffusion dependence on TE and
t simultaneously (Figure 3). STEAM is the preferable pulse
sequence, as it is T1-weighted and preserves more signal at long t,
than the more commonly used T2-weighted pulsed gradient spin
echo (PGSE) diffusion sequence.

Diffusion weighted images (DWI) were acquired in sets of
17 non-collinear directions distributed on a sphere at b = 0.5
ms/µm2 = 500 s/mm2, and 2 nominally-unweighted images
(which do not, technically, correspond to b = 0, but whose b-
value is calculated within the sequence). With this orientation of
gradient directions, DWI were acquired with TE = [52, 115, 180]
ms and t = [25.2, 40, 65, 105, 175, 280, 450, 740] ms, resulting in
a total of 24 imaging series, each containing 17+2 = 19 imaging
volumes. The applied gradient pulse duration, δ, was fixed to
10ms, and the applied gradient amplitude, G, decreased with
t, where the average G(t) was [56.51, 43.65, 33.66, 26.21, 20.18,
15.89, 12.51, 9.74] mT/m. STEAM allows the user tomodulate the
mixing time (TM), which is the spacing between the second and
third RF pulses, giving rise to a variable T1 weighting (Figure 3).
The mixing time is also related to t, which is the spacing between
the de-phasing and re-phasing diffusion gradients in the narrow-
pulse limit. Here, TM ranged from 6.38 to 719.32ms and varied
with changing TE and t.

The order of the acquisitions was randomized to avoid any
potential temperature effects and aid in image registration (see
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next sub-section). Diffusion gradients were compensated to
match the requested b-value [42, 48, 49]. As the amplitude of
diffusion gradients decreased with t, the nominal b= 0 weighting
increased from 3 to 102 s/mm2. The SNR, calculated via [50], at
these nominal b = 0 ranged from 39.0 down to 5.3, dropping
with increasing TM and TE. The repetition time, TR, was fixed
to 5 s in order to minimize scan time, yet enabling practically full
magnetization recovery. The imaging resolution was 2.5 × 2.5×
5.0 mm3 over a 96 × 96 × 10 grid with a bandwidth of 1,490
Hz/pixel. To minimize the echo train length, the acquisition was
under-sampled using GRAPPA parallel receive with acceleration
factor 2, multiband acceleration with factor 2, and 6/8 partial
Fourier. Adaptive combine was used to merge images from
individual receive coils with optimal phase shifts. In order to
minimize geometric distortions, diffusion images were acquired
axially with slices oriented parallel to the static magnetic field
rather than perpendicular to the rectal wall. Distortion was
further reduced through the use of the static field correction [51]
as implemented by the vendor.

Image Processing
Firstly, Gibbs ringing correction [52] was applied to all dMRI
images. Outlier rejection and reduction of eddy currents was
then implemented for each of the 24 series separately, using
FSL’s eddy [53] tool. This tool also applied rigid registration
within each diffusion tensor. A separate mutual-information
rigid transformation was performed [54, 55] to align the
images from each series to one another. Given the wide
range of TE and SNR, we found that mutual registration to
TE = 180ms would produce inconsistent results. To resolve
this, the acquisition was performed in random order. The
parameters for rigid (Euler) transformation calculated from
higher SNR images at either TE = 52 or 115ms were then applied
to the subsequent TE = 180ms series, acquired immediately
afterwards. This assumes that the volunteers remained mostly
stationary for ∼3 minutes. Parametric maps of mean diffusivity

(D) and fractional anisotropy (FA) were derived for each tensor
acquisition using a weighted linear least squares fit [56, 57]
using diffusion tensor imaging (DTI) estimation implemented
in MATLAB. The region of interest (ROI) was drawn on a
high resolution T2-weighted image to study the peripheral zone
(PZ) of the prostate (Figure 9A). Our volunteers were much
younger than a typical prostate patient, so the size of the
transition zone/central gland was much smaller than that in the
clinical practice. For this reason, ROI analysis focused on PZ
only.

Estimation of Compartment Weights
If there are observable compartments in T2, they likely exist in
T1 as well. One conference abstract [58] identified a slow T1

compartment of 2,944± 765ms, which suggests that the luminal
compartment is indeed nearly unbounded water. Kjaer et al.
[23] have also acknowledged that a long T1 compartment likely
exists, but stated that they were unable to measure it within
clinical SNR and time-constraints. Since the range of TM in
our experiment was <800ms, we were unable to take advantage
of this longer T1 compartment to improve our modeling

estimates. For this reason, we account for mono-exponential T1

relaxation only. If we maintain a constant repetition time (TR)
and assume perfect π/2 RF pulses, the signal evolution for a
STEAM acquisition without diffusion weighting can be written
as:

S|b=0 (TM,TE) = S0e
−TM/T1




f e−TE/TC

2

︸ ︷︷ ︸

C

+
(

1− f
)

e−TE/TL
2

︸ ︷︷ ︸

L




. (8)

We used weighted linear least squares [57] to estimate the un-
weighted S|b=0 images. S|b=0 values for the range of TM and
TE were used to solve for the 5 parameters (S0, f , T

C
2 , T

L
2 , T1) in

Equation (8), Figure 5. The fit of Equation (8) to the data in each
voxel was reinitialized 100 times with randomized starting values
over unconstrained bounds. After rejecting the trials in which the
fit results were unphysical, the median of the cluster of estimated
parameters with the highest prevalence was selected as the final
result.

Subsequently, the relative compartment weights for each TM

and TE can be determined [with C and L from Equation (8)]:

WC ≡ W(TE) =
C (TE)

C (TE) + L (TE)
, WL = 1−W. (9)

The cumulant expansion [59] of the signal, Equation (1), yields

D (t,TE) = WC (TE) ·DC (t) +WL (TE) · DL (t) . (10)

For a number N of distinct TE measurements, Equation (10)
reads








D(t,TE1 )
D(t,TE2)

...
D(t,TEN )







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(

DC(t)
DL(t)

)

, W =








WC(TE1 )

WC(TE2 )
...

WC(TEN )

WL(TE1 )

WL(TE2 )
...

WL(TEN )







.

Using the fact that the weights depend on TE but not on t, while
the compartment diffusivities (in any given diffusion direction)
depend on t but not on TE, we determine DC(t) and DL(t) (in
any given direction) separately for each t using matrix pseudo-

inversionW+ =
(

W′W
)−1

W′, as

(

DC(t)
DL(t)

)

= W+








D(t,TE1)
D(t,TE2 )

...
D(t,TEN )







. (11)

This is schematically illustrated in Figure 1. In our case, the
number of different TE measurements was N = 3.

Compartment Tensor Eigenvalues and
Fiber Tracking
Each set of compartment directional diffusivities [cf. Equation
(11)] was processed using standard DTI methodology [5] with
weights of Veraart et al. [57] to generate the diffusion tensors, the
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FIGURE 5 | STEAM Relaxometry. (A) Echo time (TE) and mixing time (TM) dependence of the non-diffusion-weighted dMRI signal, S
∣
∣
b=0, demonstrating the

suppression of the majority of tissues at long TE. (B) Fitting Equation (8) to S
∣
∣
b=0 after averaging over the peripheral zone (PZ). (C) Parametric maps of the 5 fitted

parameters: the proton density S0, overall T1, cellular compartment fraction, f, fast (cellular) TC2 , and slow (luminal) TL2 . (D) Histograms displaying the distribution of

relaxation parameters on all 3 volunteers within PZ only. The dashed line is the mean parameter derived from
〈

S
∣
∣
b=0

〉

across all volunteers.

TABLE 1 | The mean and standard deviation over a PZ ROI is shown for the relaxation parameters derived from S
∣
∣
b=0.

Parameters W(TE ) f Tc
2
[ms] TL

2
[ms] T1[ms] R2

Subject 1 (22y/o) [0.82, 0.66, 0.49] ± [0.11, 0.14, 0.18] 0.91 ± 0.09 62.20 ± 14.46 269.95 ± 93.03 1,014.70 ± 292.70 0.933 ± 0.064

Subject 2 (28y/o) [0.91, 0.82, 0.69] ± [0.09, 0.14, 0.20] 0.95 ± 0.06 62.75 ± 6.66 244.87 ± 88.95 857.97 ± 154.38 0.972 ± 0.037

Subject 3 (32y/o) [0.91, 0.82, 0.66] ± [0.05, 0.12, 0.21] 0.96 ± 0.03 55.65 ± 6.95 226.45 ± 85.94 824.02 ± 117.88 0.942 ± 0.038

associated eigenvectors (ε1, ε2, ε3), eigenvalues (λ1, λ2, λ3), and
fractional anisotropy (FA), for each compartment, over each t,
Figure 6. Eigenvalues for each t were averaged to produce mean
diffusivity, D(t).

FA(t) typically increases with t [17, 60], implying that the
anisotropy of the diffusion tensor becomes more apparent at
longer diffusion times, driven by the fact that the differences
between the physics of diffusion in different directions become
more apparent with coarse-graining over larger distances.

Orientation in each eigenvector, on the other hand, will be
independent of t, as it is produced by the same underlying
tissue anisotropy. Given this orientation redundancy, an averaged
orientation of the i-th eigenvector can be derived from the mean
dyadic tensor computed across t [61]:

〈

εtiε
tT
i

〉

=
1

Nt

Nt∑

t=1

εtiε
tT
i (12)

for each of principal directions i (no summation over i is
implied). The principal eigenvector associated with the dyadic
tensor serves as the tissue orientation averaged over all t, where
Nt = 8. The orientation and anisotropy is then visualized
by creating directionally-encoded color FA (DEC-FA) maps, in
which the median FA(t) is multiplied by the principal eigenvector
of

〈

εt1ε
tT
1

〉

.

The principal eigenvectors from
〈

εt1ε
tT
1

〉

,
〈

εt2ε
tT
2

〉

, and
〈

εt3ε
tT
3

〉

for
each compartment and the eigenvalues at t= 105ms were used to
reconstruct the corresponding diffusion-weighted images. They
were subsequently used as input to perform fiber tractography
in mrtrix3.0 using probabilistic streamline tractography. The
fibers from the cellular compartment represent smooth muscle
stroma, for which the structural anisotropy is clear on histology
(Figure 1A). At each voxel, residual bootstrap was performed
to obtain a unique realization of the dMRI data. The data was
then resampled via trilinear interpolation at each streamline
step. The diffusion tensor representation was then applied and
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FIGURE 6 | PZ ROI separation of prostate tissue diffusivities (A,B) into compartment contributions (C,D) in 3 healthy volunteers. Error bars indicate variance between

subjects. (A) The change in the mean diffusivity, D, with t was as much as ∼16% for a given TE. (B) Replotting D as function of TE for a given t, reveals a larger

change of ∼59% over this parameter. (C) Mean diffusivities from the cellular and luminal compartments plotted against
√
t, where a linear dependence be the hallmark

of the short-time S/V limit. (D) Axial and radial compartment diffusivities, λ||, λ⊥ plotted against t−1/2, where a linear dependence of λ⊥ would indicate extended

disorder universality class of random membranes, and justify the usage of the RPBM for calculating length scales and permeability.

streamlines were drawn following the orientation of the principal
eigenvector.

Revisiting Clinical Data From 38 Subjects,
Lemberskiy et al. [17]
In addition to the newly acquired data from 3 normal volunteers,
we also revisited the dataset recently published [17], with the
purpose of determining the disorder class in regions of variable
Gleason score. This set of dMRI was not acquired with multiple
TE, thus it cannot be used to assess cellular and luminal
diffusivities separately. Instead, relaxation parameters derived
from each of the 3 volunteer subjects were used to determine the
signal weighting W = WC at the TE = 40.4ms of the patient
data: [0.862, 0.916, 0.927]. The prostate increases in size with
age, largely relating to expansion of the stroma and epithelium
[62]. Given a median age in Lemberskiy et al. [17] of 64 years,
we assume that the patient data was weighted more heavily by
the cellular compartment (∼W ≥ 0.927, fast T2, large f ), with
approximately less than 0.07 of the signal represented by the
luminal compartment. Additionally, the luminal compartment
shrinks as prostate cancer progresses [63], therefore prostate
cancer ROIs are expected to have an even greater cellular

compartment fraction. For these reasons, we treat D(t) from the
patient cohort as samples of the cellular compartment.

Determination of the Dynamical Exponent
From Diffusion
The compartmental diffusion coefficients, DC (t), and DL(t),
were compared against the short-time S/V limit, Equation (2),
and the associated power law tail of the long-time limit for
ordered or hyperuniform restrictions, Equation (5), short-range
disorder in dimension d = 2, Equation (6), and extended
disorder, Equation (7). The most appropriate disorder geometry
and its corresponding tissue model was selected using Pearson

correlation, ρ, with the corresponding power-law tail t−ϑ̃ , as
an objective goodness-of-fit criterion. In addition, systematic
features in the residuals were examined, Figure 7.

Given the anisotropy and fiber-like geometry of the stromal
contribution to the cellular compartment (Figures 8A, 9B),
the long-time models were evaluated in d = 2 dimensions,
perpendicular to the principal axis of diffusion, using the
overall λ⊥(t,TE), and the derived λC⊥(t) and λL⊥(t), from the
compartment diffusion tensors. Conversely, given the isotropic
characteristics of the luminal compartment (Figure 8A), the
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FIGURE 7 | Model selection in prostate cancer of various Gleason Scores based on disorder class from ROI averaged across 38 patients published in Lemberskiy

et al. [17] Radial diffusivity (λ⊥) is fitted (solid line over each ROI) by the associated power law tail for (A) ordered or hyper-uniform restrictions Equation (5), (B)

short-range disorder in 2-dimensions Equation (6), and (C) extended-range disorder Equation (7). The residual is included to emphasize systematic differences

between the tested disorder classes. λ⊥ and the residual is plotted against the corresponding power laws of t, in which a linear dependence would indicate stronger

association with the given disorder class (Table 2).

TABLE 2 | Pearson correlation coefficient, ρ, is used as a proxy for model selection at various echo time (TE ) and at separated cellular/luminal diffusion tensors.

(A) Pearson correlation (ρ) on volunteers TE = 52ms TE = 115ms TE = 180ms Cellular Luminal

D (t) vs. Equation (2) 0.912 0.932 0.957 0.9476 0.9160

λ⊥ (t) vs. Equation (5) 0.925 0.703 0.617 0.9192 0.1796

λ⊥ (t) vs. Equation (6) 0.955 0.765 0.693 0.9458 0.2315

λ⊥ (t) vs. Equation (7) 0.972 0.817 0.757 0.9634 0.2794

(B) Pearson correlation (ρ) on patients from Lemberskiy et al. [17] PZ TZ 3+3 3+4 ≥4+3

D̄ (t) vs. Equation (2) 0.911 0.983 0.902 0.771 0.855

λ⊥ (t) vs. Equation (5) 0.826 0.730 0.912 0.959 0.910

λ⊥ (t) vs. Equation (6) 0.886 0.809 0.952 0.961 0.956

λ⊥ (t) vs. Equation (7) 0.921 0.868 0.971 0.948 0.982

Averaged mean diffusivity (D) or radial diffusivity (λ⊥) across (A) volunteer peripheral zone (PZ) and (B) patient ROIs: PZ, transition zone (TZ), low grade PZ (3+3), intermediate grade PZ
(3+4), and high grade PZ (≥4+3) were compared against short-time Equation (2) S/V limit t → 0 and long-time Equation (5–7) limit (t−1,∼ log(t/δ)/t, t

−1/2
) models. The bolded ρ in

each column displays the highest correlation with the ROI.

short-time behavior was evaluated over the mean diffusivity: the

measured D(t,TE), and the derived D
C
(t), and D

L
(t). For the

volunteer data, SNR became an issue for D(n) (t = 480, 740ms)
at SNR < 10, as evident on both ROI analysis, Figures 6C,D, and
parametric maps, Figure 8I. The last two points were excluded

from studying correlations between D(n)(t) and t−ϑ̃ .
For the patient data from Lemberskiy et al. [17], the diffusion

tensor eigenvalues were averaged over 5 ROIs and over the
cohorts taken from the set of 38 subjects: peripheral zone (PZ),
transition zone (TZ), low grade PZ (3+3), intermediate grade
PZ (3+4), and high grade PZ (≥4+3) tumors. The power-law
tails corresponding to hyper-uniform (Equation 5), short-range

(Equation 6), and extended (Equation 7) disorder classes in d= 2
dimensions were compared with the ROI-averaged data. Linear
evolution of λ⊥(t) was plotted against the power-law scaling,

t−ϑ̃ , for each disorder class, and the Pearson correlation values as
well as qualitative inspection of fit residuals were used to identify
the most appropriate disorder geometry among the long-time
models.

Parameter Estimation for Tissue
Compartments (Healthy Controls)
As a result of model selection (see section Results), time-
dependent diffusion was modeled within the PZ ROI of each
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FIGURE 8 | Compartment parameters derived from the diffusion tensor. (A) Cellular and luminal directionally-encoded color FA (DEC-FA) were derived from principle

eigenvalues of the mean dyadic tensor over time and the median FA(t). (B–I) Mean diffusion over diffusion time, D(t), is shown for both cellular and luminal

compartments. The whole prostate ROI was drawn from the image at t = 25.2ms and overlaid onto all parameter maps with a white outline to highlight any motion.

subject using the RPBM in the cellular compartment and the S/V
limit in the luminal compartment.

Luminal Compartment

D(t) within the luminal compartment was evaluated using the

S/V limit, Equation (2). Lumen diameters were estimated from
aL = 6V/S, which would be the length of one side on a 3-
dimensional cube with given S/V. Alternatively, one can consider
modeling aL via a 3-dimensional sphere, which would result in a
factor of 2 difference in the definition of luminal diameters; given
the irregular shape of the lumen, the identification of the precise
pre-fractor in front of V/S is beyond the scope of this work. We
also estimate aL|D0=3 with a fixed DL

0 = 3.0 µm2/ms, which
follows from the model assumption that the glandular lumen are
lakes of largely unrestricted restricted water, where t → 0 would
give the free water diffusion coefficient at body temperature [64].

Cellular Compartment

The dynamical exponent analysis (see section Results) indicated
the dominance of the extended disorder geometry in 2
dimensions (Figure 7, Table 2). This suggests that the RPBM
utilized previously for studying muscle fiber diameter and
membrane permeability [9, 33, 44–46] can be applied to study
the cellular compartment using λC⊥(t).

The RPBM depends on 3 parameters: the free-diffusivity D0,
the S/V ratio of all membranes, and the membrane permeability
κ . The RPBM result forD(t) in d= 2 dimensions is given in terms
of D0 and the two auxiliary parameters: the effective “volume
fraction” ζ = (S/V) · (D0/4κ) of the membranes [describing the
net effect of their hindrance relative to D0, as D∞ = D0/(1 +
ζ )], and the time-scale associated with a single membrane,
τ = D0/ (2κ)2 [33]; see Fieremans et al. [45] for the details
of fitting and practical implementation of RPBM. For improved

model precision, D0 ≡ DC
0 here was fixed to

〈

λC|| (t > 100 ms)
〉

,

Figure 9C. These model parameters are then used to calculate
cellular (fiber) diameter, which can be approximately estimated
as aC = 4/(S/V), which yields aC = 2

√
D0τ/ζ ; and fiber

membrane permeability κC = D0/(2
√
D0τ ).

The parameters from the RPBM: DC
0 , a

C, and, κC; and
from the S/V limit: DL

0 , and aL, were estimated (i) by

applying the model to every voxel separately, and (ii) averaging
the corresponding DTI eigenvalues across all PZ voxels and
estimating model parameters from this average.

Determination of Structural Exponent and
Fiber Diameter From Histopathology
For an independent validation of the prevailing disorder
geometry, 590 × 590µm samples with 1,440 × 1,440 pixels of
benign stromal tissue in cross-section were selected by a board
certified pathologist. These samples were obtained from radical
prostatectomy of a 72 y/o patient with Gleason Score 4+3, which
were stained with Hematoxylin and eosin (H&E). These samples
were evaluated using the power spectrum approach [9, 43],
determining the power-law behavior Γ

(

k
)∣
∣
k→0

∼ Akp of the
power spectrum at low wave-vectors k=|k|, by calculating the 2-
dimensional Γ (k) = ρ (−k) ρ(k)/V , where ρ(k) is the Fourier
transform of the intensity of restrictions in the histological image
(Figures 4B–D), and subsequent binning of Γ (k) over 1,200
concentric shells (bins), parametrized by the shell radius k. The
low-k behavior was then characterized by a structural exponent p,
which can take a discrete set of values (cf. text after Equation 4).

From the H&E-stained histology image we needed to produce
the contrast that depicts fiber walls in the cross-section, Figure 4.
The domains with fiber bundles transverse to the histology
slice were identified within a large field of view that contained
many fiber orientations; these fragments of the large image were
subsequently processed to emphasize the cell walls, as we now
describe.

First, the red channel was isolated and filtered by a Gaussian
filter with a smoothing kernel of σ = 5 pixels. The low pass
filter removed salt-and-pepper spatially-uncorrelated noise that

would otherwise interfere with segmentation in the subsequent

steps, but did not have an impact on the low-k (large-distance)
behavior which we were after. Second, K-means clustering
in MATLAB was performed to isolate the three predominant
clusters: extracellular space, intracellular space, and cellular

nuclei. The masks of cellular nuclei and intracellular space were
then combined; the remaining space was deemed mostly related
to the fiber membranes (i.e., everything but cells and their

organelles). The resultingmembranemask was used to determine
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FIGURE 9 | Cellular and luminal parameters derived from D(t). (A) The peripheral zone ROI, is overlaid onto a high-resolution T2-weighted image. (B) The probabilistic

fiber tracks, derived from the cellular compartment, are color coded by their terminal endpoints. These tracks were derived from a dyadic tensor across all diffusion

times. (C) Cellular diffusivity, DC0 , (D) cellular fiber diameter, aC, and (E) cellular membrane permeability, κC, were derived from the RPBM applied to the cellular

diffusion tensor. The (F) luminal diffusivity, DL0, (G) luminal diameter, aL, and (H) the luminal diameter, aL
DL0=3

, were derived by applying Equation (2) to the luminal

diffusion tensor. The corresponding histograms under each parameter map, show the range and median (dashed line) of the modeled parameter under the ROI (A)

combining estimates obtained from all volunteers.

the power spectrum Γ (k) as a function of the two-dimensional
Fourier wave vector k. Last, the histological length scale was
determined by calculating ahist = 4V/S, where S/V = l/A.
The area, A, was determined by the total area of the membrane

mask image, and the length, l, was determined by finding the
total number of voxels outlining each cell from the membrane
mask, i.e., counting both faces of each membrane. In the case
of the simulated image with parallel lines, l was multiplied
by 2 to account for the surface on both sides of the unit-
thickness membrane, Figure 4A. With this definition of S/V ,
conventional in the field of porous media, the length scale ahist
would correspond to the size of a square if the membranes were
to be arranged in a perfect square lattice (a checkerboard) within
the fiber cross-section.

Determination of the Luminal Fraction fL
and the Luminal Diameter aL From
Histology
Two larger samples taken again from the radical prostatectomy
of the 72 y/o subject (Figures 10A,B) of benign peripheral zone
were selected containing 1,000 × 1,400 pixels over a field of
view of 2.4 × 3.4 mm2. The lumen were segmented using
K-means clustering with the same approach described in the
previous subsection. The luminal mask was used to determine
the lumen area fraction, fL,A, over 200 × 200 non-overlapping
pixel segments. In order to compare our results with MRI, we
assumed cubic-shaped lumen and estimated the corresponding
luminal volume fraction and the cell volume fraction:

fL,hist = f
3/2
L,A ; fhist = 1− fL,hist. (13)

We note that for lumen of different shape, the right-hand side
of the first formula in Equation (13) would have a non-universal
coefficient∼1. Therefore, our estimates are to be treated as order-
of-magnitude. However, the power law exponent 3/2 in the above

equation is universal, and will prove to be quite important to
match MRI with histology.

To determine the luminal diameter, aL
hist

, from the histology,

we again, for simplicity and consistency, assume the cubic-

shaped lumen of size aL
hist

, for which case the perimeter-to-

area ratio l/A = 4/aL
hist

, or, equivalently, the 3-dimensional

S/V = 3
2 l/A. Hence, we estimate aL

hist
= 6V/S within each

histology segment, and compare our distributions with MRI-
derived metrics. We can equivalently view this comparison as
that between the 3-dimensional S/V ratios from MRI and from
histology (re-calculated from the 2-dimensional slices).

RESULTS

Relative Contributions of Prostate
Compartments
Increasing TE led to suppression of much of the surrounding
pelvic signal as shown on S|b=0 (TM,TE). Surrounding tissues
which are largely composed of muscle or collagen are completely
dark at TE = 180ms (Figure 5A). Unlike the surrounding
tissues, the prostate retains its signal, particularly around
PZ. Fitting Equation (8) to S|b=0 (TM,TE) reveals a non-
linear surface, dependent on compartment fractions and NMR
relaxation times (Figure 5B). On average, fit R2 > 0.92 for
each subject; however, as with previous studies [23–27], our
dynamic range and SNR limitations led toward larger variance on
estimated TL

2 (Table 1, Figures 5C,D). The range of parameters
derived from Equation (8) indicate that the signal at each
TE are weighted by the cellular compartment differently,
W(TE=52)∼0.9, whereas W(TE=180)∼0.6. Additionally, model
fitting suggests that the volume fraction of the cellular
compartment, f, increases with age as evidenced by the f = [0.91,
0.95, 0.96], which confirms observations from histopathology
[9].

We found a remarkably strong agreement between MRI and
histology-derived f (Figure 10D), where Equation (13) was used
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FIGURE 10 | A comparison of MRI- and histology-derived cellular fraction, f, and luminal diameter, aL. (A,B) Two samples of benign peripheral zone containing 1,000

× 1,400 pixels over a field of view of 2.4 × 3.4 mm2 were segmented using K-means clustering. 200 × 200 non-overlapping pixel segments were sampled from

these masks in order to determine the volume fraction, Equation (13), and surface-to-volume ratio, S/V = 3
2 l/A, which was then used to approximate aL

hist
= 6V/S.

The power-law exponent 3/2 was used to convert the 2-dimensional properties of histology into 3-dimensional units (in order to match the MRI results). This

conversion approximately assumes a 3-dimensional cubic geometry within the luminal compartment (see section Methods). We display histograms the median of

each distribution comparing aL (C) and f (D), derived from MRI and histology. Note that the histograms for MRI results are identical to distributions shown in

Figure 5C, for fMRI, Figure 9G, for aL
MRI

.

to calculate the histological counterpart. The difference between
the medians of the MRI distribution across voxels, and histology
distribution across histology segments is 0.5%. Such degree of
the quantitative agreement may be accidental because of the
∼1 coefficient in Equation (13) for non-cubic glands, as well
as because of comparing young healthy controls (MRI) with
radical prostatectomy (benign area, histology). However, the
order-of-magnitude correspondence between MRI and histology
is reassuring.

Dependence of the Overall D(t) on TE
Mean diffusivity D consistently increased with TE

(Figures 6A,B), revealing the competing effect of cellular
and luminal compartment weighting on the measured diffusion

signal. The difference between D(t) at TE = 52ms and
TE = 180ms appears to grow over the first six time points (25.2–
280ms) (ρ = 0.89, p= 0.016), with D(t = 25.2ms) increasing by
34% and D(t = 280ms) increasing by 59%. However, it begins
to drop at the latest t, (t = 450ms, 51%) and (t = 740ms,
45%). This finding indicates that the degree of separation
between compartments is also confounded by diffusion
time-dependence.

Structural Universality Class and Model
Selection From Diffusion Measurements
First, we consider the time-dependence of the overall D(t).
The volunteer data at each TE was used to determine the
most appropriate choice of tissue specific D(t) model (Table 2).
Linear correlation of mean diffusivity D(t) with various models
is chosen to be the criterion for evaluating the changing
functional form of D(t) with TE. At the shortest TE, all models
representing the long-time limit, Equations (5–7), (ρ > 0.93)
describe D(t) better than the S/V limit, Equation (2) (ρ =
0.92). Overall, the model with ϑ = 1/2, Equation (7),
had the greatest correlation with the overall radial diffusivity
λ⊥(t) at TE = 52ms. At longer TE, the correlation with the
S/V limit continued to increase: ρ(TE = 115) = 0.93,
ρ(TE = 180) = 0.96; whereas the correlation with long-
time limit continued to drop precipitously: ρ (TE = 115) ∼ 0.7,
ρ (TE = 180) ∼ 0.6. To summarize, shorter TE is associated
with diffusion through extended disorder, Equation (7), whereas
longer TE is associated with the short-time S/V limit, Equation
(2).

Clinical data from Lemberskiy et al. [17] was acquired with
low TE = 40.4ms, suggesting W=Wc ≥ 0.927. For this reason,
the diffusion-weighted signal was dominated by the cellular
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compartment (Table 2). Given this context, the power law scaling
of the radial diffusivity λ⊥(t) can be used to determine the most
appropriate tissue model for (stroma+epithelium). We find that
the power-law approach of λ⊥(t) in nearly all ROIs was described
best by the dynamical exponent ϑ = 1/2, Equation (7), again
indicating the extended disorder (Figure 7), with the exception of
D(t) in the Gleason-score 3+4 ROIs, which were best described
by Equation (6). Given the overall agreement of benign and
malignant PZ with Equation (7), it seems appropriate to use the
RPBM to study λ⊥(t) in the cellular compartment.

As for TZ, although there is a preference for Equation (7)
in the ROI pertaining to TZ, it is not well described by any
of the established disorder classes: R2 = [0.73, 0.81, 0.87], for
Equations (5–7), respectively. If considered as a long-time limit,
the corresponding ϑ appears to be closer to 0 than to 1/2,
indicating that D(t) in TZ is either (i) highly confounded by
partial volume, or (ii) far from the long-time limit. Alternatively,

comparing D(t) to the short-time S/V limit, Equation (2),
revealed remarkably strong correlation with the model in TZ
(ρ = 0.98).

For the volunteer data, DC
⊥(t) and DL

⊥ (t) (Figures 6C,D,
8B–I) were best described by extended disorder, Equation (7)
(ρ = 0.963), and the S/V limit, Equation (2) (ρ =0.916),
respectively. This is consistent with the above observation
that shorter TE is associated with extended disorder (where
DC(t) dominates), while longer TE is associated with the S/V
limit, where DL (t) is dominant. Following the conclusion
of extended disorder defining the cellular compartment, we
find that RPBM had better correlation with the cellular λ⊥(t)
(ρ = 0.986) than with the luminal λ⊥(t) (ρ = 0.551)
(Figure 6D).

Quite remarkably, the 1/t scaling, Equation (5), a hallmark
of either ordered/hyperuniform restrictions, or fully confined
water pools (e.g., impermeable cells), never gives the best
fit. Moreover, the data residuals (Figure 7B) show temporal
structure, which also disfavors this scaling, and with that,
the assumption of assigning compartment non-Gaussianity
(i.e., time-dependence of diffusion) to fully restricted pore(s)
in VERDICT [38] and RSI [39, 65] models. This means
that randomly-placed, permeable and extended membranes,
Figure 4A, rather than the fully restricted compartments, are
most relevant for explaining the diffusion time dependence in
the bulk prostate tissue (excluding lumen), and therefore are also
key for biophysical modeling of non-Gaussian diffusion in its
microstructure.

The DEC-FA based on the calculated diffusion tensor in
each compartment provides a measurement of compartment
anisotropy (Figure 8A). The cellular compartment displays
highly oriented structure, with large regions within PZ colored
in purple, which would be characterized by a mixture of
blue (in-plane/out-plane) and green (up-down) orientation
(Figure 9B). The urethra, which is at the center of the prostate,
is entirely colored in blue (in-plane/out-plane orientation). In
contrast, it is difficult to identify any meaningful structures
from the DEC-FA of the luminal compartment, as both
FA and principal eigenvector ε1 are dominated by noise
(Figure 8A).

Structural Universality Class From
Histology
The power spectra for the restrictions in all of the histological
samples in the cellular compartment converged toward Γ ∼ kp

with exponent p = −1, where the measured p across each
sample was found to be—[1.00, 1.17, 1.01 ± 0.17, 0.14, 0.13]
(Figures 4B–D), indicating that the structure belongs to the
extended-disorder structural universality class. This is consistent
with the low-frequency/long diffusion time dependence in the
stromal cross section being well described by randomly oriented
barriers (RPBM), a representative of this universality class.

Between the 3 cases shown in this publication, the scale
beyond which random barriers become a dominant tissue feature
occur at k = 1/ahist = 1/23.13 ± 1/1.06 µm−1. At the smallest
k (corresponding to distances of the order of the histology cut-
out), statistical fluctuations between the samples are large, and
the power-law scaling becomes noisy.

The dynamical exponent ϑ = 1/2 identified above in λ⊥(t)
for the cellular compartment, and the structural exponent p =
−1 in d = 2 dimensions, are in agreement with the relation (4).

Cellular and Luminal Parameters From the
Compartmental D(t)
Luminal Compartment

Fitting of DL
0 (Figure 9F), we find its values sometimes greater

than 3 µm2/ms. In the Supplementary Information we show
that this is consistent with the noise propagation at the relevant
SNR. As the mean of the distribution of DL

0 is quite close to
water diffusion coefficient at the body temperature, this result
reinforces our initial assumption that the luminal compartment
is composed of “lakes” of practically unrestricted water. The
range of luminal diameters, aL, and aL|D0=3 (Figures 9G,H),
overlap with the range of observed diameters anticipated from
histology 300 ± 120µm [14, 15, 30]. However, the lumen
diameter of our healthy controls exceeds that obtained from
histology of radical prostatectomy, aLMRI > aL

hist
, Figure 10C,

with 65.9% difference between the means of each distribution;
this is consistent with the glandular shrinkage with age. Fixing
DL
0 = 3 µm2/ms does improve the precision of aL|D0=3

over aL (Figure 9H, Supplementary Figure S4). Overall, the
spread in the model parameter estimates seem to come mostly
from the noise rather than from the biological variability (see
Supplementary Information).

Cellular Compartment

Diffusion through the cellular compartment reveals restriction
sizes of aC = 19.79 ± 8.09 µm from diffusion MRI, indicating
a near perfect match with histology reported from Γ

(

k
)∣
∣
k→0

.
Although the striking similarity in diameters may to some degree
be a coincidence, our findings indicate that cellular diameters
measured with diffusion were consistent with the length scales
anticipated from the tissue (Figure 4). Moreover, aC varies over
the prostate, where the largest fibers appeared closer toward
the peripheral zone (Figure 9D). The distribution of cellular
permeability (Figure 9E) was close to the permeability of the
red blood cell membrane—perhaps, the most studied permeable
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biological membrane, with permeability between 0.02 and 0.09
µm/ms [66, 67]. On the other hand, voxel-wise and ROI averaged
κC demonstrated substantial similarity, indicating that the range
of possible permeability is much smaller than the range of
possible fiber diameters.

DISCUSSION

Specificity Toward Microstructure Arising
From Dependence on Both t and TE
This study emphasizes the importance of compartment
weighting on modeling prostate diffusion. Although time-
dependence is apparent at individual TE, the functional form
of D(t) for different TE reflects a different mixture of tissue
microstructure (Table 2). This relative compartment weighting
implies that the selection of the most appropriate tissue model
is confounded by TE. Partial volume between cellular and
luminal compartments must be resolved, before modeling
D(t) could reflect tissue specific length scales. For example,
when applying RPBM or S/V limit models to the overall
D(t), the calculated length scale, a = 4/(S/V), increased
with TE. Using compartment weighting to decompose the
diffusion representation into cellular and luminal tensors

reveals a unique contrast as well; the maps of D
C

appear

smooth, whereas the D
L

has higher diffusivity localized
around PZ, a region that is dense with glandular lumen
(Figure 8).

We emphasize that it is the t-dependence, in combinationwith
TE, that helped us identify the relevant microstructural degrees
of freedom, as the time dependence provides the sensitivity
to the cellular-level length scale and the spatial correlations
of the restrictions. Without investigating D(t), one could only
argue that there are 2 compartments with different T2, and that
this has an impact on the diffusivity (Figures 6A,B). Having
identified the relevant degrees of freedom for the compartmental
D(t), we apply specific models to obtain corresponding length
scales and membrane permeability. Good agreement with
existing histopathology [14, 15, 30] for the luminal sizes (300
± 120µm) and myofiber diameters (19.81 ± 1.18)µm, as
well as with previous measurements of T2 volume fractions
(ffast >0.8 and fslow <0.2) [13, 26], points at strong associations
of compartment-specific properties with non-invasive MRI
parameters.

Due to the large differences between cellular and lumen T2

values, this study focused on separation of only these tissue
compartments. In principle, the “cellular” compartment which
had volume fractions >0.9 was a combination of all non-
luminal tissue subtypes. Since our acquisition had merely 3
TE values, modeling more than 2 compartments would be
a challenge. Researchers have shown considerable interest in
studying epithelium and stroma separately [13, 15, 30, 63,
68]. If this experiment were revisited with a denser sampling
of TE, the “cellular” compartment would be expected to
split into more granular components, such as epithelium and
stroma, with potentially different microstructural degrees of
freedom.

RPBM v. Fully Restricted Compartment
(RSI, VERDICT)
Model selection based solely on the goodness of fit is unreliable
[1]. Given how “remarkably unremarkable” [69, 70] the dMRI
signal is, model selection is always a challenge. Here, we
tried to reveal subtle signatures of distinct classes of structural
complexity, by choosing between them on an equal footing,
rather than pre-conditioning ourselves toward a particular
model. For Equations (5–7), the goodness of fit at low TE or in
the cellular compartment were all consistently strong, ρ > 0.9.
If this work were dedicated to an individual model, the strong
correlation would likely give a false sense of security about that
model’s success.

The previous modeling assumption of diffusion being fully
restricted by impermeable barriers is a common one in the
prostate [38, 39, 65], perhaps, because this is the easiest
“nontrivial” model of diffusion, for which exact solutions for
simple geometries (e.g., a spherical pore) have been derived
decades ago [71, 72]. However, a fully restricted compartment’s
asymptotic D(t) behavior, Equation (5), is not preferred by
the goodness-of-fit (neither in volunteers nor in the clinical
population), and, more importantly, shows systematic temporal
structure in the fit residuals, Figure 7. Based on our accumulated
body of evidence, we conclude that the cellular compartment’s
time dependence is dominated by the extended disorder
universality class, Equation (7).

Strictly speaking, the biophysical assumptions of, on the
one hand, the RPBM, and on the other hand, an impermeable
compartment at the heart of RSI and VERDICT, are mutually
exclusive. If the extended disorder and the functional form of
Equation (7) is indeed a correct assumption, fitting a model
based on the asymptotic behavior of Equation (5) (e.g., for
a fixed t by varying b) will yield biased results; moreover,
because of a qualitatively different functional form, the fit
results for VERDICT and RSI will depend on the chosen
range of t and b, reflecting the acquisition/modeling variability
challenge discussed by Novikov et al. [1]. The corresponding
estimated “compartment sizes,” technically speaking, will lose
their meaning.

Because we lumped fibromuscular stroma and epithelium
into a single cellular compartment, in principle there could be
a competition between different power law tails from different
compartments. If, for instance, the epithelium compartment is
described by approximately impermeable cells (VERDICT/RSI
holds there), it will be practically impossible to distinguish its role
in the overall “cellular” diffusivity time dependence as it will be
asymptotically dominated by the smallest exponent ϑ = 1/2,

c1/2 t
− 1

2 + c1 t
−1 ∼ c1/2 t

− 1
2 , t → ∞,

which will overshadow the effect of other compartments.
To understand whether the fully restricted compartment can
play a non-negligible role, one should repeat our analysis
but with N = 3 compartments, provided that the separation
between epithelium and stroma via their T2 values is practically
achievable, and investigate the dynamical exponent of the
epithelium separately.
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The dynamical exponent ½ reveals the extended nature of
the restrictions and their permeability as relevant degrees of
freedom for diffusion in this tissue. Furthermore, we find that
the cellular compartment falls into the same disorder structural
universality class as skeletal muscle. If restrictions in the cellular
compartment are largely dominated by fibromuscular stroma
(smooth muscle), as shown by Bourne et al. [13], then the
strong agreement with Equation (7), which also best describes
skeletal muscle [9, 44–46], should be anticipated. Based on
our permeability estimates, the effective membrane hindrance
parameter ζ ∼ 2.14 ± 1.77 is not very large, indicating that
the membranes are quite leaky, which a posteriori also justifies
neglecting the distinction between intra- and extra-cellular space
in the RPBM. Lastly, the average standard deviation inD∞ across
all measurements was ∼0.03 µm2/ms, indicating that this is a
highly robust parameter. These consistent findings of a finite
D∞ are also incompatible [1] with the pictures of stretched-
exponential diffusion signal, and anomalous diffusion in prostate
[73].

Correlating MRI With Histology
In 2012, Bourne et al. [13] presented work that quantified
microscopic diffusion compartmentation using high resolution
MRI on a 16.4 T magnet, with 40 µm isotropic voxels. The
study stated that benign prostate had an extremely small luminal
compartment, with fraction of about 0.03, and a massive
cellular compartment, with fraction of about 0.97. Remarkably,
our estimates (Figure 10) are very close to these values. This
agreement can be expected, since the experiment of Bourne et al.
was directly resolving the three-dimensional volume fractions
of sufficiently large glands. Other publications [27, 63, 74]
correlate histology with MRI findings, which is a challenging
task as histological images are in 2 dimensions whereas MRI
measurements are in 3 dimensions. Sabouri et al. [27] discussed
this challenge and suggests that this difference contributes to
as much as 33% of the mismatch between histology and MRI.
To our knowledge it is for this reason, that no previous MRI
publication has been able to reproduce the volume fractions
obtained from Bourne et al. [13]. In our work, the median
area fraction was fL,A = 0.153 ± 0.119; however the
corresponding median volume fraction estimated via Equation
(13) was fL,Hist = 0.059 ± 0.734. This conversion from
2d to 3d makes the agreement between Bourne et al. [13]
and the results of our histology and MRI experiment very
close (Figure 10). We anticipate that this assumption would
break down as the isotropic 3d geometry of the luminal
compartment may gradually change with the progression of
prostate cancer. The mismatch between histology and MRI for
aL could suggest that the S/V greatly changes with age and/or
noise propagation andmodeling considerations should be refined
in future work (we note, however, that MRI was performed
on healthy controls, while histology was obtained from the
benign area of the radical prostatectomy in a 72 yo patient).
Measurements sampling multiple slices or more sophisticated
modeling approaches should be considered for future histological
comparisons with MRI.

Effect of Intra-Compartmental
Non-Gaussian Diffusion
Previous studies have invoked the concept of multiple
compartments, by empirically separating fast/slow diffusing
water “pools” from an individual voxel [75, 76]. However, the
estimation of the compartment fractions can be easily biased
via higher-order terms in b from an individual compartment
[10, 18]. Fast diffusivity derived from the bi-exponential
model represents well over 40% of the signal in the prostate
[16, 22]. Given that the expected luminal volume fraction is
∼5%, it is clear that compartment fractions derived from the
bi-exponential model cannot be easily linked toward major
tissue compartments: stroma, epithelium, and lumen. A likely
reason for why the bi-exponential model does not reflect any
meaningful familiar tissue properties is that for the prostate
in particular, the assumption of Gaussian compartments was
in-validated by the observation of a time-dependent D(t)
[17, 60]. Fortunately, separating compartments via T2 relaxation
is “orthogonal” (Figure 2) to diffusion acquisition parameters
b and t. This implies that our approach, Equation (1), can be
extended further to include higher order diffusion metrics, such
as kurtosis, in each compartment, by relying on the distinct T2

relaxation properties.
Chatterjee et al. [74] modeled diffusion and T2 relaxometry

together, albeit assigning purely Gaussian diffusion to each of
the distinct compartments. In particular, a compartment with
high diffusivity and long T2 was also assigned to the lumen.
However, the 3d volume fractions estimated in that paper from
MRI were nearly in a 1:1 agreement with the 2d area fractions
from histology. While these results were presented as a validation
of the model, as we already mentioned above, the 3d volume
fractions [13] have been shown to be significantly different from
those measured from 2d histology [27]; in other words, a correct
model should provide the lumen fraction that is notably below
the histological area fraction. Hence, we suggest that the volume
fractions estimated in Chatterjee et al. [74] are notably biased by
the non-negligible effect of time-dependent diffusion resulting
in the non-Gaussianity of the diffusion propagator at higher-b
values employed in the multi-exponential dMRI fit. This strong
effect of higher-order terms in b in each compartment has been
precisely the reason to leave them out in this work, and to rather
remain at the level of DTI.

Our multi-parametric acquisition revealed TE as a meaningful
filter to separate cellular and luminal diffusivity. TE compartment
weighting affecting ADC measurements in the prostate has
been shown previously [77]; however, the connection to the bi-
exponential T2 was not established in that publication. A recent
study explored the effect of TE and t on the prostate diffusion
signal ex-vivo [60], by varying both TE and t simultaneously.
The effect of TE dependence was minimal on that dataset as the
monotonically decreasing diffusion coefficient began to increase
only at the longest t and TE. Outside of prostate applications, the
value of varying TE to study diffusion to stabilize model fitting
was recently demonstrated in the brain [78, 79].

Given the appropriate range of TE, estimating the NMR
relaxation times via S|b=0 (TM,TE) was fairly simple, i.e., we
did not need to employ constraints or priors to produce robust
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estimates of f, TC
2 ,T

L
2 . The fitting was simple mainly due to

the large separation of compartmental T2 values. However, it is
well established that T2 becomes shorter with increasing field
strength [80]. By extension, this will have an impact on diffusion
measurements: the diffusion coefficient in the brain between
1.5 and 3T systems has been reported to have a variance of
∼7% [81].

Compartmental Anisotropy
Since the cellular compartment was found to be within
the long-time limit, it is possible to derive a meaningful
interpretation of the diffusion tensor orientation. Fiber tracking
could be performed on this compartment to characterize tissue
anisotropy in 3-dimensions. Many areas do not display any track
information, which could mean that (1) the fiber orientation was
incoherent, as an example, Figure 1A shows a histological cross
section with axial and perpendicular stromal cross-sections, or
(2) the dataset was unable to resolve meaningful tracts. This
could be expected as prostate imaging is vulnerable to motion
and distortion artifacts. While the rigid motion correction and
the Siemens static distortion correction [51] have been very
useful for the experiment, the image quality is still imperfect
(Figures 8B–I). For this reason, the only fiber tracks shown
are the ones that were generated with high confidence. The
luminal compartment is far from the long-time limit, and thus
no consistent orientation information is apparent (Figure 8A).
This finding serves as additional confirmation that the luminal
compartment for our volunteer data is indeed within the
S/V limit. Note that lumen may as well be anisotropic (at
sufficiently large length scales), but our acquisition would only
become sensitive to this anisotropy at prohibitively long t in
healthy subjects. The applicability of the S/V limit to the lumen
compartment is expected to change in patient populations as
glandular lumen shrinks with increasing tumor grade [15, 82]. At
higher tumor grade, characterization of orientation dependence
in both the cellular and gland compartments may become
feasible.

Perfusion/IVIM as a Possible Confounding
Factor
At low b-values, the signal dependence on b is sensitive to
incoherent or multi-directional flow, attributed to a vascular
compartment. Perfusion has been studied in the context of
prostate cancer through the intra-vascular incoherent motion
(IVIM) [20, 83], e.g., incorporated in the VERDICT parameter
estimation scheme [20, 38]. However, in a recent paper, Merisaari
et al. [20] performed a diffusion acquisition that has been
optimized for measuring perfusion: b= 0, 2, 4, 6, 9, 12, 14, 18, 23,
28, 50, 100, 300, 500 s/mm2. After comparing multiple models
using Akaike Information Criterion, the mono-exponential
model prevailed as the best representation of diffusion in the
prostate over b = 0–500 s/mm2 (same range as our study).
Remarkably, an acquisition with 14 b-values in the optimal range
was insufficient for IVIM parameters to outperform the mono-
exponential diffusion. Given this finding, we doubt that perfusion
would bias our results in any meaningful capacity.

As a counter-argument, one may point toward the ∼10%
vascular fraction, fvasc, estimated by the VERDICT model [84].
Let us now argue that this apparent vascular compartment
(characterized by high diffusivity) could rather be assigned to
the luminal water. For that, we recall that VERDICT models
the IVIM compartment not by the signal’s phase eiqvt averaged
over the directions of flow velocity v, but rather via a collection
of “sticks” (i.e., cylinders with zero radius) in direction n with
longitudinal effective diffusion coefficient P. For the prostate, the
sticks are considered to be uniformly oriented within a voxel,
such that a signal in the gradient direction g averaged over sticks’
orientations

Svasc
(

b, g
)

= 〈e−bP(gn)
2

〉n = 1−
bP

3
+ O

(

b2
)

= e−bD
∗+O(b2),

D
∗ =

P

3

looks like an isotropic diffusion signal with an effective diffusion
coefficient D

∗ = P
〈

cos2 θ
〉

= P/3. To improve the precision for
the prostate, the intrinsic diffusivity of the vascular compartment
was fixed to P = 8 µm2/ms [84]; the values for P were
previously estimated to range between 7 and 12 µm2/ms [38].
Hence, the effective diffusivity value for the vascular VERDICT
compartment is D

∗ = 8
3 µm2/ms. Remarkably, D

∗
and

fvasc from VERDICT are quite similar to our D
L
(free water

value) and f L. Hence, VERDICT seems to be attributing the
luminal contribution to the vascular compartment. If this is the
case, VERDICT’s fvasc encapsulates both vascular and luminal
contributions. Since luminal fraction [27] is much larger than
the vascular fraction [85], then fvasc ≈ fL, especially in the
view of the shorter T2 of the blood than of the luminal water
(T2 ≈180ms for the oxygenated blood at 3T and even shorter
for the deoxygenated blood [86, 87]). This suggests that the
luminal contribution should dominate the vascular one in the
high-diffusivity compartment.

Localization Regime as a Possible Future
Avenue for Model Validation and
Parameter Estimation
Since the diffusion gradient G was not fixed with t, the
diffusion weighting could be confounded by spatially variable
spin dephasing (with the signal suppressed less next to, e.g.,
lumen walls), which is an interesting albeit orthogonal avenue
of microstructure investigation [88–90]. In the case of luminal
diffusivities, D = 3 µm2/ms, the localization length in our
experiment increased together with t, because of the decreasing
gradient: LG = (D/γG)1/3 = [5.83, 6.36, 6.93, 7.54, 8.22,
8.90, 9.64, 10.48] µm; the diffusion length LD =

√
Dδ =

4.47µmwas fixed. This indicates that our experiment was always
performed in the “free-diffusion” regime [91] (LG > LD),
where the “localization regime” near the walls has a relatively
weak contribution toward echo decay. However, we emphasize
that LG and LD are fairly close to each other; therefore, we
in principle can have the choice of selecting for the free
diffusion regime or the localization regime. In practice, the
localization regime could be probed by varying G while setting
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δ ∼ t, or by varying δ, with relatively high G, such that
LD > LG.

Limitations
The study had some notable limitations that should be
addressed in future research. From a theoretical perspective,
we did not investigate diffusion kurtosis or higher-order terms
in q-space. For a finite b, this may cause potential bias
for estimated DC and DL (see Supplementary Information).
Supplementary Figure S3 shows that higher-order terms may
affect diffusion estimates, but does not alter the functional
form of D(t) or the conclusions regarding model selection
(Supplementary Table S2). This modeling limitation will be
revisited in later works.

This volunteer data experiments employed only 3 TE values.
More TE values potentially would enable to become sensitive
to different compartments of the bulk tissue (such as stroma
vs. epithelium), and produce more precise measurements,
which will be investigated in future work. The patient data
was not acquired with multiple TE; for this reason, model
selection on D(t) was confounded by the luminal compartment.
However, since the clinical dataset was acquired with smaller
TE, coupled with the fact that the luminal compartment
shrinks with age, we made the assumption that the signal
contribution from lumen did not impact model selection too
much.

Due to the acquisition length, nearly 1 h, the volunteer could
move a great deal. We were able to address most of the motion
using rigid registration, but there is still room for improvement as
registration was impacted by SNR limitations, particularly at long
TM and TE. Alternative coil designs and removing noise through
data redundancy [50, 92] may alleviate concerns regarding SNR.
As for the scan time, many cutting edge acceleration techniques
such as parallel imaging and multiband, were already used in
this experiment. Reducing the acquisition time any further would
require a novel acquisition approach, similar to Sabouri et al. [26].

Finally, our histological validation had the following
confounds. Although a histological image is two dimensional,
a 1:1 cross section of fibromuscular stroma representing 2-
dimensional diffusion may be difficult to find. Even in the
samples that were selected, there is inevitably some degree of
orientation dispersion that confounds Γ (k). Lastly, the H&E is
not a faithful representation of restrictions to water diffusion.
For example, heavily stained structures such as cellular nuclei
are prominent on H&E, but are unlikely to be the primary
sources of restriction to D⊥(t). The histological images had to be
segmented to emphasize the borders of the cell walls, providing
a more faithful representation of tissue diffusion. Nonetheless,
we were reassured that the length scale beyond which the 1/k
scaling is valid, estimated to be about 20µm from histology,
Figures 4A–D, is quite close to the length scale estimated from
applying the RPBM onto DC

⊥(t), a
C∼20µm.

Clinical Implications
According to the National Cancer Institute, roughly 11.6% of
men will be diagnosed with prostate cancer (PC) within their

lifetime. It is the second most common cancer among men in
the United States and represents nearly 9.6% of all new cancers
[93]. An estimated 26,730 individuals will die from PC in 2017;
however, this represents less than 1% of the 3,085,209 individuals
living with PC.

Given the indolent nature of most cases, it is valuable
to be able to properly identify tumor grade before pursuing
radical prostatectomy (RP). While RP entails complete surgical
removal of the prostate and is effective for preventing disease
progression in patients with high-grade disease, the operation
is associated with considerable morbidity including erectile
dysfunction and incontinence [94]. In order to maintain quality
of life, there is increasing use of active surveillance (AS) for
managing patients with low-risk PC. Traditionally, AS involves
serial biopsies and measurements of serum prostate specific
antigen (PSA), with any evidence of PC progression on such
testing resulting in RP [95, 96]. The biopsy specimens are
interpreted using the Gleason Score, which remains the gold
standard for PC grading [97–100]. However, a primary challenge
relates to incomplete sampling during biopsy [101–104], such
that there may be a lack of confidence in low-risk biopsy
results.

Diffusion MRI is actively used as a biomarker aiding in
AS [12]. The sequence has a key role in identifying regions
suspicious for clinically significant PC that can be confirmed
via targeted biopsy. The so-called apparent diffusion coefficient
(ADC) is utilized through a single b, t, and TE measurement.
Much of the imaging and clinical community interprets ADC
as a biomarker of “cellularity.” This association with cellularity
relied on studies observing a strong correlation between cell
density and ADC [105–107]. A more recent study recognized
that the representation described earlier is insufficient and that
changes in epithelium, stroma, and lumen volume fractions
correlate more strongly with prostate ADC values than the
cellularity [63]. This study offered histological validation that
diffusion MRI is actually more sensitive to changes in prostate
tissue microstructure rather than to changes in cell density. Our
study builds upon this observed correlation with prostate tissue
microstructure by modeling individual features that make up
the prostate signal, rather than a vague concept of an aggregate
cellularity. Our work suggests that the dMRI signal is specific
to the individual underlying microarchitecture of distinct tissue
types.

It has not escaped our notice that specific microstructural
degrees of freedom, such as compartment fractions, luminal
diameter, fiber diameter, and cell membrane permeability,
identified by our physics-inspired model selection strategy, may
serve as a foundation for objective cellular-level assessment
of tumor grade and of treatment efficacy. Furthermore, our
acquisition and parameter estimation is quite modest from
a hardware perspective. For example, our choice of b does
not require high imaging gradients, which implies that this
approach can be easily ported toward lower-end scanners.
Though we employed DTI for our images, our acquisition
and modeling approach may be further simplified: e.g., if
clinicians are mainly interested in lumen diameters, the
acquisition may be accelerated even further by only studying

Frontiers in Physics | www.frontiersin.org 18 September 2018 | Volume 6 | Article 91

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lemberskiy et al. Prostate Microstructure via Diffusion-Relaxatometry

the isotropic mean diffusion coefficient D(t) derived from 3
orthogonal directions, without the need to estimate the full
tensor.

CONCLUSIONS

This study identified basic building blocks for a physical picture
of water diffusion in prostate tissue microstructure, relevant for
in vivo diffusion MRI measurements in humans. We showed
that both diffusion and transverse NMR relaxation is comprised
of at least two biophysically distinct contributions, which we
attribute to glandular lumen (long T2 and fast diffusion), and
tissue, such as stroma, with short T2 and heavily restricted
anisotropic diffusion. In both compartments, the diffusion is
time-dependent, and therefore, non-Gaussian. For the luminal
compartment, diffusion appears to be in the short-time S/V
limit, affected by the initial restrictions by lumen walls; the
corresponding time-dependent diffusion coefficient yields typical
prostate lumen diameters. In the tissue compartment, diffusion
is anisotropic, with the transverse diffusivity strongly decreasing
with diffusion time. Its dynamical exponent reveals that the
restrictions are permeable, and fall into the universality class
of random permeable barriers in two spatial dimensions,
most likely corresponding to the stroma fiber walls in cross-
section. Applying the RPBM, we derive the fiber diameter
and membrane permeability, which have good agreement with
histopathology from literature and from our quantification of
radical prostatectomy specimen. Our approach offers a number

of objective cellular-level tissue structure parameters as candidate
markers for the non-invasive diagnosis and staging of prostate
cancer with MRI.
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